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Variational methods to treat a many-electron system embedded in the environment, which is represented by
means of only its electron density, are considered. It is shown that the embedding operator is a local potential
in the case where the electron-electron repulsion is treated exactly and the trial embedded wave function takes
the multideterminantal form with a fixed number of determinants. The local embedding potential is constructed
by imposing that it leads to the same electron density as the one which minimizes the Hohenberg-Kohn
functional. For the limiting cases of single-determinant and configuration interaction forms of the embedded
wave function, the expressions for the local embedding potential using commonly known density functionals
are given. The relation between the derived local embedding potential and the effective embedding potential in
the case of the embedded Kohn-Sham system �T. A. Wesołowski and A. Warshel, J. Phys. Chem. 97, 8050
�1993�� is discussed in detail.
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I. INTRODUCTION

Numerical simulations of condensed-matter systems at the
quantum-mechanics level face inevitably a dilemma of trad-
ing accuracy of the applied approximate method for the pos-
sibility of including a large number of atoms in the model.
The Hohenberg-Kohn-Sham formulation of density-
functional theory �1,2� proved essential in moving the size
limits upwards. Indeed, the commonly used approximations
to the exchange-correlation �Exc���� energy are sufficiently
adequate because the errors due to the fact that they are not
exact are acceptable for a large number of problems and
systems. Nevertheless, some well-defined systems cannot be
described satisfactorily using common simple approxima-
tions to Exc���. Such cases include systems for which single-
determinantal wave function provides a qualitatively wrong
approximation of the exact one �3�. Development of such
beyond-Kohn-Sham formalisms, which are based on
Hohenberg-Kohn theorems but use other reference systems
than the noninteracting electrons, is currently the area of in-
tensive research �3,4� motivated by these flaws. The wave-
function-based methods are free from such deficiencies but
are applicable only to systems of relatively small size. For a
particular type of problems, where the primary interests con-
cern details of the electronic structure which are well-
localized in real space, the size limits can be pushed further
by means of applying the embedding strategy. In this strat-
egy, the wave function or the Kohn-Sham orbitals are con-
structed for the selected subsystem, whereas the effects of
the environment are accounted for by means of a special
operator �embedding operator�. In the simplest case, the em-
bedding operator takes into account only the electrostatic
contributions. In more refined approaches, effects of
quantum-mechanical origin are also represented using such
descriptors of the environment as pseudopotentials or orbit-
als �5,6�.

If the embedded system is described by means of embed-
ded Kohn-Sham orbitals, the exact effective potential can be
expressed using universal density functionals �7,8�. The part
of the whole effective potential taking into account the pres-

ence of the environment �orbital-free effective embedding
potential�, does not require any information about the envi-
ronment besides its electron density and the electrostatic po-
tential generated by other electric charges �nuclei�. It is ap-
pealing, therefore, to combine the density-functional-theory
derived orbital-free effective embedding potential of Ref. �7�
with a multideterminantal representation of the embedded
subsystem. Such a combination has a potential to overcome
two types of limitations of the Kohn-Sham-based methods
by pushing the size limit of amenable model systems up-
wards �when applicable� and the possibility of treating the
systems of multideterminantal character. Indeed, these ad-
vantages have been recognized by Carter, Wang, and col-
laborators who applied such an combination in numerical
simulations �9,10�. A straightforward application of such a
combination leads, however, to the risk of inconsistent treat-
ment of some energy components of the total energy and
even conceptual difficulties �11�. In this work, we address
these issues by identifying the assumptions and approxima-
tions involved. To this end, we derive the relation between
the exact local embedding operator and the quantities ex-
pressed by means of exact density functionals.

Finally, we stress that the common element in the present
considerations is the requirement that only electron density is
used as a descriptor of electrons in the environment. Possible
formal frameworks, in which the environment is described
using other quantities—pseudopotentials or orbitals for in-
stance �5,6�—lie outside of the scope of this work. The
orbital-free representation of the environment is of key im-
portance for applications of the resulting computational ap-
proach in the domain of nonempirical multiscale computer
simulations �8� because the electron density is a well-defined
quantity at both microscopic and macroscopic scales.

II. EMBEDDING A MULTIDETERMINANTAL WAVE
FUNCTION IN AN ORBITAL-FREE ENVIRONMENT

A. Construction of the local embedding operator—outline

The strategy applied in this work follows the same gen-
eral lines as the ones used by others �12–15� to answer the
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question: “What local correlation potential do you have to
add to the Hartree-Fock equation so that the density is ex-
act.” In this work, we consider not only the Hartree-Fock
method but any method which treats the electron-electron
interactions exactly and uses a wave function comprising not
only one but any arbitrarily chosen number of determinants.
Moreover, the target electron density is not the exact ground-
state electron density, but the one which minimizes the
Hohenberg-Kohn energy functional keeping one component
of the total electron density constant in the present consider-
ations. The potential analyzed in this work is obtained using
the following steps:

