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The dependence of transition frequencies on the fine-structure constant �=e2 /�c is calculated for several
many-electron systems which are used or planned to be used in laboratory searches for time variation of the
fine-structure constant. In systems with a large number of electrons in open shells �from 11 to 15� the relative
effects of the variation may be strongly enhanced. For the transitions which were considered before the results
are in good agreement with previous calculations.
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I. INTRODUCTION

Theories unifying gravity with other interactions as well
as many cosmological models allow for space-time variation
of fundamental constants. Experimental search for the mani-
festation of this variation spans the whole lifetime of the
Universe from big bang nucleosynthesis to the present-day
very precise atomic clock experiments �see, e.g., reviews in
Refs. �1,2��. A piece of evidence that the fine-structure con-
stant might have been smaller about 10�109 years ago was
found in the analysis of quasar absorption spectra �3–8�. This
finding together with progress in the development of very
precise atomic frequency standards motivated many labora-
tory searches for the present-day time variation of the funda-
mental constants �see, e.g., Ref. �9��. In particular, strong
limits on the rate of the time variation of the fine-structure
constant � ��=e2 /�c� were found by comparing the frequen-
cies of different atomic transitions over a few years �9�.

Apart from the microwave atomic clocks and optical fre-
quency standards, a number of atomic transitions in which
the change of frequency due to the change of � is strongly
enhanced have been suggested in Refs. �10–12�.

Interpretation and planning of the measurements of the �
variation require atomic calculations to relate the change of
atomic frequencies to the change of the fine-structure con-
stant. A number of such calculations for atomic optical tran-
sitions have been performed in our early works �10–15�. In-
dependent calculations for some optical transitions have been
recently reported in Ref. �16�.

From the computational point of view the most important
parameter of an atom which determines the choice of com-
putational method as well as the accuracy which can be
achieved in the calculations is the number of electrons in
open shells. The larger the number, the more difficult are the
calculations. Many optical frequency standards are based on
atoms or ions with just one or two valence electrons �9�.
Calculations for such systems are accurate and reliable
�10,13,15�. However, many atomic systems which are used
or planned to be used in laboratory searches for variation of
the fine-structure constant have more than ten electrons in
open shells. For example, strong limits on the variation of �
in time �17� and variation of � due to a change of the gravi-
tation potential �18� were obtained with the use of the dys-
prosium atom which has 12 external electrons �see also Refs.

�10,14,19��. There are plans to use holmium �13 electrons�
for similar measurements �20�. There are ongoing measure-
ments or plans for measurements for Ag I �21�, Yb II,
�22,23�, Yb III �24�, and Hg II �25� �see also the review in
Ref. �9� and references therein�. These systems involve states
with excitations from d or f subshells and therefore must be
treated as many-valence-electron systems.

Calculations for many-valence-electron atoms are difficult
due to the fast growth of the matrix size of the configuration
interaction �CI� eigenvalue problem with an increase of the
single-electron basis. In our recent paper on Fe I �26� we
used a version of the CI method which is similar to the
multiconfiguration CI method �see, e.g., Ref. �27�� and which
allows one to obtain a reasonably accurate result with a very
short basis. In the present paper we use this method for
many-electron systems which are of the interest for labora-
tory searches of the variation of the fine-structure constant.
The aim of the calculation is to check our early results as
well as to calculate relativistic energy shifts for atomic tran-
sitions which have never been considered before.

II. METHOD

A detailed discussion of the method can be found in our
early works �10,26�. Here we repeat its major points.

