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Measuring the hyperfine structure �HFS� of long-lived 3P2 states of divalent atoms may offer the opportunity
of extracting relatively unexplored nuclear magnetic octupole and electric hexadecapole moments. Here, using
relativistic many-body methods of atomic structure and the nuclear shell model, we evaluate the effect of these
higher nuclear moments on the hyperfine structure. We find that the sensitivity of HFS interval measurements
in 87Sr needed to reveal the perturbation caused by the nuclear octupole moment is on the order of kHz. The
results of similar analyses for 9Be, 25Mg, and 43Ca are also reported.
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I. INTRODUCTION

Progress in cooling and trapping techniques has enabled a
number of advances in precision measurements of atomic
properties. Compared to more traditional beam spectroscopy,
trapping atoms or ions increases interrogation times and en-
hances spectral resolution. This is a well-recognized experi-
mental trend spanning from the searches for permanent
electric-dipole moments to atomic clocks. Here, we point out
that measuring the hyperfine structure of long-lived 3P2
states of cold divalent atoms may facilitate extracting the so
far relatively unexplored nuclear magnetic octupole
moments.

A nucleus may be described as a collection of electromag-
netic moments. Generally, a nucleus of spin I possesses 2I
moments beyond the monopole. Most well known are the
magnetic dipole ��� and the electric quadrupole �Q� mo-
ments. These two leading moments have been studied exten-
sively and have contributed to the understanding of nuclear
forces. For example, discovery of the quadrupole moment of
the deuteron led to introducing nuclear tensor forces �1�.
Here, we are interested in the next two moments in the mul-
tipolar hierarchy: nuclear magnetic octupole ��� and electric
hexadecapole ��� moments.

Electromagnetic fields of various nuclear moments per-
turb the motion of atomic electrons and reveal themselves in
the hyperfine structure �HFS� of atomic and molecular levels.
The resulting hyperfine intervals are conventionally param-
etrized in terms of the HFS constants A ,B ,C ,D , . . ., each
being proportional to the relevant nuclear multipolar mo-
ment. The perturbation becomes weaker as the rank of the
multipole moment increases, and detecting the influence of
higher multipole moments on the HFS intervals requires in-
creasingly longer interrogation times. Also, to observe the
effects of higher rank multipoles on the HFS structure one is
forced to work with electronic states of relatively high angu-
lar momenta J since the 2k-pole moment only contributes in
first order to the HFS structure of levels with J�k /2. These
two factors have limited the determination of the octupole
HFS constants to a small number of isotopes of Cl �2�, Ga

�3�, Br �4�, In �5�, V �6�, Eu �7�, Lu �8�, and Hf �9�. All of the
above measurements have been carried out either on the
ground state or on metastable states. The most recent octu-
pole moment measurement was carried on the short-lived
6p3/2 state of 133Cs �10�. Except for the case of the monova-
lent Cs atom, deducing octupole moments from measured
HFS constants presents a formidable challenge, owing to the
fact that the prerequisite atomic-structure calculations be-
come inaccurate for multivalent atoms. As a result, previous
analyses focused primarily on ratios of octupole moments
for various isotopes of the same atom, because the atomic-
structure factor cancels out when ratios of HFS constants are
formed. By contrast, the divalent alkaline-earth-metal atoms
considered here potentially yield direct values of the nuclear
octupole moments.

3P2 states in alkaline-earth-metal atoms are well suited for
extracting nuclear magnetic octupole moments. We list the
relevant isotopes in Table I. The atomic lifetimes are longer
than 100 s and are long enough to allow for a sufficiently
high spectral resolution. Moreover, successful trapping of the
3P2 alkaline-earth-metal atoms Sr and Ca has been recently
reported in a number of laboratories and there are ongoing
efforts with Mg �13–16�. A typical trapping time is longer
than 10 s. Since the magnetic trap perturbs the atomic level
structure, a plausible experiment could involve microwave
spectroscopy of freely falling atoms when trapping fields are
turned off. Even then, the interrogation time is sufficiently
long to permit a determination of the magnetic octupole HFS
constant. To extract the nuclear octupole moment from the
measured HFS constant, one requires electronic-structure
calculations. As shown in this paper, such supporting calcu-
lations can be carried out with an accuracy of a few percent.

This paper is organized as follows. In Sec. II we recapitu-
late the major results from the relativistic theory of the hy-
perfine interaction. The consideration includes first-order ef-
fects of nuclear dipole, quadrupole, octupole, and
hexadecapole moments and second-order dipole-dipole and
dipole-quadrupole effects. In Sec. III, we focus on the
electronic-structure aspects of the problem and evaluate elec-
tronic coupling constants using a configuration-interaction
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�CI� method coupled with many-body perturbation theory
�MBPT�. We refer to this approximation as the CI+MBPT
method. Further, in Sec. IV, we discuss our results for the
HFS of the 3P2 level in 87Sr. Results for isotopes of Be, Mg,
and Ca are tabulated in Appendix C. Finally, conclusions are
drawn in Sec. V. The paper also has several appendices
where we tabulate results of a technical nature. Unless speci-
fied otherwise, atomic units �= �e�=me=1, and Gaussian
electromagnetic units are employed throughout.