�i� In all considerations, the environment of an embedded
system comprising 2NA electrons is represented by means of
a given electron density (�B�r��) and the Coulomb potential
generated by nuclei of the environment (vext

B �r��).
�ii� Two formal frameworks for obtaining the ground-state

electron density are considered. In the first one, the embed-
ded electron density is represented by means of embedded
Kohn-Sham orbitals, which are obtained from one-electron
equations �Eqs. �20� and �21� of Ref. �7��. In these equations,
the total effective potential and its embedding component in
particular is expressed by means of explicit density function-
als. For the exact effective potential, these equations lead to
the density �Ao

1, which minimizes the Hohenberg-Kohn en-
ergy functional for a fixed �B �i.e., at ��B=0�. The second
framework uses a multideterminantal wave function to rep-
resent the embedded electron density and treats the electron-
electron interactions exactly whereas the presence of envi-

ronment is accounted for by means of the operator V̂emb:

�T̂2NA
+ V̂2NA

ee + V̂ext
A + V̂emb��A = EA�A, �1�

where the first three operators define the isolated subsystem.
�iii� The embedding operator is postulated to take the

form of a local potential,

V̂emb = �
i

2NA

vloc
emb�r�i� . �2�

The electron density ��Ao
2� obtained as an approximate solu-

tion of Eq. �1� by means of variational calculations using
trial wave functions of the multideterminantal form with a
fixed number of determinants, such as multiconfigurational
self consistent-field calculations �MCSCF� for instance, de-
pends on vloc

emb�r�i�. By imposing that

�Ao
1 = �Ao

2 = �Ao
, �3�

vloc
emb�r�i� is constructed leading to the principal result of this

work—the relation between vloc
emb�r�i� and universal density

functionals.
Note that we take a particular perspective on the relation

between the wave-function-based methods and density-
functional theory. A multideterminantal wave function is
considered in this work as an auxiliary quantity used to ob-
tain the approximate solution of Eq. �1� and the correspond-
ing electron density by means of variational calculations,
whereas the relevant density functionals are considered to be

exact in the derivation of the basic relation. Approximate
functionals are considered only in the discussion part in view
of the prospects for practical calculations.

B. Key definitions and notation

The functionals are denoted with capital letters and the
quantities, on which they depend explicitly, are given within
square brackets �as in F�y��. Unless indicated by tildes, the
considered functionals are assumed to be exact. The formu-
las are given in atomic units for spin-compensated electron
densities.

For 2N electrons in an external potential vext�r��, the
Hohenberg-Kohn energy functional �1� is defined as

EHK��� = FHK��� +� vext�r�� ��r�� dr� , �4�

where the constrained search definition of FHK��� �18� reads

FHK��� = min
�→�

���T̂2N + V̂2N
ee ��	 . �5�

The electron densities considered in the search for the
minimum of EHK��� are required to be N representable �16�.
In finite Coulomb systems, N representability can be easily
assured �16,17�. In this work, a stronger condition—the re-
quirement that � is pure-state noninteracting v representable
�17� �v representable in short� is also relevant. For electron
densities, which belong to this category �obtained from the
Kohn-Sham equations �2� or other one-electron equations
with a multiplicative potential, for instance�, additional ex-
plicit density functionals can be defined using the con-
strained search procedure �18�

Ts��� = min

�i�→�

�2�
i

N 
�i�−
1

2
�2��i��

= 2�
i

N 
�i
o�−

1

2
�2��i

o� , �6�

where the search procedure is performed among the orbitals

�i� preserving the normalization �2�i

N ��i�2=�� and ortho-
normality ���i �� j	=�ij� conditions.

Exc��� is subsequently defined in the following decompo-
sition of FHK���:

FHK��� = Ts��� + J��� + Exc��� , �7�

where J��� is the Coulomb repulsion integral

J��� =
1

2
� � ��r����r���

�r� − r���
dr��dr� . �8�

In this work, functionals depending on other quantities than
electron density are considered. In the Kohn-Sham frame-
work, which is based on a reference system of noninteracting
electrons, the total energy functional ��KS� depends on a set
of one-electron functions �
�i��—the Kohn-Sham orbitals
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�KS�
�i�� = 2�
i

N 
�i�−
1

2
�2��i� + J��� + Vext��� + Exc��� ,

�9�

where �=2�i
N ��i�2.

Obviously,

�KS�
�i�� � �KS�
�i
o�� = EHK��� , �10�

where 
�i
o� are orbitals associated with � via Eq. �6�.

Euler-Lagrange minimization of the functional �KS�
�i��
taking into account the orthonormality of 
�i� leads to the
celebrated Kohn-Sham equations. For the exact functional
Exc���, this procedure is equivalent to minimizing the
Hohenberg-Kohn energy functional within the domain of
pure-state noninteracting v-representable electron densities.