It is convenient to present the dependence of atomic fre-
quencies on the fine-structure constant � in the vicinity of its
physical value �0 in the form

��x� = �0 + qx , �1�

where �0 is the present laboratory value of the frequency,
x= �� /�0�2−1, and q is the coefficient which is to be found
from atomic calculations. Note that

q = �d�

dx
�

x=0
. �2�

To calculate this derivative numerically we use

q �
��+ �� − ��− ��

2�
. �3�
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In the present calculations we use �=0.05, which leads to

q � 10���+ 0.05� − ��− 0.05�� . �4�

In a single-electron approximation the relativistic energy
shift can be estimated using the formula �10�

�a =
Ea

�a
�Z��2� 1

ja + 1/2
− C�Z, ja,la�� , �5�

where a is the index for a single-electron state, Ea is its
energy, �a is its effective principal quantum number
��a=1 /	−2Ea�, and ja and la are total and angular momenta
of the state a. C�Z , ja , la� is a parameter which is introduced
to simulate the effect of Hartree-Fock exchange interactions
and other many-body effects. For a transition between many-
electron states which can be approximated as a single-
electron transition from state a in the lower level to state b in
the upper level one has

q � �b − �a. �6�

Formulas �5� and �6� are too inaccurate for practical use in
the interpretation of the measurements. However, they are
very useful for predicting what one can expect to find in
different atomic transitions and for explaining the values and
sign of the relativistic corrections. We will use it for the
discussion of our results.

For accurate numerical calculations of the coefficients q
using Eq. �4�, � must be varied in the computer code. There-
fore, it is convenient to use a form of the single-electron
wave function in which the dependence on � is explicitly
shown �we use atomic units in which e=�=1,�=1 /c�:

��r�njlm =
1

r

 fv�r�	�n� jlm

i�gv�r�	̃�n� jlm

� , �7�

where n is the principal quantum number and an index v
replaces the three-number set n , j , l. This leads to a form of
radial equation for single-electron orbitals which also explic-
itly depends on �:

dfv

dr
+


v

r
fv�r� − �2 + �2��v − V̂HF��gv�r� = 0,

dgv

dr
−


v

r
fv�r� + ��v − V̂HF�fv�r� = 0; �8�

here, 
= �−1�l+j+1/2�j+1 /2� and V̂HF is the Hartree-Fock po-

tential. Equations �8� with �=�0
	�+1 and different Hartree-

Fock potential V̂HF for different configurations are used to
construct single-electron orbitals.

Table I lists the configurations considered in present work.
For Ag I, Au I, and Hg II we use only the ground-state con-
figuration and configurations involving excitation from the
upper-core d state. The latter corresponds to the states which
are to be used in the measurements. We add more configu-
rations for Yb II and Yb III and even more for Dy I and Ho I.
In the latter atoms the states of interest are highly excited
ones for which configuration mixing is strong and should be
taken into account more accurately.

The self-consistent Hartree-Fock procedure is done for
every configuration listed in Table I separately. Then valence
states found in the Hartree-Fock calculations are used as ba-
sis states for the CI calculations. It is important for the CI
method that the atomic core remains the same for all con-
figurations. We use the core which corresponds to the
ground-state configuration. The change in the core due to the
change of valence state is small and can be neglected. This is
because core states are not sensitive to the potential from the
electrons which are on large distances �like 6s, 6p, and 5d
electrons�. The 4f electrons are on smaller distances and
have a larger effect on atomic core. However, in all cases
�see Table I� only one among about ten 4f electrons changes
its state. Therefore their effect on the atomic core is also
small. A more detailed discussion of the effect of valence
electrons on the atomic core can be found in Refs. �28,29�.

The effective Hamiltonian for Nv valence electrons has
the form

TABLE I. Configurations and effective core polarizabilities ��p

�a.u.�� used in the calculations.