II. NUCLEAR MOMENTS AND THE HYPERFINE
INTERACTION

The electric and vector potential of a nucleus modeled as
a collection of pointlike multipole moments may be ex-
pressed as

��r� = �
k,�

�− 1�� 1

rk+1Ck,��r̂�Qk,−�,

A�r� = − i�
k,�

�− 1�� 1

rk+1�k + 1

k
Ck,�

�0� �r̂�Mk,−�, �1�

where Ck,� and Ck,�
�0� are normalized spherical harmonics and

vector spherical harmonics, respectively �see, for example,
Ref. �17��. In these expressions, Qk,� and Mk,� are compo-
nents of the nuclear electric and magnetic 2k-pole �MJ and
EJ� moment operators, respectively. Each of the moments is
an irreducible tensor operator of rank k. Parity and time-
reversal symmetries require that k is even for the electric
moments and k is odd for the magnetic moments. Compo-
nents of these tensors are conventionally parametrized using
c numbers that are defined as expectation values of the zero
components of the operators in a nuclear stretched state
�I ,MI= I�. We will employ the following notation for the
“stretched” matrix element of a tensor operator Ok,�:

	Ok�I 
 	I,MI = I�Ok,0�I,MI = I� .

In particular, the magnetic-dipole, electric-quadrupole,
magnetic-octupole, and electric-hexadecapole moments of
the nucleus are defined as

� = 	M1�I,

Q = 2	Q2�I,

� = − 	M3�I,

� = 	Q4�I.

The stretched matrix elements are related to the reduced ma-
trix elements by

	I��Ok��I� 
 �I k I

− I 0 I
�−1

	Ok�I.

The interaction Hamiltonian for a single electron in an elec-
tromagnetic field is given by

hem�r� = � · A�r� − ��r� ,

and the total electromagnetic interaction Hamiltonian is then
given by

Hem = �
i

hem�ri� ,

where the sum runs over all electron coordinates. Substitut-
ing the multipolar expansions �1� into the electromagnetic
interaction Hamiltonian, we arrive at an expression for rota-
tionally invariant hyperfine interaction �HFI� Hamiltonian in
the form of

HHFI = �
k,�

�− 1��Tk,�
e Tk,−�

n .

Here the spherical tensors �of rank k� Tk,�
e act on electronic

coordinates and Tk,�
n operate in the nuclear space. We iden-

tify Tk,�
n 
Mk,� for odd k and Tk,�

n 
Qk,� for even k. Explic-
itly, electronic tensors read

Tk,�
e = �

i

tk,�
e �ri� ,

with

tk,�
e �r� = 
 −

1

rk+1Ck,��r̂� electric �even k� ,

−
i

rk+1�k + 1

k
� · Ck,�

�0� �r̂� magnetic �odd k� .�
�2�

Matrix elements of these operators for Dirac bispinors are
listed in Appendix B.

Now we recapitulate the application of perturbation
theory to determining the hyperfine structure of atomic lev-

TABLE I. Nuclear parameters and lifetimes of the 3P2 states of the stable isotopes of Be, Mg, Ca, and Sr.
I is the nuclear spin; the superscript 	 represents the parity. Experimental dipole and quadrupole values are
from Ref. �11�. Octupole and hexadecapole values are from a single-particle approximation �see Appendix
A�. Lifetimes for the 3P2 states are from Ref. �12�.

Isotope I	 �exp��N� Qexp �b� �sp�b
�N� �sp �b2� 3P2 lifetime �s�

9Be 3 /2− −1.177492�17� +0.053�3� −0.073 0.00
25Mg 5 /2+ −0.85545�8� +0.201�3� −0.15 0.00 1.06
103

43Ca 7 /2− −1.317643�7� −0.049�5� −0.23 0.00 5.13
102

87Sr 9 /2+ −1.0936030�13� +0.335�20� −0.38 0.00 1.29
102
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els. In the presence of the multipolar fields produced by the
nucleus, the total electronic angular momentum J is no
longer conserved. The conserved angular momentum in-
cludes the nuclear angular momentum I; explicitly this con-
served angular momentum is F=I+J. The proper basis con-
sists of states ��IJFMF� generated by coupling nuclear and
electronic wave functions,

��IJFMF� = �
MJ,MI

CJMJ;IMI

FMF ��JMJ��IMI� ,

with � encapsulating the remaining electronic quantum num-
bers and the coupling coefficients being the conventional
Clebsch-Gordon coefficients. For fixed values of J and I, the
values of F range in �J− I��F�J+ I, implying that an un-
perturbed level with angular momentum J is split into 2J
+1 levels for J
 I and into 2I+1 levels otherwise.

