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The exact-exchange energy density and energy density of a semilocal density-functional approximation are
two key ingredients for modeling the static correlation, a strongly nonlocal functional of the electron density,
through a local hybrid functional. Because energy densities are not uniquely defined, the conventional �Slater�
exact-exchange energy density ex

ex�conv� is not necessarily well suited for local mixing with a given semilocal
approximation. We show how to transform ex

ex�conv� in order to make it compatible with an arbitrary semilocal
density functional, taking the nonempirical meta-generalized-gradient approximation of Tao, Perdew,
Staroverov, and Scuseria as an example. Our additive gauge transformation function integrates to zero, satisfies
exact constraints, and is most important where the density is dominated by a single orbital shape. We show
that, as expected, the difference between semilocal and exact-exchange energy densities becomes more nega-
tive under bond stretching in He2

+ and related systems. Our construction of ex
ex�conv� by a resolution-of-the-

identity method requires uncontracted basis functions.
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I. INTRODUCTION

In Kohn-Sham density-functional theory �1,2�, the
exchange-correlation �xc� energy Exc must be approximated
as a functional of the electron spin densities n↑�r� and n↓�r�.
This functional can always be written as

Exc�n↑,n↓� =� dr exc�r� , �1�

where exc�r�=n�r��xc�r� is the exchange-correlation energy
density, n=n↑+n↓ is the total electron density, and �xc is the
exchange-correlation energy per electron. Approximations to
�xc�r� can be constructed in a fairly systematic way �3,4� by
employing increasingly complex ingredients built from the
Kohn-Sham orbitals. Most of the existing exchange-
correlation approximations use only ingredients found from
the occupied Kohn-Sham orbitals at r or in an infinitesimal
neighborhood of r, such as n��r�=�i

occ.��i��r��2, �n��r�, and
���r�= 1

2�i
occ.���i��r��2, where �= ↑ ,↓. Such functionals are

called semilocal and include the local spin density approxi-
mation �1,5,6�, the generalized gradient approximation
�GGA� �7�, and the meta-GGA �8�.

Semilocal functionals are often accurate �9–13� but tend
to make large errors for open systems of fluctuating electron
number �14–18�, such as fragments connected by stretched
bonds. This occurs because semilocal functionals respect the
exact hole sum rule for a closed system but not for an open
one of fluctuating electron number �19�, where �after sym-
metry breaking� the semilocal exchange typically overesti-
mates the magnitude of the static correlation. We have ar-

gued �19� that, in order to correct these errors, one needs to
go beyond the semilocal approximation and incorporate a
fully nonlocal ingredient, the exact-exchange �ex� energy
density ex

ex�r� conventionally �conv� defined as

ex
ex�conv��r� = −

1

2 �
�=↑,↓

� dr�
����r,r���2

�r − r��
, �2�

where ���r ,r�� is the one-electron � spin density matrix of
the Kohn-Sham reference system,

���r,r�� = �
i

occ.

�i��r��i�
� �r�� . �3�

In the Jacob’s ladder classification of density-functional ap-
proximations �3�, functionals that employ ex

ex�r� are called
hyper-GGAs. We have also argued that a hyper-GGA can
simultaneously achieve good accuracy and satisfy important
exact constraints if the exact-exchange energy density is
combined with a semilocal �sl� exchange-correlation in a so-
called local hybrid �lh� functional:

exc
lh = ex

ex + �1 − a�r���ex
sl − ex

ex� + ec
sl, �4�

where 0�a�r��1 is the position-dependent mixing func-
tion. If a�r�=const, Eq. �4� reduces to a global hybrid �gh�
functional �20�. The general local hybrid form was suggested
by Cruz et al. �21� as early as 1998, but specific forms of
a�r� were not proposed until later �3,22�. The fundamental
physical justification for local hybrids has been advanced
only recently �19�. The local hybrid approach is, of course,
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not the only way of attacking the static correlation problem.
Other distinct approaches are being actively pursued �23,24�.