Atom Z Nv
a Set Parity Configuration �p

Ag I 47 11 1 Even 4d105s 0.4

2 Even 4d95s2 0.414

Dy I 66 12 1 Even 4f106s2 0.4

2 Even 4f105d6s 0.397

3 Even 4f96s26p 0.4039

4 Even 4f95d6s6p 0.389

5 Odd 4f95d26s 0.3895

6 Odd 4f95d6s2 0.4

7 Odd 4f106s6p 0.393

Ho I 67 13 1 Odd 4f116s2 0.4

2 Odd 4f106s26p 0.401

3 Odd 4f115d6s 0.401

4 Odd 4f105d6s6p 0.39

5 Odd 4f116p2 0.39

6 Even 4f105d6s2 0.3927

7 Even 4f116s6p 0.3962

8 Even 4f105d26s 0.39

9 Even 4f105d6p2 0.4

10 Even 4f106s6p2 0.4

Yb II 70 15 1 Even 4f146s 0.4

2 Even 4f136s2 0.399

3 Even 4f135d6s 0.3911

4 Even 4f135d2 0.39

Yb III 70 14 1 Even 4f14 0.4

2 Even 4f135d 0.3914

3 Even 4f136s 0.3977

Au I 79 11 1 Even 5d106s 0.4

2 Even 5d96s2 0.417

Hg II 80 11 1 Even 5d106s 0.4

2 Even 5d96s2 0.426

aNv is the number of valence electrons.
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Ĥeff = �
i=1

Nv

ĥ1i + �
i�j

Nv

e2/rij; �9�

here, ĥ1�ri� is the one-electron part of the Hamiltonian:

ĥ1 = c� · p + �
 − 1�mc2 −
Ze2

r
+ Vcore + �V . �10�

Here � and 
 are Dirac matrices, Vcore is the Hartree-Fock
potential due to core electrons, and �V is the term which
simulates the effect of the correlations between core and va-
lence electrons. It is often called the polarization potential
and has the form

�V = −
�p

2�r4 + a4�
. �11�

Here �p is the polarization of the core and a is a cutoff
parameter �we use a=aB�.

The form of the �V is chosen to coincide with the stan-
dard polarization potential on large distances �−�p /2r4�.
However, we use it on distances where valence electrons are
localized. These distances are not large, especially for the 4f
electrons. Therefore we consider �V as only rough approxi-
mation to a real correlation interaction between core and va-
lence electrons and treat �p as fitting parameters. The values
of �p for each configuration of interest are presented in Table
I. They are chosen to fit the experimental position of the
configurations relative to each other. For all configurations of
the same atom the values of �p are very close. This is not a
surprise since the core is nearly the same for all configura-
tions of interest. One can probably say that the small differ-
ence in �p for different configurations simulates the effect of
incompleteness of the basis and other imperfections in the
calculations.

Tables II and III present comparison between experimen-
tal and theoretical energies and g factors for Dy I and Ho I

atoms. The g factors are useful for the identification of the
states and for control of configuration mixing �30�. For the
dysprosium atom both the energies and g factors are repro-
duced quite accurately. This includes the states with the en-
ergies of 19 797.96 cm−1 which are used in the measure-
ments �17,18�.

For holmium the g factors are not known for most of the
states. This makes it more difficult to identify the states and
to judge the accuracy of the calculations of the relativistic
energy shifts. If the measurements for holmium are to go
ahead, it would be good to measure the g factors as well, at
least for the states of most interest. At the moment we can
only rely on the energies. Although the energies are repro-
duced in the calculations quite accurately, the coefficients q
in Eq. �1� are very sensitive to the configuration mixing
which in turn is sensitive to the energy intervals between
close levels of the same parity and total angular momentum.
Therefore, having good accuracy for absolute values of en-
ergies is not enough for reliable results for the coefficients q.
It is very important that the relative positions of the states
around the states of interest are reproduced accurately in the
calculations.

III. RESULTS AND DISCUSSION

A. Holmium

The holmium atom has been suggested for the search of
the variation of the fine structure constant by Saffman �20�.
From the computational point of view it represents the most
difficult case. It has 13 electrons in open shells, very dense
spectrum, strong configuration mixing, and multiple-level
crossing in the vicinity of the physical value of � when en-
ergies are considered as functions of �2. All these factors
contribute to the instability of the results. Therefore, it is
instructive to start from simple estimations based on a single-
electron approximation. Table IV shows approximate values

TABLE II. Energy levels �cm−1� and g factors of some low
states of Dy I.