A matrix element of the HFI in the coupled basis is

	��IJ�F�MF� �HHFI��IJFMF�

= �F�F�MF�MF


�− 1�I+J+F�
k
�F J I

k I J�
�	��J���Tk

e���J�	I��Tk
n��I� , �3�

the � symbols reflecting the scalar character of the HFI in the
coupled basis. Hyperfine corrections to an unperturbed level
are given to first order by the diagonal matrix elements of
HHFI. For convenience, we write this correction in terms of
the F-independent product of the stretched matrix elements

WF
�1� = 	�IJFMF�HHFI��IJFMF� = �

k

Xk�IJF�	Tk
e�J	Tk

n�I,

with

Xk�IJF� = �− 1�I+J+F
�F J I

k I J
�

�J k J

− J 0 J
��I k I

− I 0 I
� .

The first-order F-dependent effects are conventionally pa-
rametrized in terms of the hyperfine structure constants
A ,B ,C ,D , . . .. Successive labels correspond to contributions
of a multipole of increasing multipolarity, e.g., A is due to
the magnetic dipole moment, B is due to the electric quad-
rupole moment, etc. The constants, up to D, are defined as in
�18�

A =
1

IJ
	T1

n�I	T1
e�J =

1

IJ
�	T1

e�J,

B = 4�	T2
n�I	T2

e�J� = 2�Q	T2
e�J� ,

C = 	T3
n�I	T3

e�J = − �	T3
e�J,

D = 	T4
n�I	T4

e�J = �	T4
e�J. �4�

The second-order �in the HFI� correction for the state de-
scribed by electronic quantum numbers � and J is

WF
�2� = �

��J�

�	��IJ�FMF�HHFI��IJFMF��2

E�J − E��J�
,

where the sum excludes the case ���J��= ��J�. With Eq. �3�
this can be expressed explicitly in terms of reduced matrix
elements as

WF
�2� = �

��J�

1

E�J − E��J�
�

k1,k2

�F J I

k1 I J�
��F J I

k2 I J�
�


	��J���Tk1

e ���J�	��J���Tk2

e ���J�	I��Tk1

n ��I�	I��Tk2

n ��I� .

For the case of interest, where J=2, the sum over ���J�� is
dominated by contributions from the adjacent fine structure
levels ��1� and the sum over k1k2 is dominated by the dipole-
dipole �k1=k2=1� term. If we limit ourselves to the dipole-
dipole and dipole-quadrupole terms, then we may express the
second-order correction as

WF
�2� = ��F J I

1 I J − 1
��2

� + �F J I

1 I J − 1
�


�F J I

2 I J − 1
��

where � and � are F-independent terms given by

� =
�I + 1��2I + 1�

I
�2 �	�J − 1��T1

e���J��2

E�J − E�J−1
, �5�

� =
�I + 1��2I + 1�

I
�2I + 3

2I − 1


�Q
	�J − 1��T1

e���J�	�J − 1��T2
e���J�

E�J − E�J−1
. �6�

In the above expressions, � denotes a given fine structure
term such as 3P2 and that J�=J−1=1.

III. CI+MBPT ELECTRONIC WAVE FUNCTIONS

A precise analysis of the hyperfine structure depends on
accurate electronic wave functions as well as nuclear multi-
pole moments. To obtain accurate electronic wave functions,
we used a combined method of configuration interaction �CI�
and many-body perturbation theory �MBPT�, which we refer
to as CI+MBPT. The CI+MBPT method is described in
detail, for example, in Refs. �19,20�. Here, we restrict the
presentation to a qualitative discussion and then apply the
CI+MBPT method to determination of the HFS couplings.

The accuracy of the CI method is limited only by the
completeness of the set of configurations used. In the context
of CI+MBPT we refer to the subspace containing the con-
figurations to be treated by the CI method as the model
space. In CI+MBPT, additional contributions from configu-
rations which are not in the model space can be accounted
for by MBPT. For our purposes, we are interested in finding
accurate wave functions. It is worth noting that the wave
functions determined by the CI+MBPT analysis lie com-
pletely within the model space.
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In deciding which configurations are to be included in the
model space, we consider two things. First, configurations
which interact strongly with the configuration of interest
must be included in the model space. The main purpose here
is to expand the model space to a degree in which the wave
function can be described accurately. Second, configurations
with energies which are nearly degenerate with the configu-
ration of interest should also be included in the model space.
These configurations lead to convergence problems in MBPT
and are treated nonperturbatively by the CI method. Of
course, “strongly” and “nearly degenerate” are relative terms
which depend on the level of accuracy desired.

For the alkaline-earth-metal systems considered in this
paper, we start with a lowest-order description of our system
as two valence electrons outside a closed core in a central
field. Configurations involving different excitations of the
valence electrons outside the closed core tend to interact
strongly and have relatively close energies. These configura-
tions compose our model space. Additional contributions
from configurations involving excitations from core elec-
trons are then accounted for within the framework of MBPT.