When a�r� of Eq. �4� tends to 1 in the high-density limit,
the local hybrid functional uses full exact-exchange and
treats correlation as the sum of two parts, the static �long-
range, left-right� and dynamic �short-range� correlation. The
dynamic correlation is relatively easy to model by a semilo-
cal correlation functional ec

sl�r�. The static correlation is rep-
resented by the difference �ex

sl�r�−ex
ex�r�� weighted by a

position-dependent function �1−a�r��. This form is moti-
vated by evidence that some �typically more than 100%� of
the static correlation is already contained in semilocal ex-
change approximations �19,25–27�, but not in ex

ex�r�.
Any proposal for a practical local hybrid functional must

deal with the fact that, while the total energy is measurable,
physical, and unique, the energy density is not. As a result,
an arbitrary function G�r� that has a dimension of energy per
volume and integrates to zero can be added to any energy
density of a global hybrid functional with no effect on the
total energy. In contrast, addition of G�r� to ex

ex�r� or ex
sl�r� in

a local hybrid of Eq. �4� will affect the total energy because
the exact-exchange energy density here is weighted locally.

While there is no “most correct” choice for the xc energy
density, there is indeed a conventional choice, which for ex-
change is Eq. �2�. However, the conventional exact-exchange
energy density does not have a second-order gradient expan-
sion �28� and so is not the most natural choice for density-
functional approximation. Also, the exchange hole associated
with ex

ex�conv� is highly delocalized, which makes it very dif-
ficult to model by semilocal functionals. Standard function-
als are at most designed to recover the conventional �or any
other� exchange energy density to zeroth order in the density
gradients, i.e., for uniform electron densities only.

In the local hybrids proposed to date �22,29–32�, ex
sl�r� is

taken as the integrand of the semilocal functional Ex
sl as writ-

ten, while ex
ex is taken as ex

ex�conv�. This choice is not neces-
sarily the one best suited for modeling the static correlation
by the difference �ex

sl−ex
ex�. Moreover, the very idea of at-

taching physical significance to the difference �ex
sl−ex

ex� re-
quires that both ex

sl and ex
ex be defined with respect to some

common reference or gauge.
The choice of the gauge itself is a matter of convention.

One such choice is based on the Levy-Perdew virial relation
�33�. Burke et al. �34� have pointed out that virial exchange
energy densities ex

vir�r�=−n�r�r ·�vx�r�, where vx�r�
=�Ex /�n�r�, are unique for any given functional. However,
the virial energy density depends on the choice of origin of r
and has other undesirable properties. Furthermore, for the
exact-exchange energy density, this approach requires con-
structing the optimized effective potential �35,36� �OEP�, a
procedure that is problematic in finite basis sets �37–39�.
Burke et al. have also proposed �34� and investigated �40�
the “unambiguous” exchange-�correlation� energy density,
which is uniquely determined by the corresponding energy
functional via the exchange-�correlation� potential and the
Helmholtz theorem. This unambiguous exact-exchange en-
ergy density has all the desired properties but, like the virial
energy density, requires construction of the OEP and, hence,
is not very practical at present.

In this work, we propose and implement two dependable
methods in which ex

sl�r� serves as the reference and ex
ex�r� is

“tuned” to the gauge of ex
sl�r�. The first of them, summarized

in Sec. II A below, is the one we will use in a still-
unpublished hyper-GGA �41� based upon the ideas of Ref.
�19�.

II. THEORY

For a slowly varying electron density, the conventional
exact-exchange energy density will be described exactly to
order �0 by properly constructed local or semilocal density
functionals, although �unlike the integrated exchange energy�
it has no analytic gradient expansion �28,42�. Our idea for
making ex

ex compatible with a given ex
sl is based on the ob-

servation that, although the static correlation is generally
quite large �comparable in magnitude to exchange�, it is neg-
ligible in compact closed systems, such as atoms with non-
degenerate electron configurations. Therefore, ex

ex should be
close to ex

sl at each r in such systems. This is consistent with
the fact that the conventional exact-exchange �43–45� or
exchange-correlation �46� energy densities in compact closed
systems can often be modeled very accurately using only
semilocal ingredients.