Conf. J

Experimenta Calculationsb

Energy g Energy g

4f106s2 8 0.00 1.242 0 1.2428

7 4134.23 1.173 4409 1.1747

6 7050.61 1.072 7600 1.0723

5 9211.58 0.911 9983 0.9080

4 10925.25 0.618 11840 0.6163

4f105d6s 9 17514.50 1.316 17703 1.3145

8 18903.21 1.22 19556 1.2754

7 21074.20 1.24 21881 1.1983

8 17613.36 1.33 17871 1.3300

7 18937.78 1.28 19633 1.3012

6 21159.79 1.24 22042 1.2116

7 18094.52 1.38 18308 1.3835

6 20090 1.3078

5 22478 1.2198

10 18462.65 1.282 18461 1.2883

9 19240.82 1.217 19592 1.2277

8 20193.60 1.16 20893 1.1700

4f106s2 8 19019.15 1.14 21377 1.1113

4f105d6s 11 19348.72 1.27 19295 1.2675

10 19797.96b 1.21 20077 1.2089

9 20209.00 1.14 20847 1.1261

4f96s26p 7 20614.32 1.32 19835 1.3372

8 20789.85 1.32 19832 1.2997

4f105d6s 8 21603.04 1.26 23205 1.2514

7 21778.43 1.26 23232 1.2419

9 22045.79 1.22 23429 1.2677

10 22487.14 1.197 24132 1.2162

4f95d6s6p 8 23031.46 1.37 23132 1.3730

4f95d6s2 10 12892.76 1.29 12920 1.2933

4f106s6p 10 17513.33 1.30 17582 1.2944

4f95d26s 10 19797.96b 1.367 19693 1.3677

4f95d26 10 21788.93 1.34 22312 1.3340

aNIST, Ref. �31�.
bStates used in the measurements �17,18�.
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of the q coefficients for different configurations of holmium
obtained with the use of formula �6� but with energy shifts of
the individual single-electron states ��a,b� taken from the
Hartree-Fock calculations rather than from formula �5�. Note
that we present the energies and q coefficients relative to the
ground state. Therefore, the relativistic energy shift �q� for
the ground state is zero by definition. The q coefficients for
other states of the 4f116s2 configuration are determined by
the fine structure of the 4f orbital. Large error bars are due to
the fact that relativistic energy shifts depend on the values of
the total momentum j of the single-electron states involved
in the transition �see formula �5��. For example, the
6s→6p transition can be the 6s→6p1/2 or the 6s→6p3/2
transition, etc.

As can be seen from the data in Table IV the values of q
are very different for different configurations. For example,
q�−35 000 cm−1 for the 4f105d6s2 configuration and
q�4000 cm−1 for the 4f116s6p configuration. But these two
configurations have same parity and can have states of the
same total angular momentum J. Therefore, if these configu-

rations are strongly mixed the resulting values of q will be
linear combinations of q�−35 000cm−1 and q�4000 cm−1;
i.e., they may take any value between a large negative value
and some positive one depending on which configuration
dominates in the state. The same is true for odd states which
constitute a mixture of the negatively shifted 4f106s26p con-
figuration with the positively shifted 4f115d6s or 4f116s2

configurations. The analysis of the holmium spectrum shows
that there are many states of the same parity and total angular
momentum J which are separated by only small energy in-
tervals and in which different configurations dominate. These
states are strongly mixed, which leads to instability of the
calculations of the q coefficients. The only way to obtain
reliable results is to make sure that the relative position of
the states in the vicinity of state of interest as well as the
energy intervals between these states are reproduced accu-
rately in the calculations. This can be achieved by appropri-
ate choice of the �p parameters for different configurations
�see Table I�.

In Table V we present the results of the calculations for
two pairs of almost degenerate states of holmium. The rela-
tive change of frequency between degenerate levels due to
change of � is strongly enhanced by small energy interval.
The enhancement factor K �defined by �� /�=K�� /� where
� is the transition frequency� is given by �10�

K = 2�q/�E . �12�

This enhancement factor is about 3�105 for both pairs of
holmium states presented in Table V. To avoid misunder-
standing we should note that the enhancement of the relative
effect here is due to the small �E; there is no any enhance-
ment of the absolute values of the frequency shifts. The val-
ues of q in holmium are typical for heavy atoms.