C. Embedding a Kohn-Sham system in the orbital-free
environment

Another total energy functional depending on one-
electron functions is used in the orbital-free embedding for-
malism �7,8� reviewed below. The total electron density ���
is represented as a sum of two components,

� = �A + �B, �11�

where the �A part is constructed using one-electron functions
similarly as it is made in the Kohn-Sham framework,

�A = 2�
i

NA

��i
A�2, �12�

whereas the other one ��B� is a given function. In the context
of embedding, it is useful to refer to �A as the one of the
embedded subsystem, which required quantum-mechanical
description with the orbital resolution, and to associate its
environment with the �B component. The above quantities
are used as basic variables in the following functional of the
total energy:

�E�
�i
A�,�B� = 2�

i=1

NA 
�i
A�−

1

2
�2��i

A� + Ts��B�

+ Ts
nad��A,�B� + Vext��� + J��� + Exc��� ,

�13�

where � and �A are simple functions of �i
A given in Eqs. �11�

and �12�, and where Ts
nad��A ,�B� denotes the bifunctional of

the nonadditive kinetic energy defined as

Ts
nad��A,�B� = Ts��A + �B� − Ts��A� − Ts��B� . �14�

Splitting the functionals in Eq. �13� into the components rep-
resenting individual subsystems and the remaining interac-
tion terms,

J��� = J��A� + J��B� +� � �A�r���B�r���
�r� − r���

dr��dr� , �15�

Vext��� = Vext
A ��A� + Vext

A ��B� + Vext
B ��A� + Vext

B ��B� , �16�

Exc��� = Exc��A� + Exc��B� + Exc
nad��A,�B� , �17�

leads to an alternative form of Eq. �13�,

�E�
�i
A�;�B� = 2�

i

NA 
�i
A�−

1

2
�2��i

A� + Exc��A� + J��A�

+ Vext
A ��A� + Ts��B� + J��B� + Exc��B�

+ Vext
B ��B� + Vext

A ��B� + Vext
B ��A�

+� � �A�r���B�r���
�r� − r���

dr��dr� + Ts
nad��A,�B�

+ Exc
nad��A,�B� . �18�

For a trial set of embedded orbitals 
�i
A� such that

2�
i

NA

��i
A�2 = 2�

i

NA

��i
Ao�2 = �A, �19�

the following inequality holds:

�E�
�i
A�,�B� � �E�
�i

Ao�,�B� = EHK��A + �B� , �20�

where 
�i
Ao� minimizes �E�
�i

A� ,�B�.
Except for the kinetic energy, all other energy components

of �E�
�i
A� ,�B� are explicit density functionals. Therefore,


�i
Ao� also minimize the kinetic energy and can be used to

evaluate Ts��A� �Eq. �6��.
For a given �B�r��, the Euler-Lagrange minimization pro-

cedure applied to �E�
�i
A� ;�B� and taking into account the

orthonormality of the orbitals 
�i
A� leads to the following

Kohn-Sham-like one-electron equations �7�:

�−
1

2
�2 + vKSCED

ef f ��A,�B���i
A = �i

A�i
A, i = 1,NA, �21�

where

vKSCED
ef f ��A,�B��r�� = vKS

ef f��A + �B;r�� + � �Ts
nad��,�B�
���r��

�
�=�A

.

�22�

The label KSCED �Kohn-Sham equations with constrained
electron density� is used here to indicate that the multiplica-
tive potential and the obtained one-electron functions differ
from the corresponding quantities in the Kohn-Sham frame-
work �vKSCED

ef f ��A ,�B��vKS
ef f��A ;r�� and vKSCED

ef f ��A ,�B�
�vKS

ef f��A+�B ;r���. For the sake of subsequent discussions,
vKSCED

ef f is split into two components: the Kohn-Sham effec-
tive potential for the isolated subsystem A �all
�B-independent terms� and the remaining part representing
the effect of the environment �all �B-dependent terms�,

vKSCED
ef f ��A,�B��r�� = vKS

ef f��A;r���r�� + vKSCED
emb ��A,�B��r�� ,

�23�

where
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vKSCED
emb ��A,�B��r�� = vext

B �r�� +� �B�r���
�r�� − r��

dr��

+ ��Exc���
���r��

�
�=�A+�B

− ��Exc���
���r��

�
�=�A

+ � �Ts
nad��,�B�
���r��

�
�=�A

= vext
B �r��

+� �B�r���
�r�� − r��

dr�� + � �Ts
nad��,�B�
���r��

�
�=�A

+ � �Exc
nad��,�B�
���r��

�
�=�A

. �24�

The first two terms in Eq. �24� are �A independent. They
represent the electrostatic potential generated by the environ-
ment. Such potential is nonuniform in general. Therefore,
they depend explicitly on r�. The remaining terms of vKSCED

emb

are also position dependent but their r� dependence is not
explicit. It originates from spacial variations of �A�r�� and
�B�r��. Application of Eq. �21� in numerical studies of embed-
ded systems hinges on the availability of acceptable approxi-
mations for the functional derivatives of the bifunctionals in
the nonelectrostatic terms. Recent numerical studies using
Eq. �21� for various embedded subsystems �19–26� indicate
that, indeed, approximated functionals applicable for certain
types of problems already exist.