Hence, we will make ex
ex as close as possible to ex

sl in
those systems where the static correlation is known to be
small. This can be achieved by various means: for example,
by adding to ex

ex�conv� a term that integrates to zero. We say
that the resulting exact-exchange energy density is in the
gauge of that particular semilocal exchange approximation
and denote it by ex

ex�sl�. To illustrate this method, we will
construct the exact-exchange energy density in the gauge of
the meta-GGA of Tao, Perdew, Staroverov, and Scuseria
�TPSS� �8�.

A. Construction from the divergence of a vector field

For use as ex
ex�r� in Eq. �4�, we construct the exact-

exchange energy density in the gauge of a semilocal func-
tional as follows. First we write

ex
ex�sl��r� = ex

ex�conv��r� + G�r� , �5�

where ex
ex�conv��r� is the conventional exact-exchange energy

density given by Eq. �2� and G�r� is the gauge transforma-
tion term to be determined, such that

� dr G�r� = 0. �6�

Obviously, Eq. �6� leaves much freedom in choosing the ana-
lytic form of the function G�r�. The range of possibilities can
be narrowed down by several physical considerations: �a�
ex

ex�sl��r� should reproduce ex
sl�r� in atoms as closely as pos-

sible; �b� for use in a hyper-GGA, G�r� should contain only
the hyper-GGA ingredients, i.e., n��r�, ��= 1

2�i
occ���i��r��2,

ex�
ex�conv��r�, and, possibly, their derivatives; �c� ex

ex�sl��r�
should satisfy as many exact constraints as possible.

We start the construction of G�r� for spin-unpolarized
systems by noting that the integral of the divergence of any
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well-behaved rapidly decaying vector field F�r� is zero, that
is, �dr � ·F�r�=0. So we will take G�r�=� ·F�r�. The vec-
tor field F�r� itself will be chosen from the requirement that
ex

ex�conv��r�+G�r� satisfy the most basic properties of the ex-
change energy density: correct coordinate scaling, finiteness
at the nucleus, etc.

One particular form that meets these requirements is

G�r� = a � · 	 n/�̃2

1 + c�n/�̃3�2
 �W

�
�b

� �̃� , �7�

where �̃�r�=−�x
ex�conv��r�, �W= ��n�2 /8n is the von

Weizsäcker �47� kinetic energy density for real orbitals, is
the Kohn-Sham kinetic energy density, and a, b, and c �c
	0� are adjustable parameters. Note that 0��W /��1 �48�.

The function G�r� of Eq. �7� has the following exact prop-
erties of the exact-exchange energy density in the conven-
tional gauge �or when coordinate–transformed as described
in Sec. II B�.

�i� Correct uniform coordinate scaling. Under this trans-
formation, the conventional exact-exchange energy density
behaves �33� like ex

ex�conv��r�=
4ex
ex�conv��
r� or, in shorthand,

ex
ex�conv�
4. The ingredients of G�r� behave like n
3, �̃


, �W
5, �
5, �
, so G
�r�=
4G�
r�, which is the
correct behavior.

�ii� Correct nonuniform coordinate scaling �49�. Under
this scaling, the density behaves like n


x�r�=
n�
x ,y ,z� or,
in shorthand, n
. The other ingredients scale in the 

→� limit like �̃
0, �W
3, �
3, �
, so in this limit
G


x�x ,y ,z�=
G�
x ,y ,z�, which is the correct nonuniform co-
ordinate scaling property of the exchange energy density.

�iii� G�r� is finite everywhere. This is because �̃ has no
cusp at the nucleus �50�, which ensures that �2�̃ is finite. All
other ingredients of G are also finite.

�iv� G�r� vanishes for a uniform electron gas and, more
generally, satisfies Eq. �6�.