The relevant diagrams are shown in Fig. 1. The Coulomb
interaction between the two valence electrons is taken into
account essentially to all orders of perturbation theory and
the remaining many-body effects �involving core excitations
in the intermediate state� are treated in the second order of
MBPT. In Fig. 1 the single-particle states are assumed to be
generated in the frozen-core �VN−2� Dirac-Hartree-Fock
�DHF� approximation where the so-called one-body �loop�
diagrams vanish identically.

The specific approach that we used here is somewhat
more sophisticated �20�: as the single-particle orbitals we
employ the so-called Brueckner orbitals. This approach in-
corporates the diagrams Fig. 1�b� from the onset and also
subsumes higher-order chains. Then the single-particle states
�vertical lines� in the remaining diagrams are replaced by the
Brueckner orbitals. The entire scheme incorporates all the
second-order MBPT effects and includes certain classes of
diagrams to all orders. Technically, generating Brueckner or-
bitals requires an energy-dependent self-energy operator
�see, e.g., Ref. �20�� �����, which generally leads to nonor-

thogonal basis sets. We avoid this problem by fixing �� to the
VN−2 DHF energy of the lowest-energy valence orbital for a
given angular symmetry � �� is defined explicitly in Appen-
dix B�.

To illustrate the predictive capabilities of the CI+MBPT
method, in Table II we compare the theoretical energy values
with the experimental values for Sr. The difference does not
exceed a few 100 cm−1 for all the calculated energy levels.
While the accuracy can be improved further, this level is
sufficient for the goals of the present paper.

Solving the CI+MBPT problem reduces to diagonalizing
the effective Hamiltonian in the model space. With the CI
+MBPT wave functions we proceed to evaluating matrix
elements. Details are given in Ref. �20�; the method builds
upon the formalism originally developed for He-like systems
�21�. We also include an important chain of diagrams of the
random-phase approximation �RPA� in the evaluation of ma-
trix elements. Qualitatively, RPA accounts for screening of
externally applied fields �in our particular case these are the
multipolar nuclear fields� by the core electrons.

Numerically, the calculations were carried out using
B-spline basis sets. It is worth mentioning our modification

TABLE II. Energies of Sr I obtained from CI+MBPT are compared to experimental values. The table is
partitioned into states of definite J and parity. Energies are referenced from the ground 5s2 1S0 state. All
energy values are in cm−1.

J Parity Level CI+MBPT Experimental Differential

0 even 5s6s 1S0 30766 30592 174

5p2 3P0 35798 35193 605

5p2 1S0 37553 37160 393

1 odd 5s5p 3P1 14841 14504 337

5s5p 1P1 21818 21699 119

5s6p 3P1 34062 33868 194

5s6p 1P1 34293 34098 195

2 odd 5s5p 3P2 15212 14899 313

4d5p 3F2 33836 33267 569

4d5p 1D2 34149 33827 322

FIG. 1. Sample Brueckner-Goldstone diagrams included in the
effective CI+MBPT Hamiltonian. �a� Coulomb interaction between
the two valence electrons. The double arrows indicate that the
single-particle states originate or terminate in the model space. �b�
Brueckner �core-polarization� diagrams. �c� Screening diagrams.
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to the original scheme �22� of generating the orbital sets. In
that scheme, boundary conditions are imposed on the small
and large components of the wave function, which were
found to effectively dispense of spurious states in the orbital
sets �more accurately, these spurious states were shifted to-
ward the end of the spectrum�. The disadvantage that follows
is that the resulting wave functions are not highly accurate
near the nucleus, leading to inaccuracies in the HFI integrals
of Appendix B. To remedy this problem, we followed the
prescription for creating a dual kinetic-balance �DKB� basis
set, as introduced by Shabaev et al. �23�. The DKB basis set
is devoid of the problem of spurious states and capable of
accurately representing the wave functions near the nucleus.
The specific formulas used here for generating DHF orbital
sets with a DKB basis set derived from B splines are
presented in Ref. �24�.

Another technical issue is the appearance of “intruder”
states in screening diagrams, Fig. 1�c�. Intermediate states
�the diagram is cut across horizontally� there involve core-
excited states. Since our model �CI� space is essentially com-
plete, such core-excited states become embedded in the two-
particle energy spectrum of the lowest-order model
Hamiltonian. This leads to singular energy denominators in
the diagrams Fig. 1�c�. We remedied this problem by evalu-
ating screening corrections only to the two-particle states
that had energies below the lowest-energy core excitation.
For a typical basis set the resulting subspace involved
roughly 10% of the entire model space. Arguably, this pre-
scription recovers most of the relevant correction since this
low-energy subspace contains the dominant configurations.

IV. HYPERFINE STRUCTURE OF 87Sr

Using the techniques described in the previous sections,
we consider as a specific example the hyperfine structure of
the lowest-energy 3P2 level of 87Sr.

