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Small anharmonicity, created along the axial direction of the trap, allows controlling the motional states of
ions adiabatically using electric fields. In this paper several important aspects of this control scheme are
explored theoretically. The pulses for various state transformations, including universal quantum gates, are
derived using the optimal control theory. They exhibit simple shapes and other favorable properties, which
indicate a promising route for practical implementation.
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I. INTRODUCTION

A concept of the ion-trap quantum computer was pro-
posed by Cirac and Zoller in 1995 �1� and implemented ex-
perimentally in the same year by Wineland and co-workers
�2�. The quantized motional states of a string of ions, com-
bined with electronic states of individual ions, can be used to
encode qubits and to practically realize the quantum gates.
This field has been very active and a number of the trap
architectures and the quantum control scenarios have been
proposed and implemented �3–8�.

Usually, the trapping potential in the experiment is har-
monic and the motional states of ions in the trap are ener-
getically equidistant, analogous to the spectrum of a multidi-
mensional harmonic oscillator. In such an experimental setup
the coherent control of ionic motion in the trap can be
achieved only through electronic excitation of individual
ions into a gateway state and by dumping the population of
that state onto other motional states of the ground electronic
state. This scheme is carried out routinely using lasers �1–8�.
In this paper we theoretically explore an alternative ap-
proach. We propose to create some �small� anharmonicity in
the trapping potential which would modify the spectrum and
allow addressing the motional state-to-state transitions selec-
tively using the microwave electric fields of appropriate fre-
quency, amplitude, duration, and phase. In this scheme all
ions remain in the ground electronic state and the motion of
ions in the trap is controlled adiabatically. Nowadays the ion
trapping techniques undergo revolutionary changes and mul-
tiple ion traps are placed on a single microchip �9–11�. Some
control tasks can be carried out using the electric fields in-
stead of lasers, which could facilitate the ongoing miniatur-
ization and the practical implementation of scalability in the
future.

Note that this control scheme can be used not only to
carry out the simplest state manipulations adiabatically �like
state flips �0�→ �1� and �1�→ �0�� but also for more involved
transformations like, for example, “cooling” of a superposi-
tion state onto the ground motional state: a�0�+b�1�+c�2�
+ ¯→ �0�. Also demonstrated here is that it should be fea-
sible to employ this method for applying the quantum logics
gates. The qubit states can be traditionally the two lowest

motional states �0� and �1� but other choices are equally pos-
sible. Moreover, creating anharmonicity in a trapping poten-
tial should permit one to employ not just two qubit states,
but a progression of several motional states �e.g., �0�,�1�,�2�,
�3�,…� for the quantum information processing, which may
allow executing simple quantum algorithms using a single
trapped ion.

II. THEORETICAL FRAMEWORK

In this paper we explore the basic properties of such an
adiabatic control scheme using the simplest theoretical
model for one ion in a trap where the motion along the trap
�z axis� is sufficiently uncoupled from the radial motion, so
that the problem is essentially one dimensional. We assume
that it is possible to create a small anharmonicity of the trap-
ping potential along the axial direction z, which leads to a
nonequidistant �anharmonic� spectrum of the motional states.
Such a spectrum can be represented analytically using the
standard Dunham expansion formula:

E� = �z��� +
1

2
� − �z��� +

1

2
�2

, �1�

where �z is the harmonic frequency and �z is the anharmo-
nicity parameter. The spectrum of Eq. �1� represents eigen-
values of the time-independent Schrödinger equation for the

axial direction of the ion trap: Ĥ0���z�=E����z�, where

Ĥ0 = − �2

2m
�2

�z2 + Va�z�q

is a one-dimensional �1D� Hamiltonian and Va�z� is the an-
harmonic trapping potential. In order to control motion of the
ion we propose to apply an additional time-dependent elec-
tric field E�z , t� along the axis of the trap, so that the Hamil-

tonian becomes Ĥ= Ĥ0+��z , t�q, where q is the electric
charge of the ion and

��z,t� = − 	
0

z

E�z,t�dz

is the electric potential. The easiest approach is to create a
spatially homogeneous field with the time-dependent ampli-
tude E�t�, which gives*Corresponding author. dmitri.babikov@mu.edu
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Ĥ = Ĥ0 − E�t�zq . �2�

The last term in Eq. �2� can be viewed as the electrostatic
energy in the linear potential with the slope E�t� that changes
in time. The dependence E�t� defines what we will call the
control pulse. In the simplest control scenario one can con-
sider, for example, the field amplitude, the pulse duration,
and the frequency as control parameters and try to tune them
to achieve the desired control, but we go beyond that and
search for an optimal pulse shape by allowing E�t� to be a
general function of time defined on a grid of time intervals.

In order to design theoretically the pulse shape E�t� for a
transfer of the entire population from a given initial state �i
to a chosen final state � f �which can be eigenstates or super-
position states� we use the monotonically convergent nu-
merical algorithm of Rabitz �12� where the optimization is
achieved by maximizing the objective functional:

Jfi = �
�i�T��� f��2 − 	
0

T

��t��E�t��2dt

− 2 Re�
�i�T����	
0

T


� f�t��
i

�
Ĥ +

�

�t
��i�t��dt� . �3�

Here T is the specified pulse duration, �i�t� is the time-
dependent wave function driven by E�t�, and � f�t� is the
wave function driven backward in time. The first term in Eq.
�3� represents an overlap of the final wave function with the
target state; the second term is required to minimize energy
of the pulse and constrain its smooth switching on and off;
the last term ensures that evolution of the wave functions
�i�t� and � f�t� satisfies the time-dependent Schrödinger
equation. Variations of 	�i, 	� f, and 	E lead to a set of two
time-dependent Schrödinger equations for �i�t� and � f�t� to
be propagated forward and backward in time �using �i and
� f as boundary conditions� and the third equation,

E�t� = −
qs�t�
��0

Im
�i�t��� f�t��
� f�t��z��i�t�� , �4�

which permits one to determine the optimal field E�t� itera-
tively. In Eq. �4� the standard form of the penalty function is
used, ��t�=�0 /s�t�, where �0 represents the constant penalty
factor and s�t� is a smooth switching function.

It is instructive to compare this problem with the
problem of coherent control of molecular vibrations using
ultrafast optimally shaped laser pulses �12–17�. There, the
semiclassical molecule-light interaction is given by

Ĥ= Ĥmol−
�t���r�, where Ĥmol is the molecular Hamiltonian,

�t� is the intensity of the time-dependent laser field, and
��r� is the molecular dipole moment function. For the non-
polar molecules executing the low amplitude vibrational mo-
tion the dipole moment is a linear function of the internu-
clear distance:

��r�  � ��
�r �r=req

r + ¯

, so that the total Hamiltonian becomes Ĥ= Ĥmol−
�t�r��req
.

Since this expression is mathematically equivalent to Eq. �2�,

the optimal control theory methods developed for molecular
vibrations can be utilized to control the motion of ions in a
trap. However, the computational aspect of this problem is
complicated by several special properties of the trapped ions:
�i� The spatial extent of the motional wave functions ��z� of
ions in a trap is �50 nm, which is 500 times larger than the
amplitude of a typical molecular vibration. �ii� The energy
differences between the motional states of ions in a trap are
�1 MHz, which is about 107 times smaller than in the mol-
ecules. �iii� The time scale of ionic motion �and control� is
108 times longer than the femtosecond scale of molecular
motion. Due to these features the time step for numerical
propagation of ionic wave functions was very large, dt
=5 ns. In order to reduce the field amplitude to the optimal
level, the penalty factor we chose had to be very large as
well, �0=1012. The overall convergence of iterations was
very slow and �104 forward-backward propagation cycles
were necessary to converge E�t�.