We also note that, at large r, the density decays exponen-
tially, ne−�r, where � is a constant, �W /�→1, �̃1 /r, so
the large-r behavior is G�r�−�n /�rn, which is compa-
rable to the −n /2r decay of ex

ex�conv�.
The values of a, b, and c are determined by fitting

ex
ex�conv��r�+G�r� to ex

sl�r�, where ex
sl=ex

TPSS. In doing so, we
note that for one- and closed-shell two-electron �iso-orbital�
densities �W /�=1, so G�r� is fixed by the parameters a and c
alone. We use two model-atom iso-orbital densities: the exact
two-electron exponential density n�r�= �2 /�e−2r and the
two-electron cuspless density n�r�= �1 /2��1+2r�e−2r. In the
case of the TPSS meta–GGA, the fit gives a=0.015 and c
=0.04. The value b=4 is chosen to be an integer that gives
the best fit to the TPSS exchange energy density for the
eight-electron jellium cluster with rs=4 bohr. This choice
ensures that G�r� is very small �of the order of �10� for a
slowly varying density, as it should be. Gauge corrections for
semilocal functionals other than TPSS can be constructed
similarly by assuming the same analytic form for G�r� and
refitting the parameters a, b, and c.

While we cannot rule out that there exists a simpler func-
tion G�r� that satisfies the exact constraints �i�–�iv�, we can

point out that many obvious candidates definitely fail to do
so. For example, the function �2n2/3, motivated by the work
of Cancio and Chou �46�, correctly integrates to zero and has
the correct uniform scaling property, but diverges at the
nucleus and does not have the proper nonuniform scaling
property.

For a partly or fully spin-polarized system, the gauge cor-
rection becomes the sum of same-spin contributions G�r�
=��G��r�. To deduce the form of G��r� we use the spin
scaling relation �51�

Ex�n↑,n↓� =
1

2
Ex�2n↑� +

1

2
Ex�2n↓� , �8�

which also holds for exchange energy densities. Applying
Eq. �8� to G�r�, we write

G��n↑,n↓�;r� =
1

2�
�

G��2n��;r� �9�

and define G��r�� 1
2G��2n�� ;r�. Thus, for spin-polarized

systems G�r�=��G��r�, where

G��r� = a � · 	 n�/�̃�
2

1 + 4c�n�/�̃�
3�2
 ��

W

��
�b

� �̃�� , �10�

in which ��
W= ��n��2 /8n� and

�̃� = − �x�
ex�conv� = −

ex�
ex�conv�

n�

. �11�

Note that �x
ex����x�

ex but ex
ex=��ex�

ex because the spin scaling
relation �8� applies only to energy densities.

B. Construction by a coordinate transformation
of the exact-exchange hole

The exact-exchange energy density can also be converted
to the gauge of a semilocal approximation by transforming
the exact-exchange hole. The conventional exact-exchange
energy density can be written as

ex�
ex�conv��r� =

n��r�
2
� dr�

hx��r,r��
�r − r��

, �12�

where hx��r ,r�� is the exact-exchange hole

hx��r,r�� = −
����r,r���2

n��r�
. �13�

This hole is highly delocalized but can be made less so
�52–54� by an appropriate coordinate transformation �r ,r��
→ �r1 ,r2� of the density matrix, such as �54�


 r

r�
� = 
2 − � − 1 + �

1 − � �
�
r1

r2
� , �14�

where 0���1. This transformation does not affect the total
exchange energy Ex but yields a distinctly different exchange
energy density
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ex�
ex����r1� =

n��r1�
2

� du
hx�

� �r1,r1 + u�
u

, �15�

where u=r2−r1 and hx�
� �r1 ,r1+u� is the transformed exact-

exchange hole �54�,

hx�
� �r1,r1 + u� = hx��r1 + �� − 1�u,r1 + �u�

�
n��r1 + �� − 1�u�

n��r1�
, �16�

given in terms of the conventional exchange hole. Since the
exchange hole associated with a semilocal functional is rela-
tively local, a transformation of the exact-exchange hole by
Eq. �16� can make ex�

ex��� resemble its semilocal approxima-
tion more closely than ex�

ex�conv� does. It should be noted that
the transformed hole of Eq. �15� does not obey the sum rule
for the conventional hole at each r1, but preserves the correct
normalization of the system-averaged exchange hole �54�.