A. Extracting the magnetic-octupole constant from
measurement of hyperfine intervals

The nuclear spin of the stable 87Sr isotope is I=9 /2, and
so there are five hyperfine structure levels F=5 /2, . . . ,13 /2.
First-order corrections are then characterized by four hyper-
fine structure constants A, B, C, and D. In addition, the
second-order dipole-dipole interaction, characterized by �,
and the dipole-quadrupole interaction, characterized by �,
mix the 3P2 state with the nearby fine structure 3P1 state.
Using the expressions given in Sec. II, we may write the
hyperfine correction for 87Sr in terms of these constants as

W5/2 = − 11A +
11

24
B −

143

42
C +

143

18
D ,

W7/2 = −
15

2
A +

1

48
B +

65

21
C −

52

3
D +

7�

900
−

7�

300�6
,

W9/2 = − 3A −
7

24
B +

13

6
C +

91

6
D +

32�

2475
−

4�

825
�2

3
,

W11/2 =
5

2
A −

7

24
B −

10

3
C −

56

9
D +

13�

1100
+

13�

550�6
,

W13/2 = 9A +
1

4
B + C + D .

The resulting HFS intervals �WF=WF−WF+1 are given in
terms of the hyperfine constants as

�W5/2 = −
7

2
A +

7

16
B −

13

2
C +

455

18
D −

7�

900
+

7�

300�6
,

�W7/2 = −
9

2
A +

5

16
B +

13

14
C −

65

2
D −

17�

3300
−

�

220
�3

2
,

�W9/2 = −
11

2
A +

11

2
C +

385

18
D +

�

900
−

�

30�6
,

�W11/2 = −
13

2
A −

13

24
B −

13

3
C −

65

9
D +

13�

1100
+

13�

550�6
.

�7�

Similar expressions for the hyperfine intervals in 3P2 states
of stable isotopes of other alkaline-earth-metal atoms are
given in Appendix C. Solving Eqs. �7� for the hyperfine con-
stants C and D, one finds

C = −
3

50
�W5/2 +

7

550
�W7/2 +

21

275
�W9/2 −

147

3575
�W11/2

+
7�

1375�6
, �8�

D =
3

350
�W5/2 −

9

550
�W7/2 +

3

275
�W9/2 −

9

3575
�W11/2.

�9�

Expressions for the HFS constants C and D in terms of hy-
perfine intervals for 3P2 states in other isotopes of the
alkaline-earth-metal atoms are given in Appendix C. The
constant C depends only on the second-order dipole-
quadrupole interference term � while D is independent of
both � and �. This proposition is independent of nuclear spin
I, as shown in Appendix D.

To reiterate, measuring hyperfine intervals of the 3P2 level
should allow one to deduce the magnetic-octupole HFS con-
stant C, limited only by the knowledge of �. With the aid of
calculations of the electronic-structure factor presented be-
low one may extract the nuclear magnetic-octupole moment
of interest.

B. Electronic-structure factors

From Eqs. �4� and �5� we see that the HFS constants may
be written in terms of products of electronic matrix elements
and nuclear multipole moments. We evaluate the electronic
matrix elements using the relativistic many-body method de-

HYPERFINE STRUCTURE OF THE METASTABLE 3P2… PHYSICAL REVIEW A 77, 012512 �2008�

012512-5



scribed in Sec. III. We present the results of our calculations
at various levels of approximation in Table III.

In generating the DHF orbitals we included nuclear-size
effects by assuming a Fermi charge distribution inside the
nucleus. For the computation of HFI integrals, however, we
assumed a point-size nucleus. The observed effect on the
choice of a particular model of nuclear distribution is below
our theoretical error for solving the electronic-structure
problem.

There are several observations to be made with respect to
the many-body calculations. First of all, we find that for Sr,
the configuration 5p3/25s1/2 provides the dominant �92%�
contribution to the CI wave function of the 3P2 state. In
particular, due to the angular selection rules the constants B
and C are determined by the matrix elements involving the
5p3/2 orbital from this dominant configuration. By contrast,
the dominant 5p3/25s1/2 configuration does not contribute to
the electric-hexadecapole �E4� constant due to selection rules
for single-particle matrix elements �see Appendix B�. There-
fore the E4 electronic factor is strongly suppressed, as its
value is accumulated entirely due to admixed configurations.

We find that the Brueckner orbital �BO�
�core-polarization� corrections universally increase the abso-
lute value of all the constants. Qualitatively, core polarization
describes an attraction of the valence electron by the core.
This attraction leads to enhanced density closer to the
nucleus and simultaneously larger hyperfine constants. Simi-
larly, the computed RPA corrections show that the internal
nuclear fields are enhanced by virtual core excitations. The
screening diagrams, Fig. 1�c�, qualitatively represent an ef-
fect of “cross talking” between electrons via core polariza-
tion: a valence electron polarizes the core and this induced
polarization attracts or repels another valence electron. We
see for the magnetic-dipole HFS constant that this effect is
relatively weak compared to the other many-body correc-
tions; however, its effect is more substantial for the electric-
quadrupole and magnetic-octupole HFS constants. In all
three of these cases, the screening contribution has the effect
of decreasing the absolute value of the HFS constants.