1. The functional �EWF
†�A

MD ,�B‡

In the following part, we introduce the functional
�EWF��A

MD ,�B�, which depends explicitely on �B and a trial
wave function �A

MD. It is designed to play a similar role as
�E�
�i

A� ,�B� in the case of embedding a system of noninter-
acting electrons discussed previously. In particular,
�EWF��A

MD ,�B� is constructed to satisfy the condition

EHK��A
MD + �B� = min

�A
MD→�A

MD
�EWF��A

MD,�B� , �25�

where �A
MD�r��= ��A

MD ��i
2NA��r�−r�i� ��A

MD	.
Using definitions given in Eqs. �7� and �14�–�17�, the

Hohenberg-Kohn total energy functional EHK��A+�B� reads

EHK��A + �B� = T��A� + Vee��A� + Vext
A ��A� + Ts��B� + J��B�

+ Exc��B� + Vext
B ��B� + Vext

A ��B� + Vext
B ��A�

+� � �A�r���B�r���
�r� − r���

dr��dr� + Ts
nad��A,�B�

+ Exc
nad��A,�B� . �26�

In the subsequent steps, the above formula is considered for
�A obtained from a multideterminantal wave function with a
given number of determinants from just one �MD equals SD�
as in the Hartree-Fock method, up to that needed for full
configurational interaction type of wave function �MD equals
CI�: �A�r��= ��A

MD ��i
2NA��r�−r�i� ��A

MD	. These two cases are
considered in detail in this work. For the sake of generality,
however, the index MD is used throughout to include any

intermediate case where the number of determinants is fixed.
For any �A

MD, the expectation value of the sum of the
kinetic-energy and electron-electron repulsion operators

���A
MD � T̂2NA

+ V̂2NA

ee ��A
MD	� are readily available. Unfortu-

nately, the numerical value of the universal Hohenberg-Kohn
functional �FHK��A�=T��A�+Vee��A�� is not in general.
FHK��A� is defined using a search procedure among all
N-representable wave functions �Eq. �5��, whereas the com-
putational methods to obtain �A

MD considered here take into
account only functions of multideterminantal form with a
fixed number of determinants. The numerical difference be-
tween these two quantities calls for a more careful analysis
of the link between the quantities available in practical simu-
lations and universal density functionals. To this end, Eq.
�26� is used as a starting point in the subsequent consider-
ations. Adding and subtracting to the right-hand side of Eq.

�26� ��A
MD � T̂2NA

+ V̂2NA

ee ��A
MD	 leads to

EHK��A + �B� = ��A
MD�T̂2NA

+ V̂2NA

ee ��A
MD	 + Vext

A ��A� + Ts��B�

+ J��B� + Exc��B� + Vext
B ��B� + Vext

A ��B�

+ Vext
B ��A� +� � �A�r���B�r���

�r� − r���
dr��dr�

+ Ts
nad��A,�B� + Exc

nad��A,�B� + T��A�

+ Vee��A� − ��A
MD�T̂2NA

+ V̂2NA

ee ��A
MD	 . �27�

The right-hand side of the above equation is not, however,
the desired functional because it does not depend on �A

MD at
all. Obviously, the added and subtracted �A

MD-dependent
terms cancel each other. We note that the right-hand side of
the above equation becomes a true functional of �A

MD and �B
after neglecting the last three terms. Such a functional does
not satisfy Eq. �25� unless the neglected terms are exactly
equal to zero. The conditions, at which the sum of these
terms disappears, will be discussed later. Here, we take an
alternative approach. We do not introduce any approxima-
tions at this stage, but use Eq. �27� as the basis to construct
the desired functional �EWF��A

MD ,�B�, which satisfies Eq.
�25� by construction.

Applying the constrained search procedure only to the last
term in Eq. �27� leads to the following new density
functional:

FMD��A� = min
�A

MD→�A

��A
MD�T̂2NA

+ V̂2NA

ee ��A
MD	 . �28�

The above definition has a particularly simple practical ap-
plication if �A is obtained from MCSCF calculations. The
function minimizing its right-hand side is available in such a
case and the numerical value of FMD��A� can be evaluated. It
is important to underline that the universal Hohenberg-Kohn
density functional FHK��� is defined for a larger class of
electron densities than FMD���. The domain of the functional
FMD��� comprises all electron densities �A

MD obtained as a
result of minimizing the expectation value of the Hamil-
tonian given in Eq. �1�, assuming a given fixed number of
determinants used to represent trial functions. Such densities
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will be subject to the subsequent considerations. They satisfy
the Gilbert’s conditions of N representability. Therefore, the
corresponding FHK��A

MD� exists.
It is worthwhile to underline that such a choice of the

search space �form of the trial functions� is rather uncommon
in the computational practice. Usually, the number of deter-
minants is not known in advance and the definition of the
functional FMD��� seems superficial. There are, however,
two limiting cases of great practical relevance: for the single-
determinantal form of the trial functions, the functional
FMD��� was analyzed formally and numerically already in
1983 by Baroni and Tuncel �12� and is the key component of
methods using hybrid functionals with 100% of “exact ex-
change,” whereas FMD��� is nothing else than the universal
Hohenberg-Kohn functional FHK��� for the full configura-
tional interaction form of the trial functions.