The extent of locality of the exchange hole depends on the
value of the parameter �. The maximal localization is
achieved at �=1 /2 �54,55�. We have numerically evaluated
the transformed exact-exchange energy density ex�

ex����r� for
various values of � and found that �=0.92 leads to the best
fit of the exact-exchange energy density to the TPSS meta-
GGA.

III. COMPUTATIONAL METHODOLOGY

In practice, it is much easier to construct the gauge cor-
rection function G�r� than to perform numerical integration
over transformed coordinates of the exchange hole in Eq.
�15�. Therefore, we will adopt the former method for the
purpose of constructing a hyper-GGA functional. In this sec-
tion, we describe a general purpose implementation of the
TPSS gauge term G�r� in finite basis sets.

A. Evaluation of the exact-exchange energy density
in the conventional gauge

Analytic evaluation of the conventional exact-exchange
energy density by Eqs. �2� and �3� is possible but impractical
because it requires evaluation and contraction of many one-
electron integrals for each grid point r. Instead, we employ a
much more efficient approximate method of Della Sala and
Görling �56�. Although this method is documented in the
literature �29,56�, we will supply its detailed derivation here
because it serves as a stepping-stone for evaluating our func-
tion G�r�.

When a basis set ���� is introduced, each Kohn-Sham
orbital is taken as a linear combination of one-electron basis
functions, �i��r�=��c�i

� ���r�. In terms of these basis func-
tions, the density matrix of Eq. �3� is

���r,r�� = �
��

P��
� ���r���

��r�� , �17�

where P��
� = P��

� =�i
occc�i

� �c�i
� ��. The conventional exact-

exchange energy density of Eq. �2� can be written as

ex�
ex�conv��r� = −

1

2�
��

�
��
� dr�P��

� P��
� ���r���

��r����r����
��r��

�r − r��
.

�18�

The single integral over r� in Eq. �18� is not so easily evalu-
ated for many different values of r, but introducing a second
integration over r yields Ex�

ex , which is evaluated analytically
and simply in Gaussian basis sets. These facts motivate the
following development. Using the � function one can write

���r�
�r − r��

=� dr�
���r��

�r� − r��
��r� − r� . �19�

The � function can be approximated by an expansion in the
same nonorthogonal basis as the orbitals, namely, ��r�−r�
=�����r�c��r��, whose Fourier coefficients c��r�� can be
determined as usual. This yields
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FIG. 1. Conventional exact-exchange energy per electron in the
CO molecule along the internuclear axis evaluated at the experi-
mental geometry using the approximate resolution of the identity in
four basis sets. The curves for the last three basis sets are close
together everywhere.
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��r� − r� = �
��

���r�S��
−1��

��r�� , �20�

where S��
−1 are matrix elements of the inverse of the basis set

overlap matrix. Substitution of Eqs. �19� and �20� into Eq.
�18� gives

ex�
ex�conv��r� =

1

2�
��

�
��

S��
−1K��

� P��
� ���r���

��r� , �21�

where

K��
� = − �

��

P��
� � dr�� dr�

���r����
��r�����r����

��r��
�r� − r��

�22�

are elements of the exchange matrix. Equation �21� can be
rewritten as

ex�
ex�conv��r� =

1

2�
��

Q̃��
� ���r���

��r� , �23�

where Q̃��
� are elements of the matrix Q̃�=S−1K�P�. Equa-

tion �23� is analogous to the formula for the density n�r�
����r ,r�=���P��

� ���r���
��r� except that, unlike P�, the

matrix Q̃� is generally not symmetric. The analogy can be

made complete by replacing Q̃� with the symmetrized matrix

Q� =
1

2
�P�K�S−1 + S−1K�P�� . �24�

The final formula for the conventional exact-exchange en-
ergy density via the resolution of the identity is

ex�
ex�conv��r� =

1

2�
��

Q��
� ���r���

��r� . �25�

In practice, ex�
ex�conv� is computed using the subroutines that

evaluate n�r� by passing 1
2Q� in place of P�.