Finally, in Table III we compare our ab initio results with
experimental values for A and B. We find an 8% agreement
for both constants. We believe that these accuracies are in-

dicative of the theoretical error for the electronic factor en-
tering the magnetic-octupole constant C. The accuracy of
computing the electronic factor for the HFS constant D is
expected to be worse because the entire value is accumulated
due to correlation effects.

We have carried out similar many-body calculations for
the parameters � and � entering the second-order correction
to the hyperfine constants. For 87Sr, we find �=6.65 MHz
and �=0.529 MHz. These second-order corrections are
scaled to the experimental A and B coefficients and are ac-
curate to 2%. The second-order dipole-quadrupole contribu-
tion to C is

�C�87Sr� =
7�

1375�6
= 1.10�2� kHz. �10�

In this section we have described our calculations for 87Sr.
The corresponding results for 9Be, 25Mg, and 43Ca are given
in Appendix C.

V. DISCUSSION

At this point we combine the computed electronic-
structure factors for the magnetic-octupole constants �Tables
III and IV� and the nuclear shell-model prediction for the M3
moment � �Table I and Appendix A�. We find that

C�9Be� = − 3.57 
 10−2 Hz,

C�25Mg� = − 2.57 Hz,

C�43Ca� = − 16.2 Hz,

C�87Sr� = − 201 Hz. �11�

In particular, for Sr, using Eq. �8�, we may deduce that an
experimental sensitivity in measuring the HFS intervals on
the order of ��W�1 kHz would result in an uncertainty in
the C constant on the order of �C�0.11��W�100 Hz and
would thus be capable of revealing the effects of a C con-
stant of the predicted magnitude.

The expression for the constant of interest C in terms of
HFS splittings contains the second-order dipole-quadrupole

TABLE III. Breakdown of many-body corrections to hyperfine structure constants of the 87Sr 5s5p 3P2

state. We used �=−1.0936�N and Q=0.305�2� b �Ref. �25�� in tabulating A and B constants. The final result
is compared with experimental values from Ref. �26�. CI-DHF corresponds to CI values computed using
single-particle basis generated in the frozen-core �VN−2� DHF potential.

A,
MHz

B,
MHz

C /�,
MHz / ��N
b�

D /�,
MHz /b2

CI-DHF −147.1 35.6 3.54
10−4 0.54
10−12

Many-body corrections

� BO −41.9 10.2 1.03
10−4 0.85
10−12

� Screen 0.4 −4.6 −0.42
10−4 2.71
10−12

� RPA −42.0 21.0 1.15
10−4 0.55
10−12

Final −230.6 62.2 5.30
10−4 4.65
10−12

Experiment −212.765�1� 67.215�15�
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correction, see, e.g., Eq. �8� for Sr. If the experiment mea-
sures HFS intervals with a vanishingly small error bar, the
extraction of � would be limited by the error in this correc-
tion. Our estimated error bar for Sr, Eq. �10� is 20 Hz, which
translated into 10% error bar for C�87Sr� of predicted mag-
nitude. A similar conclusion holds for Ca, while for Mg our
estimated uncertainty in the dipole-quadrupole correction is
comparable with the predicted size of C. For Be, our present
uncertainty of 0.2 Hz in the dipole-quadrupole correction
precludes clean extraction of the octupole moment. Notice,
however, that the nuclear shell model estimates of the
nuclear octupole moment may be unreliable. If the 133Cs
experiment �10� is of any indication, the “true” size of the
octupole constant may be much larger �a factor of 40� than
predicted. Then the dipole-quadrupole corrections become
mostly irrelevant.

We emphasize that the values �11� are only estimates
based on the nuclear-shell model; measuring C would show
deviations from these estimates. In a particular case of 133Cs,
the measured and the predicted values differed by a factor of
40 �10�. It remains to be seen if such large deviations from
the nuclear shell model would be revealed experimentally for
the nuclei considered in the present work.
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APPENDIX A: NUCLEAR MOMENTS FROM A
SINGLE-PARTICLE MODEL

A crude approximation to the nuclear moments can be
achieved by representing the nucleus by a single nucleon.
For even-odd �even number of protons, odd number of neu-
trons� nuclei we use a single neutron, and for odd-even nu-
clei we use a single proton. Using formulas by �27�, we may
write the moments in this single-particle model as

�sp = �NI 
 ��gl + �gs − gl�/2I� for I = l + 1
2 ,

�gl − �gs − gl�/�2I + 2�� for I = l − 1
2 ,
�

Qsp = − e	r2�gl
2I − 1

2I + 2
,

�sp = �N	r2�
3

2

�2I − 1�
�2I + 4��2I + 2�


 ��I + 2���I − 3
2�gl + gs� for I = l + 1

2 ,

�I − 1���I + 5
2�gl − gs� for I = l − 1

2 ,
�

�sp = − e	r2�gl
3

8

�2I − 1��2I − 3�
�2I + 4��2I + 2�

,

where gl= +1, gs=5.58 for a proton and gl=0, gs=−3.83 for
a neutron. All of the stable isotopes considered in this paper
have even-odd nuclei. This has the immediate consequence
Qsp=0 and �sp=0 for all isotopes. Furthermore, an examina-
tion of the momentum I and parity 	 in Table I reveals that
the nucleon for each isotope must have an orbital momentum
l satisfying I= l+1 /2. With this additional consideration,
�sp=−1.92�N for all isotopes, and the expression for the oc-
tupole moment is reduced to

�sp = �N	r2�gs
3

4

�2I − 1�
�2I + 2�

.