Since for any �A
MD considered in this work either function-

als FMD��A� and FHK��A� are well defined, the functional

	FMD��A� = FHK��A� − FMD��A� �29�

also exists.
Applying the constrained search procedure only to the last

term in Eq. �27� and using the functional 	FMD��A� given in
Eq. �29� defines the following total energy functional:

�EWF��A
MD,�B� = ��A

MD�T̂2NA
+ V̂2NA

ee ��A
MD	 + Ts��B� + J��B�

+ Exc��B� + Vext
B ��B� + Vext

A ��B� + Vext
A ��A�

+ Vext
B ��A� +� � �A�r���B�r���

�r� − r���
dr��dr�

+ Ts
nad��A,�B� + Exc

nad��A,�B� + 	FMD��A� ,

�30�

where �A
MD�r��= ��A

MD ��i
2NA��r�−r�i� ��A

MD	.
With the above definition, the condition given in Eq. �25�

is automatically satisfied. If �Ao

MD denotes the wave function
minimizing �EWF��A

MD ,�B� and �Ao
is the corresponding

electron density, the definition of �EWF��A
MD ,�B� implies

that

�EWF��A
MD,�B� � �EWF��Ao

MD,�B� = EHK��Ao
+ �B�

�31�

for any �A
MD such that ��A

MD ��i
2NA��r�−r�i� ��A

MD	=�Ao
�r��.

In practical calculations, the terms depending explicitly
on �A

MD in Eq. �30� are available. The �A-independent terms,
which represent the energy of the environment, are not of
direct interest to the present work because they are constant
in embedding calculations for which ��B=0. Other terms are
expressed by means of explicit density functionals. The ana-
lytic form of the ones corresponding to the electrostatic po-
tential is known. The remaining nonelectrostatic part,

GMD��A,�B� = Exc
nad��A,�B� + Ts

nad��A,�B� + 	FMD��A�
�32�

must be approximated. Each of its three components is de-
fined in the corresponding constrained search procedure. Ap-

proximating each of them represents, however, a different
type of challenge. The functional Exc��� is defined in the
same way as in the Kohn-Sham formulation of density-
functional theory. Exc

nad��A ,�B� component of GMD��A ,�B� is
just a linear combination of Exc��� calculated at three differ-
ent densities. Approximating Ts���—the functional also de-
fined in the Kohn-Sham formulation—is not needed in prac-
tical calculations because its exact numerical value at the
self-consistent electron density � is available owing to the
knowledge of the corresponding Kohn-Sham orbitals. Ap-
proximating Ts

nad��A ,�B� is necessary in such beyond Kohn-
Sham approaches, which use the orbital-free embedding po-
tential of Eq. �24�. Approximating the functional 	FMD��A�
=FHK��A�−FMD��A� represents, however, an entirely new
challenge. FMD��A� is closely related to the beyond-Kohn-
Sham formulation of density functional theory based on mul-
tideterminantal reference state �see Ref. �4� for instance�. But
even in such frameworks, FMD��� is not approximated, only
one of its components, which plays the similar role as Exc���
in the Kohn-Sham formalism. Moreover, the label MD is
used in this work to specify the class of functions with the
given number of determinants, whereas in the beyond-Kohn-
Sham approaches based on multideterminantal reference
state the number of determinants is determined by the adia-
batic connection between the exact- and multideterminantal
reference state. Below, we deduce some of the exact proper-
ties of 	FMD��A�.

Comparing definitions of FMD��� and FHK��� �Eqs. �5�
and �29�� shows that these functionals are closely related. In
the respective definitions, the constrained search uses the

same target electron density ���, the same operator �T̂+ V̂ee�,
but different search domains. As a consequence

	FMD��� 
 0. �33�

Depending on the number of orbitals in �A
MD, the following

relation holds:

Ec
SD��� = 	FSD��� 
 	Ftruncated CI��� 
 	FCI��� = 0.

�34�

The lower bound is a straightforward consequence of the
constrained search definition of the functional Ec

SD��� �see
Ref. �27�, for instance�,

Ec
SD��� = min

�→�
���T̂ + V̂ee��	 − min

�SD→�

��SD�T̂ + V̂ee��SD	 .

�35�

The upper bound, however, is the result of the fact that the
search domains in the definitions of FCI��� and FHK��� are
the same.