III. RESULTS AND DISCUSSION

As a prototype, we took the experimental setup used re-
cently by the Monroe group to trap the 111Cd+ ions, where
the axial frequency is �z /2�=2.77 MHz �18–20�. It seems
possible to create small anharmonicity along the axis of the
trap using additional electrodes. Here we began with anhar-
monicity parameter �z /2�=27.7 kHz, which is only 1% of
the frequency value. The pulse duration is also somewhat
arbitrary and we began by choosing T=10 �s. �Below we
will explore the range of �z and T values.� As a simple test of
feasibility of this approach, we tried to optimize the shape
E�t� of the control pulse for the state flips �0�→ �1� and
�1�→ �0�, and also for the simplest example of “cooling:”
1
�2

�0�+ 1
�2

�1�→ �0�. The optimal pulses derived for these
transformations came out simple-shaped and very
accurate �able to achieve the probability transfer up to
�
�i�T� �� f��2�0.9999�. The frequency spectrum of such
pulses exhibits only one peak centered precisely at �0↔1.
The maximum amplitude of the ac field E�t� is in the range
1.5–2.5 mV /cm. It seems to be relatively easy to create such
control pulses in the experiment, and this is the first impor-
tant conclusion of this paper.

As a more advanced task, we carried out optimization of
the pulse for the gate NOT using a multitarget version
�13–15� of the objective functional �3�. Figure 1�a� shows the
optimized shape E�t�, while Figs. 1�b� and 1�c� show how
the population of the motional states �0�, �1�, and �2� changes
as a function of time during the NOT�0�→ �1� and NOT�1�
→ �0� transformations. Note that the gate transformation in
Fig. 1 is very accurate and the population of states created by
the optimal pulse is almost entirely restricted to the qubit
states �0� and �1�, with only a tiny temporary population in
the state �2� and a negligible population in the upper mo-
tional states. The shape of the pulse in Fig. 1�a� is simple and
is a reflection of the penalty function used in the calculations,
s�t�=sin2��t /T�. Practical realization of such control pulses
is relatively straightforward.

In order to demonstrate the effect of anharmonicity we
varied the value of the anharmonicity parameter �z /2� in
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the range from 5.54 to 27.7 kHz �i.e., between 0.2% and 1%
of the frequency value� keeping the values of �z and T fixed.
For each value of �z we carried out the pulse optimization
for the gate NOT and calculated its fidelity F
= 1

2 ��
�i�T� �� f��2, where the sum is over the two transitions
optimized simultaneously, NOT�0�→ �1� and NOT�1�→ �0�
�13–15�. The results are summarized in Fig. 2 which shows
that the gate fidelity decreases rapidly when the value of
�z /2� is reduced to below �13 kHz. At �z /2�=5.54 kHz
fidelity drops to F0.88.

More insight into this effect is obtained from analysis of
Figure 3, which gives the same information as Fig. 1, except
for the weakest anharmonicity considered here ��z /2�
=5.54 kHz, the worst case in Fig. 2�, when it becomes evi-
dent that the low fidelity is due to the population transfer to
the excited motional states �2� and �3�. Not only do these
states interfere during the pulse, they also keep some residual
population at the final time T. The frequency spectrum of the
pulse in Fig. 3 shows several peaks in the range of �0�↔ �1�,
�1�↔ �2�, �2�↔ �3�, and �3�↔ �4� transition frequencies with
the main peak slightly blueshifted from the �0↔1 value. Even
though the pulse shape in Fig. 3 is more complicated �com-
pared to that of Fig. 1�, we still cannot suppress the popula-
tion of the upper states completely. We monitored the popu-
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FIG. 1. �Color online� The gate NOT in the Cd+ ion trap with
�z /2�=2.77 MHz and the anharmonicity parameter
�z /2�=27.7 kHz: �a� optimally shaped electric field; �b� switching
of population between the qubit states during the NOT�0�→ �1�
transformation; �c� the same during the NOT�1�→ �0�
transformation.
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FIG. 2. Fidelity of the gate NOT as a function of anharmonicity
parameter for the Cd+ ion trap with �z /2�=2.77 MHz. The target
time is T=10 �s.
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FIG. 3. �Color online� Same as in Fig. 1 but for �z /2�
=5.54 kHz �an insufficient anharmonicity case�.
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lation of upper motional states during the pulses obtained for
different values of �z and found that the maximum probabil-
ity in the states �2�, �3�, and �4� decreases from 0.31, 0.043,
and 0.002 at �z /2�=5.54 kHz to 0.17, 0.006, and 7.5
10−5 at �z /2�=11.08 kHz, and to only 0.08, 0.001, and
6.010−6 at �z /2�=19.39 kHz. The general idea behind
this phenomenon is that when the value of �z is small we
approach the limit of a harmonic oscillator, in which several
state-to-state transitions interfere and the system is hard to
control. In contrast, when the value of �z is large we ap-
proach the two-state system limit where the control is very
simple. In practice, the value of �z from the high fidelity
plateau �see Fig. 1� should give us a reliable controllable
system.