B. Dysprosium

The dysprosium atom is used for the search of time varia-
tion of the fine-structure constant at Berkeley �17–19�. It has
two almost degenerate levels of opposite parity at
E=19 797.96 cm−1 for which the enhancement factor �12� is
about 108 �14�. Limits on the rate of changing of � in time
obtained from monitoring the frequency of the transition be-
tween these two levels over a long period of time is on the
same level of precision as for the most advanced atomic
optical clock experiments �
10−15 /yr� �17�. The interpreta-
tion of the measurements are based on our early calculations
�14�. The aim of the present calculations is to check our
previous result with a significantly different method.

From the computational point of view the dysprosium
atom is an easier case than holmium in two ways. First, it has
one fewer valence electron and its spectrum is much less
dense. The energy separation between mixing states is larger
than 1000 cm−1 which is much easier to reproduce in the
calculations than a few hundred cm−1 as in the case of hol-
mium. Second, experimental values for g factors are avail-
able for dysprosium. The g factors are almost as sensitive to
configuration mixing as the q coefficients �30�, providing an
important test of the accuracy of the calculation. As can be
seen from Table II both energies and g factors are reproduced
in the calculations with good accuracy.

TABLE III. Energy levels �cm−1� and g factors of some low
states of Ho I.

Conf. Parity J
Expt.a

Energy

Calculations

Energy g

4f116s2 Odd 15 /2 0.00 0 1.20

13 /2 5419.70 5770 1.11

4f106s26p Odd 15 /2 18572.28 18343 1.28

4f115d6s Odd 13 /2 18867.40 18684 1.37

15 /2 19276.94 19295 1.32

4f105d6s6p Odd 15 /2 24112.04 23908 1.35

4f105d6s2 Even 15 /2 8427.11 8395 1.28

13 /2 9147.08 9341 1.33

4f105d6s2 Even 15 /2 12339.04 12903 1.23

13 /2 12344.55 12953 1.23

11 /2 13082.93 13799 1.25

13 /2 15081.12 16459 1.17

11 /2 16937.43 16817 1.13

4f116s6p Even 15 /2 15855.28 15913 1.28

13 /2 17059.35 17135 1.20

4f105d26s Even 15 /2 20167.17 20138 1.41

aNIST, Ref. �31�.

TABLE IV. Approximate values of the q coefficients for differ-
ent configurations of Ho I ��103 cm−1�.

Configuration Parity Transitiona q

4f116s2 Odd �ground state� 5�5�
4f105d6s2 Even 4f →5d −35�15�
4f116s6p Even 6s→6p 4�4�
4f106s26p Odd 4f →6p −45�15�
4f115d6s Odd 6s→5d 7�4�
aSingle-electron transition from the ground state.
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The results for the q coefficients are compared in Table V
with previous calculations. The largest relative difference is
for the smaller coefficient and is about 30%. However, the
difference for �q which is important for the interpretation of
the measurements is only 12%.

C. Ag I, Yb II, Yb III, Au I, and Hg II

The Ag I, Yb II, Yb III, and Hg II atoms are also used or
considered for the use in the laboratory search for variation
of the fine-structure constant �see Ref. �9� and references
therein�. We have included Au I because it has electron struc-
ture similar to Ag I and Hg II. However, we are unaware of
any plans to use Au in the measurements.

All these systems utilize the use of a transition from the
ground state to a low-lying state which involves an excitation
from the core. Both states have no significant admixture of
other configurations, relatively easy to calculate and produce
stable results.

The results for the q coefficients for the transitions of
interest are presented in Table V. Here we also have good
agreement with previous calculations for cases when data are
available.

IV. CONCLUSION

Calculations of the relativistic energy shifts are presented
for many transitions in many-valence-electron systems
which are used or planned to be used in laboratory searches
for variation of the fine-structure constant. Good agreement
with previous calculations confirms the analysis based on old
results and provides an estimate of the accuracy of the cal-
culations. Many atomic transitions are added which were
never considered before.
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