It is worthwhile to compare Eq. �30� in the single-
determinantal case with the total energy functional defined in
Eq. �18�. These functionals differ although both concern a
single-determinantal type of description of the embedded
system. Their difference �Ec

SD��A�� originates from the fact
that the electron-electron repulsion is treated differently in
both cases.
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2. Euler-Lagrange equation for �Ao

MD: Density-functional-theory
way

Let �Ao
1

MD denote the normalized multideterminantal wave

function, which minimizes �EWF��A
MD ,�B� for a given �Ao

1,

min
�A

MD→�Ao
1

�EWF��A
MD,�B� = �EWF��Ao

1
MD,�B� = EHK��Ao

1 + �B� .

�36�

�Ao
1

MD can be obtained from the Euler-Lagrange equation:

��EWF��Ao
1

MD,�B�

��Ao1

MD − �1�Ao
1

MD = 0, �37�

which using the definition of �EWF��A
MD ,�B� given in Eq.

�30� reads

0 =
����Ao

1
MD�T̂2NA

+ V̂2NA

ee ��Ao
1

MD	�

��Ao
1

MD +
�Vext

A ��Ao
1�

��Ao
1

MD +
�Vext

B ��Ao
1�

��Ao
1

MD

+

�� � �Ao
1�r���B�r���

�r� − r���
dr��dr�

��Ao
1

MD +
�Ts

nad��Ao
1,�B�

��Ao
1

MD

+
�Exc

nad��Ao
1,�B�

��Ao
1

MD +
�	FMD��Ao

1�

��Ao
1

MD − �1�Ao
1

MD, �38�

where ��Ao
1

MD � T̂2NA
+ V̂2NA

ee ��Ao
1

MD	 is the only term in

�EWF��A
MD ,�B� which depend explicitly on �A

MD. All other
terms are explicit functionals of �Ao

1 and are constant in the

constrained search. Since �Ao
1

MD yields the electron density

�Ao
1 and minimizes �EWF��A

MD ,�B�, it can be used to obtain
FMD��Ao

1�,

FMD��Ao
1� = ��Ao

1
MD�T̂2NA

+ V̂2NA

ee ��Ao
1

MD	 . �39�

The above relation used in Eq. �38� leads to

0 =
�FMD��Ao

1�

��Ao
1

MD +
�Vext

A ��Ao
1�

��Ao
1

MD +
�Vext

B ��Ao
1�

��Ao
1

MD

+

�� � �Ao
1�r���B�r���

�r� − r���
dr��dr�

��Ao
1

MD +
�Ts

nad��Ao
1,�B�

��Ao
1

MD

+
�Exc

nad��Ao
1,�B�

��Ao
1

MD +
�	FMD��Ao

1�

��Ao
1

MD − �1�Ao
1

MD. �40�

Subject to standard transformations �chain rule for calcula-
tion of derivatives, multiplication by ��Ao

1
MD�* and integra-

tion�, Eq. �40� becomes

0 = �Ao
1�r��

�FMD��Ao
1�

��Ao
1�r��

+ �Ao
1�r��vext

A �r�� + �Ao
1�r��vext

B �r��

+ �Ao
1�r�� � �B�r���

�r� − r���
dr�� + �Ao

1�r��
�Ts

nad��Ao
1,�B�

��Ao
1�r��

+ �Ao
1�r��

�Exc
nad��Ao

1,�B�

��Ao
1�r��

+ �Ao
1�r��

�	FMD��Ao
1�

��Ao
1�r��

− �1��Ao
1�r�� .

�41�

3. Euler-Lagrange equation for �Ao

MD: Variational calculations
with embedding potential

Since ��A
MD � T̂2NA

+ V̂2NA

ee + V̂ext
A +�i

2NAvloc
emb�r�i� ��A

MD	 is also
a functional depending on �A

MD, the normalized function
�Ao

2
MD, which minimizes this functional, can be obtained from

the following Euler-Lagrange equation:

0 =

���Ao
2

MD�T̂2NA
+ V̂2NA

ee + V̂ext + �
i

2NA

vloc
emb�r�i���Ao

2
MD	

��Ao
2

MD − �2�Ao
2

MD.

�42�

Since vloc
emb�r�i� is local, subject to similar transformations as

the ones leading from Eq. �37� to Eq. �41�, Eq. �42� becomes

0 = �Ao
2�r��

�FMD��Ao
2�

��Ao
2�r��

+ �Ao
2�r��vext

A �r�� + �Ao
2�r��vloc

emb�r��

− �2��Ao
2�r�� . �43�

4. Local embedding potential

The electron densities �Ao
2 and �Ao

1 are obtained from two
different Euler-Lagrange equations. They belong to the same
class as far as v representability is concerned because they
are constructed using trial wave functions �A

MD of the same
general form specified by the label MD indicating the num-
ber of determinants. Since �Ao