B. Evaluation of the exact-exchange energy density
in the TPSS gauge

The exact-exchange energy density in the TPSS gauge is
given by Eq. �5�. The first term, ex�

ex�conv��r�, is computed by
Eq. �25� and the gauge term is evaluated as follows. Let us
rewrite Eq. �10� as

G��r� = a��f��r� · ��̃��r� + f��r��2�̃��r�� , �26�

where

f��r� =
n�/�̃�

2

1 + 4c�n�/�̃�
3�2
 ��

W

��
�b

. �27�

Based on Eq. �11�,

��̃� = −
�ex�

ex�conv� + �̃� � n�

n�

, �28�

�2�̃� = −
�2ex�

ex�conv� + 2 � �̃� · �n� + �̃��2n�

n�

. �29�

Equations �28� and �29� involve the first and second deriva-
tives of the exact-exchange energy density in the conven-
tional gauge. These quantities are computed as

�ex�
ex�conv� =

1

2�
��

Q��
� � ����r���

��r�� , �30�

�2ex�
ex�conv� =

1

2�
��

Q��
� �2����r���

��r�� , �31�

using the same subroutines that evaluate �n��r� and �2n��r�
by passing 1

2Q� instead of P�. Note that Eq. �21� clearly
shows that the matrix elements Q��

� do not depend on r.
The gradient �f��r� can be written as

�f��r� = 
 ��
W

��
�b

� g��r� + g��r� � 
 ��
W

��
�b

, �32�

where
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g��r� =
n��̃�

4

�̃�
6 + 4cn�

2 . �33�

The quantity �g��r� is evaluated using the chain rule as
usual and it involves only the first derivatives of n�r� and
ex�

ex�conv��r�. The second term can be written as

�
 ��
W

��
�b

= b
 ��
W

��
�b
���

W

��
W −

���

��
� . �34�

The gradient ���
W involves derivatives of the type

� ��n��2

�x
= 2
 �n�

�x

�2n�

�x2 +
�n�

�y

�2n�

�y � x
+

�n�

�z

�2n�

�z � x
� �35�

and similar expressions for ���n��2 /�y and ���n��2 /�z. Fi-
nally, the gradient of the Kohn-Sham kinetic energy density
��� has the components

���

�x
= �

i

occ. 
 ��i�

�x

�2�i�

�x2 +
��i�

�y

�2�i�

�y � x
+

��i�

�z

�2�i�

�z � x
�

�36�

and similarly for ��� /�y and ��� /�z.
The quantities given by Eqs. �35� and �36� are not used in

common GGA and meta-GGA functionals and may not be
immediately available in standard density-functional codes.
However, the first and second derivatives of the orbitals,
from which Eqs. �35� and �36� are built, are readily available.
Thus, evaluation of the exact-exchange energy density and
the gauge correction requires some modification of existing
subroutines. We have implemented these formulas in a de-
velopment version of the GAUSSIAN program �57�.

C. Basis set effects

We use the same nonorthogonal basis set ���� to expand
the Kohn-Sham orbitals and to approximate the � function by
Eq. �20�. Since Eq. �20� in a finite basis set is not exact, the

conventional exact-exchange energy density ex
ex�conv� and its

derivatives are only approximate when evaluated by Eqs.
�25�, �30�, and �31�. In fact, small and medium-size con-
tracted basis sets may cause large errors in ex

ex�conv� that are
further magnified in ex

ex�TPSS� via �ex
ex�conv� and �2ex

ex�conv�.
Figures 1 and 2 show that, for instance, the cc-pVTZ basis is
insufficiently flexible. On the other hand, the uncontracted
cc-pVTZ basis set works almost as well as the near-complete
universal Gaussian basis set �UGBS� �58� augmented with
polarization functions �UGBS1P� �59�. In general, uncon-
tracted basis sets work much better in resolution of the iden-
tity techniques than the corresponding contracted bases.