Approximating the root-mean-square value of the nuclear ra-
dii 	r2�1/2 as �in units of fm� 2.52, 3.05, 3.48, and 4.24 for the
cases of 9Be, 25Mg, 43Ca, and 87Sr, respectively, yields the
values for �sp given in Table I.

In the single-particle model the electromagnetic moments
of the nuclei are given by the appropriate expectation values
for the valence nucleon shell. In this model the even-odd
nuclei would have electromagnetic moments determined by
the valence neutron. In particular, since the neutron does not
have an electric charge, all electric moments vanish. Cer-
tainly, the observed nonzero Q moment provides information
on such quantities as nuclear deformation. Similarly, an ob-
servation of the electric hexadecapole moment, which is zero
in the single-particle approximation, should provide similar
information on the nuclear distortion.

TABLE IV. Theoretical and experimental hyperfine structure constants for the 3P2 states of 9Be, 25Mg,
and 43Ca. Theoretical values include the many-body effects discussed in Sec. III.

A,
MHz

B,
MHz

C /�,
MHz / ��N
b�

D /�,
MHz /b2

9Be Theory −119.7 1.43 4.89
10−7

Experimentala −124.5368�17� 1.429�8�
25Mg Theory −127.5 15.8 1.71
10−5 −1.39
10−14

Experimentalb −128.445�5� 16.009�5�
43Ca Theory −179.9 −5.50 7.03
10−5 7.83
10−13

Experimentalc −171.962�2� −5.436�8�
aReference �28�.
bReference �29�.
cReference �30�.
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APPENDIX B: MATRIX ELEMENTS OF THE
ELECTRONIC TENSOR OPERATOR

Here we compile expressions for the matrix elements of
the single-particle electronic HFI coupling operators tk,�

e �r�
given in Eq. �2�. We use the conventional parametrization of
the Dirac bispinors,

�n�m� =
1

r
�iPn��r� ��m�r̂�

Qn��r� �−�m�r̂�
� ,

where �= �l− j��2j+1� and � are spinor functions. With this
parametrization, we find that the reduced matrix elements for
the HFI couplings to electric moments of the nucleus are
given by

	n�����tk
e��n�� = − 	����Ck�����

0

� dr

rk+1 �Pn���Pn� + Qn���Qn�� ,

and for couplings to magnetic moments these are

	n�����tk
e��n�� = 	����Ck��− ����� + �

k
��

0

� dr

rk+1


�Pn���Qn� + Qn���Pn�� .

Selection rules for these matrix elements follow from those
for the matrix elements of the C tensor: �j− j���k� j+ j� and
the sum l+ l� must be even.

APPENDIX C: HYPERFINE STRUCTURE OF THE 3P2

STATE FOR 9Be, 25Mg, AND 43Ca

This Appendix contains a compilation of expressions re-
lating the hyperfine intervals and the hyperfine structure con-
stants for the 3P2 states of 9Be, 25Mg, and 43Ca. Computed
HFS constants for these isotopes, given in Table IV, are also
included.

9Be, I=3 /2:

�W1/2 = −
3

2
A +

7

8
B − 28C −

11�

600
+

�3�

200
,

�W3/2 = −
5

2
A +

5

8
B + 20C −

�

120
−

�3�

40
,

�W5/2 = −
7

2
A −

7

8
B − 7C +

7�

200
+

7�

200�3
,

C = −
1

50
�W1/2 +

1

50
�W3/2 −

1

175
�W5/2 +

�

500�3
.

For 9Be, we find that �=25.09�4� MHz and �
=0.2939�2� MHz, leading to a value �C=0.3394�2� kHz
for the second-order correction to C.

25Mg, I=5 /2:

�W1/2 = −
3

2
A +

9

20
B −

54

5
C + 90D −

�

100
+

�

50�2
,

�W3/2 = −
5

2
A +

1

2
B − 3C − 75D −

13�

1260
−

�

210�2
,

�W5/2 = −
7

2
A +

7

40
B +

49

5
C + 35D −

�

900
−

11�

300�2
,

�W7/2 = −
9

2
A −

27

40
B −

27

5
C − 9D +

3�

140
+

33�

140�2
,

C = −
1

30
�W1/2 −

1

70
�W3/2 +

1

20
�W5/2 −

5

252
�W7/2 +

�

350�2
,

D =
1

210
�W1/2 −

3

490
�W3/2 +

3

980
�W5/2 −

1

1764
�W7/2.