1 depends on universal density
functionals whereas �Ao

2 depends on vloc
emb�r��, the condition

that these densities are equal provides the searched for equa-
tion for vloc

emb�r��. At �Ao
2 =�Ao

1 =�Ao
, subtracting Eq. �43� from

Eq. �41� leads to the final expression for vloc
emb�r��,

vloc
emb�r�� = vext

B �r�� +� �B�r���
�r� − r���

dr�� +
�Ts

nad��Ao
,�B�

��Ao
�r��

+
�Exc

nad��Ao
,�B�

��Ao
�r��

+
�	FMD��Ao

�

��Ao

+ const = vext
B �r��

+� �B�r���
�r� − r���

dr�� +
�GMD��Ao

,�B�

��Ao
�r��

+ const. �44�

The above relation holds everywhere where �Ao
�0.
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Equation �44� is our principal results showing formally
that local embedding potential exists also in the case of mul-
tideterminantal description of the embedded subsystem. Its
explicit form is not known because it comprises three com-
ponents expressed by means of universal density functionals
of unknown general analytic form. Any method using such
embedding potential hinges on approximations to these
functionals.

It is worthwhile to underline that Eq. �1� can be used only
to obtain the optimal wave function �Ao

2
MD. The expectation

value ��Ao
2

MD � T̂2NA
+ V̂2NA

ee + V̂ext
A +�i

2NAvloc
emb�r�i� ��Ao

2
MD	 is not di-

rectly related to the ground-state energy of the total system.
Equation �30� provides the ground-state energy of the total
system if it is evaluated at �A

MD=�Ao
2

MD. Equations �1�, �30�,
and �44� define, therefore, a complete formal framework to
embed a multideterminantal wave function in an environ-
ment represented by means of only its charge density.

Finally, we note the close similarity between the embed-
ding potential vloc

emb�r�� �Eq. �44�� and the orbital-free effective
embedding potential vKSCED

emb ��A ,�B� �Eq. �24��. They are

closely related although not the same due to the
�	FMD��Ao

�

��Ao

term.

III. DISCUSSION: LOCAL EMBEDDING OPERATOR
ASSOCIATED WITH AN APPROXIMATE DENSITY

FUNCTIONAL G̃MD
†�A ,�B‡

Evaluating GMD��A ,�B� using the constrained search defi-
nitions of its components is not practical for obvious reasons.

Applying in Eq. �44� an approximation to G̃MD��A ,�B�, tak-
ing the form of a bifunctional depending explicitly on �A and
�B, and using such an approximated expression in Eq. �1�
leads to computational framework of great potential. Appli-
cability of such framework depends however on the avail-
ability of adequate approximations. The prospects of such
calculations are analyzed in this section. Since the definition
of GMD��A ,�B� depends on the number of determinants used
to represent �A we consider three cases separately.

�i� For MD equals CI, G̃CI��A ,�B�= T̃s
nad��A ,�B�

+ Ẽxc
nad��A ,�B�. If the full CI form of the embedded wave

function is used to represent the embedded electron density,
GCI��A ,�B� becomes just a sum of the two bifunctionals Ts

nad

and Exc
nad. Approximating the Ec

SD��� component is not
needed at all. In this case, the local embedding operator is
identical as the orbital-free effective embedding potential of
Ref. �7� given in Eq. �24�. All numerical experience concern-
ing strengths and weaknesses of a given approximation to
Eq. �24� can be used to decide about the adequacy of this
particular approximation applied in the framework given in
Eq. �1�.

Below, the prospects for practical calculations in this case
are reviewed below. Since Exc

nad��A ,�B� is defined by means
of the same functional as the Exc��� functional in the Kohn-

Sham formalism, Ẽxc
nad��A ,�B� can be obtained simply as

Ẽxc
nad��A ,�B�= Ẽxc��A ,�B�− Ẽxc��A�− Ẽxc��B�, where Ẽxc��� is

one of the possible approximations used in practical Kohn-
Sham calculations. It is worthwhile to underline, however,
that it is not the exchange-correlation energy but its differ-
ences, which are needed in Eq. �44�. Therefore, the accuracy
of a given parent functional Ẽxc��� and the corresponding

Ẽxc
nad��A ,�B� is not necessarily correlated. As far as T̃s

nad com-
ponent is concerned, it is used in the Cortona’s formulation
of density functional theory �28� and in the orbital-free em-
bedding formalism �7�. Approximations, to this functional
developed for such calculations can be used in Eq. �44�. In

development of approximations to T̃s
nad, a possible strategy is

to use its exact properties as guidelines �29�. Testing a given
approximation of the kinetic-energy component of the effec-
tive potential is straightforward �30�. Approximations to
Ts

nad��A ,�B� adequate for the case, where the electron densi-
ties �A and �B do not overlap significantly were developed
following this approach �see, for example, Ref. �31��.