Furthermore, when cuspless Gaussian-type basis func-
tions are used, ��n��2 and �����2 exhibit spurious oscillations
in the vicinity of a nucleus. However, these artifacts are com-
mon to all semilocal density-functional calculations employ-
ing Gaussian-type orbitals, are negligible energetically, and
may be ignored.

In summary, we caution against using medium-size con-
tracted basis sets like cc-pVTZ or 6-311+G� in Eqs. �25�,
�30�, and �31�. When in doubt, it is always safer to uncon-
tract the basis set. In particular, we recommend the fully
uncontracted 6-311+ +G�3df ,3pd� basis set, denoted as
u-6-311+ +G�3df ,3pd�, which strikes perfect balance
between accuracy and computational cost.

IV. RESULTS

The fact that the TPSS meta-GGA was designed to re-
cover many exact properties �8,10� of the exact-exchange
functional does not guarantee that ex

TPSS is close to ex
ex�conv�.

This is evident from Fig. 3, which shows radial plots of these
energy densities in the H atom. The TPSS and conventional
exact-exchange energy density are different, even though
they both integrate to the same exact value of −5 /16 hartree
�8�. The exact-exchange energy densities in the TPSS gauge
ex

ex�TPSS� and ex
ex��� are both much closer than ex

ex�conv� to the
semilocal ex

TPSS.
Figure 4 shows the exchange energy per electron, �x

=ex /n vs n for the H atom, comparing the exact conven-
tional, exact in the TPSS gauge, and hole-transformed ��

-40

-30

-20

-10

0

0.001 0.01 0.1 1 10

4π
r2 e x

(h
ar

tr
ee

/b
oh

r)

r (bohr)

Ne

ex
ex(conv)

ex
ex(TPSS)

ex
TPSS

FIG. 5. Radial exchange energy densities of the Ne atom com-
puted at the converged Hartree-Fock orbitals in the UGBS basis set:
exact conventional �ex�conv��, exact in the TPSS gauge �ex�TPSS��,
and semilocal TPSS approximation.
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FIG. 6. Same as in Fig. 5 for the Kr atom.
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=0.92� exact-exchange energies per electron to the semilocal
TPSS exchange approximation. Unlike Fig. 3, this figure
shows what happens in the energetically unimportant small-r
and large-r regions. The transformed exact-exchange energy
per electron �x

ex��� stands apart from the others in that it ap-
pears to have an inverted cusp at the nucleus.

Figures 5 and 6 compare the exchange energy in the Ne
and Kr atoms evaluated in a post-self-consistent manner at
the converged Hartree-Fock orbitals obtained using the near-
complete universal Gaussian basis set of Ref. �58�. Overall,
Figs. 3–6 suggest that, for the smaller atoms, the exact-
exchange energy density in the TPSS gauge is closer than
ex

ex�conv� to the TPSS exchange energy density. For larger at-
oms, however, ex

ex�TPSS� remains closer to ex
ex�conv� than to

ex
TPSS in the deep core region.

Figure 7 shows that the exact-exchange energy density
�per electron� in the gauge of a semilocal approximation,
�x

ex�TPSS�, differs from �x
ex�conv� in a nontrivial way. The differ-

ence �x
TPSS−�x

ex�TPSS� reveals subtle effects in the N2 mol-
ecule that are absent in a free N atom. Off-axis effects �not
shown� are of course important. In contrast, the difference
�x

TPSS−�x
ex�conv� in the N2 molecule is very similar to that in a

free N atom.
Figure 8 shows that the difference �x

TPSS−�x
ex�TPSS� repre-

senting the static correlation gets substantially more negative
upon bond stretching, when the fragments show large fluc-
tuations of electron number at the Hartree-Fock level, as it
should. Note that the nuclei in the stretched He2

+ molecule
�RHeHe=16 bohr� are essentially isolated, so the difference
�x

TPSS−�x
ex�TPSS� is almost perfectly symmetric about z=0.