For 25Mg, we find that �=5.37�1� MHz and �
=0.333�1� MHz, leading to a value �C=0.671�2� kHz for
the second-order correction to C.

43Ca, I=7 /2:

�W3/2 = −
5

2
A +

25

56
B −

55

7
C +

275

7
D −

�

112
+

�

112
�5

3
,

�W5/2 = −
7

2
A +

3

8
B − 44D −

�

144
−

�

48�15
,

�W7/2 = −
9

2
A +

3

56
B +

48

7
C +

180

7
D +

�

1680
−

13�

560
�3

5
,

�W9/2 = −
11

2
A −

33

56
B −

33

7
C −

55

7
D +

11�

720
+

11�

240�15
,

C = −
1

20
�W3/2 +

1

15
�W7/2 −

7

220
�W9/2 +

�

120�15
,

D =
1

140
�W3/2 −

1

84
�W5/2 +

1

140
�W7/2 −

1

660
�W9/2.

For 43Ca, we find that �=8.43�3� MHz and �
=0.085�1� MHz, leading to a value �C=−0.183�3� kHz for
the second-order correction to C.

APPENDIX D: PROOF THAT HFS CONSTANTS C AND D
MAY BE DEFINED COMPLETELY IN TERMS OF

THE HFS INTERVALS

In this section we prove that the HFS constants C and D
can be expressed uniquely in terms of the HFS intervals even
when the second-order dipole-dipole fine structure term may
not be neglected. This is a nontrivial statement, as the num-
ber of linear equations for HFS intervals is less than the
number of fitting parameters. For example, for 87Sr we find
that there are four HFS intervals expressed in terms of five
fitting parameters �see Eq. �7��.
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We start by defining our HFS levels from a new energy
offset WF� =WF+�. The constant � is arbitrary and its par-
ticular choice will be shown not to affect the conclusions;
consequently, a knowledge of the HFS level intervals with a
convenient choice of � is sufficient to completely define WF�
for all F. Including all first-order terms as well as the second-
order dipole-dipole fine structure term, the levels WF� can be
written as

WF� = � + �− 1�I+J+F�
k�
�F J I

k� I J
�Zk�

+ ��F J I

1 I J − 1
��2

� , �D1�

where Zk= 	�J��Tk
e���J�	I��Tk

n��I�. From Eq. �4� we see that Z1

is proportional to A, Z2 is proportional to B, etc. The next
step is to multiply every term in Eq. �D1� by �−1�I+J+F�2F

+1��F J I

k I J �, with k�0, and sum over all F values. Here

we analyze the effect of this procedure on the individual
terms of the right-hand side of Eq. �D1�; to do so, we incor-
porate various well-known sum rules of six-j symbols. The
first term becomes

��
F

�− 1�I+J+F�2F + 1��F J I

k I J
�

= ��k,0
��2I + 1��2J + 1� = 0.

The second term becomes

�
k�

Zk��
F

�2F + 1��F J I

k� I J
��F J I

k I J
�

= �
k�

Zk�

�k,k�

�2k + 1�
=

1

�2k + 1�
Zk.

The third term becomes

��− 1�2�I+J�+k+1�
F

�− 1�F−I−J−k−1�2F + 1��F J I

1 I J − 1
�


�F J I

1 I J − 1
��F J I

k I J
�

= ��− 1�2�I+J�+k+1�1 1 k

J J J − 1
��1 1 k

I I I
� .

The resulting equation may then be solved for Zk, giving

Zk = �2k + 1��
F

�− 1�I+J+F�2F + 1��F J I

k I J
�WF�

+ �− 1�2�I+J�+k�2k + 1��1 1 k

J J J − 1
��1 1 k

I I I
�� .

First, we note that this expression does not depend on the
specific choice of �. Second, we note that for the case of k
�2, the triangular condition is not satisfied along the top
rows of the last four six-j symbols in the last expression.
Since these six-j symbols are then equal to zero, Zk is com-
pletely defined by the values of WF� . Equivalently, we may
conclude that the HFS constants C ,D , . . . may be expressed
completely in terms of the HFS intervals, and these are the
same expressions that would be obtained regardless of the
inclusion of �. A more general proof can easily be given to
show that with the inclusion of second-order dipole-
quadrupole terms, C can no longer be expressed completely
in terms of the intervals, while the expression for D in terms
of the intervals would still remain valid �and so on to higher
second-order terms if desired�.

The above conclusion can also be drawn from the formu-
lation of second-order effects as in Ref. �31�, in which the
second-order effects are used to describe the difference be-
tween a measured value of a HFS constant �based on first-
order perturbation theory� compared to its actual value. This
already assumes that all measurable HFI effects are com-
pletely described by first- and second-order perturbation
theory. Further assuming that only second-order terms of the
dipole-dipole type contribute to measurable effects shows
that measured HFS constants differ from actual HFS con-
stants only for the cases of constants A and B and not for
higher constants.
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