�ii� For MD equals SD, G̃SD��A ,�B�= T̃s
nad��A ,�B�

+ Ẽxc
nad��A ,�B�+ Ẽc

SD��A�. The single-determinant form of the
embedded wave function to construct �A stands on the oppo-
site end to the CI case discussed below. It is the least expen-
sive method among the ones which treat electron-electron
repulsion exactly. GSD��A ,�B� comprises not only the two
bifunctionals discussed in the CI case but also an additional
component Ec

SD��A� which depends only on �A. In the discus-
sion of applicability of a given approximated functional

Ẽc
SD��A�, one can profit from the accumulated knowledge

concerning the adequacy of approximate exchange-
correlation functionals in the Kohn-Sham or related frame-
works. The exchange and correlation parts of several com-
mon approximations to the exchange-correlation energy are

well separated �Ẽxc���= Ẽx���+ Ẽc����. Note, however, that
the conventional definition of the correlation energy func-
tional Ec��� differs from that of Ec

SD��� given in Eq. �35�.
The single-determinant used to evaluate Ec��� minimizes not

�T̂+ V̂ee	 but �T̂	. The currently known approximations to the
correlation energy functional are probably equally adequate
for either Ec��� or Ec

SD���. It it worthwhile to recall here that
a computational method, in which the exchange component
is treated exactly whereas only the correlation part is ap-
proximated by means of an explicit density functional, was
suggested already in the original work by Kohn and Sham
�2�. It was further explored formally and numerically in Ref.
�12�. A recent practical hint comes from Ref. �32� showing
that the Wilson-Levy correlation functional �33� performs
very well as far as describing the variation of correlation
energy with changing the geometry in weakly interacting in-
termolecular complexes is concerned.

�iii� For MD equals truncated CI, G̃truncated CI��A ,�B�
= T̃s

nad��A ,�B�+ Ẽxc
nad��A ,�B�+	F̃truncated CI��A�. This case re-

quires the introduction of additional approximation concern-
ing the functional 	Ftruncated CI��A�. Since approximations to
this functional represent an uncharted field, it is probably

more reasonable to use the upper �zero� or the lower �Ẽc��A��
bound on this functional 	Ftruncated CI��A� on a case by case
basis.
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IV. CONCLUSIONS

This work concerns the formal framework to embed a
subsystem described at the quantum-mechanical level in the
environment represented by a frozen electron density. We
formulate the embedding problem as the partial minimization
of the total energy with respect to only one component of the
electron density keeping the remaining part frozen. This ap-
proach was already applied for the embedded subsystem rep-
resented by means of an artificial system of noninteracting
electrons and a Kohn-Sham-like multiplicative potential for
electron-electron repulsion �7�. The present work uses the
same strategy of partial minimization, but an alternative rep-
resentation of the embedded subsystems—a multidetermi-
nantal wave function. This change of the reference system is
made for pragmatic reasons. Methods based on the Kohn-
Sham formal framework are known to fail qualitatively for
some systems and these failures are attributed to the use of
the reference system of noninteracting electrons. Equation
�44� shows that the embedding operator to be used in asso-
ciation with a multideterminantal description of the embed-
ded subsystem takes the form of a local potential (vloc

emb�r��).
vloc

emb�r�� comprises electrostatic components of known ana-
lytic form and another local term—the functional derivative

of the bifunctional G��A ,�B� (
�G��A,�B�

��A
�r��). This bifunctional

of the electron density of the investigated system ��A� and
that of the environment ��B� is universal �system indepen-
dent�. GMD��A ,�B� comprises three components. Two of
them are bifunctionals originating in the nonadditivity of two
density functionals defined in the Kohn-Sham framework:
the exchange-correlation energy and the kinetic energy of
noninteracting electrons. The third component �	FMD��A�� is
an ordinary functional, which does not depend on �B at all. It
originates from the change of the reference system from non-

interacting electrons �single-determinantal form of the wave
function� to that described by a multideterminantal wave
function of an assumed form. As the consequence of the
constrained search definition of 	FMD��A�, this functional is
nonpositive and bound from below. The correlation energy
functional Ec

SD��A� defined in the Levy’s constrained search
provides the lower bound of 	FMD��A� �in the case of one
determinant�, whereas the upper bound is zero �in the case of
the full CI expansion�. This third component of vloc

emb�r�� is
also the only difference between vloc

emb�r�� the orbital-free ef-
fective embedding potential in Kohn-Sham-like equations
for embedded orbitals �7�.

As far as approximating the exchange-correlation compo-
nent of GMD��A ,�B� is concerned, its use to obtain vloc

emb�r��
does not involve any particular new challenges compared to
the Kohn-Sham framework. One should mention, however,
that not the whole functional but its nonadditive component
is needed in vloc

emb�r��. Approximating the kinetic-energy com-
ponent of GMD��A ,�B� represents the same challenge as in
the case of orbital-free effective embedding potential
vKSCED

emb ��A ,�B��r�� of Ref. �7� or the effective potential in Cor-
tona’s formulation of density functional theory �28�. An uni-

versal approximation to
�	FMD��A�

��A
, applicable for various sys-

tems and various number of determinants, seems to be a
rather difficult objective. At the present stage, we advocate
using its bounds to approximate 	FMD��A� �either zero or
Ec

SD��A�� chosen on a case by case basis.
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