We have also evaluated the exact-exchange energy den-
sity in the TPSS gauge and the two conventional energy
densities for spherical jellium clusters. A spherical jellium
cluster is a model system that has a uniform positive back-
ground charge and a spherically distributed electron density.
The radius of the sphere is given by R=rsN

1/3, where rs is the
bulk density parameter and N is the number of electrons in

the system. The volume of the sphere is proportional to N
and is given by the relation V= �4 /3�Nrs

3. The three ex-
change energy densities for the jellium clusters of rs=4 for
N=2 and 58 are shown in Figs. 9 and 10. All three quantities,
ex

ex�conv�, ex
ex�TPSS�, and ex

TPSS, were evaluated at the orbitals
and densities obtained from OEP calculations �35,36,60�. As
with atoms and molecules, ex

ex�TPSS� is closer than ex
ex�conv� to

ex
TPSS in these jellium clusters.

V. CONCLUSION

As observed before �43–45�, the exchange energy density
of a semilocal functional is reasonably close to the conven-
tional exact-exchange energy density of Eq. �2� in compact
systems like atoms or spherical jellium clusters. We confirm
this here for the nonempirical TPSS meta-GGA. The relative
differences are largest in regions of space where the density
is dominated by a single orbital shape, making �W /� close to
1, e.g., the H or He atom and the two-electron jellium cluster.
Particularly in these regions, the difference can be reduced
by a gauge transformation of the conventional exact-
exchange energy density.

We have found a simple, realistic, and not too highly pa-
rametrized form of the function G�r�, given by Eq. �7�,
which via Eq. �5� transforms the conventional difference of
semilocal and exact-exchange energy densities appearing in
Eq. �4� to the gauge of the TPSS meta-GGA. This transfor-
mation solves the problem of nonuniqueness of the exact-
exchange energy density arising in the context of modeling
the static correlation by the difference of semilocal and
exact-exchange energy densities. The transformed exact-
exchange energy density ex

ex�TPSS� does in fact contain more
information about electron correlation than ex

ex�conv�. In a
forthcoming presentation �41�, we will give a construction of
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quantities were computed at the converged TPSS orbitals using the
UGBS1P basis set.

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

-1 0 1

ε xT
P
S
S

ε xex
(T
P
S
S
)
(h
ar
tr
ee

)

z (bohr)

a) along the bond axis

-1 0 1
z (bohr)

b) 0.5 bohr off the axis

He2
+

RHeHe= 2.154 bohr

RHeHe= 16 bohr

−

FIG. 8. Difference �x
TPSS−�x

ex�TPSS� in the He2
+ molecule along

the internuclear axis and along a parallel axis offset by 0.5 bohr.
Each panel shows only the region near the right nucleus which is
always placed at z=0. The static correlation in the stretched mol-
ecule He0.5+

¯He0.5+ �dashed line� is more negative than at the
equilibrium geometry �solid line�. All quantities were computed at
the converged TPSS orbitals using the uncontracted cc-pVQZ basis
set.

EXACT-EXCHANGE ENERGY DENSITY IN THE GAUGE OF… PHYSICAL REVIEW A 77, 012509 �2008�

012509-7



a hyper-GGA that relies on this gauge transformation to give
highly accurate thermochemistry and reaction barriers.

Finally, we have demonstrated that, as expected �19�,
the difference between semilocal and exact-exchange energy
densities becomes more negative under bond stretching
in He2

+ and related systems, where the separating

fragments show large fluctuations of electron number at the
independent-electron level.
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