In order to demonstrate the effect of the pulse duration T
we took the least accurate case from Fig. 2 �i.e., the smallest
anharmonicity parameter, �z /2�=5.54 kHz� and tried to in-
crease the target time T, keeping the values of �z and �z
constant. As before, for each set of parameters we optimized
the pulse for the gate NOT and calculated its fidelity. The
results are presented in Fig. 4 which shows that increasing T
allows improving the fidelity steadily and significantly. Us-
ing T=22 �s we achieved F�0.999 for the gate NOT. We
compared pulses optimized at different values of T and found
that when the pulse duration increases, the amplitude of the
control field E�t� smoothly decreases. For example, the
maximum value of the field was Emax=3.03, 2.78, 1.88, and
1.38 mV /cm in the pulses optimized for T=10, 12, 14, and
16 �s, respectively. Thus longer pulse duration permits one
to use the field of smaller amplitude, which in turn reduces
the excitation of upper �interfering� states, simplifies control,
and improves accuracy of transformations. It is also clear
that longer pulses provide better frequency resolution. Using
the uncertainty principle and the spectrum of Eq. �1� it is
easy to obtain a relationship between the anharmonicity pa-
rameter and the required pulse duration, T�� /�z, which
helps us to understand qualitatively the numerical results
given in Figs. 2 and 4.

Finally, for an intermediate value of anharmonicity,
�z /2�=15.5 kHz �0.6% of �z /2��, we optimized pulses for

the gates NOT, Hadamard transform, and � rotation using the
phase-sensitive method �14,16� for unitary transformations.
The fidelity 1

2 ��
�i�T� �� f��2 of all three gates was still high,
on the order of 0.99, but the pulse shapes for this value of �z
were more complicated �see Fig. 5�. This demonstrates that if
the value of the anharmonicity parameter is chosen too close
to the edge of the high fidelity plateau, a significant pulse
shaping is necessary in order to achieve accurate qubit trans-
formations.

We also tried to use a different version of the Hamiltonian
�2� where the control term is a quadratic function of the

distance: Ĥ= Ĥ0− 1
2Ez��t�z

2q, which is the simplest example
of a spatially inhomogeneous electric field. We found that
such a form of the Hamiltonian does not allow controlling
transitions between the adjacent states �like �0�↔ �1� or
�1�↔ �2�� due to the symmetry properties of the transition
matrix elements.

IV. CONCLUSIONS

In summary, we demonstrated that the microwave electric
field can be used to coherently control the motion of ions in
the anharmonic trap. Creating small anharmonicity
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FIG. 4. Fidelity of the gate NOT as a function of pulse duration
T for the anharmonicity parameter �z /2�=5.54 kHz.

0 2 4 6 8 10

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

F
ie

ld
(m

V
/c

m
)

Time (µs)

F
ie

ld
(m

V
/c

m
)

F
ie

ld
(m

V
/c

m
)

π gate

Hadamard gate

Gate NOT

FIG. 5. A set of universal one-qubit gates for �z /2�
=15.5 kHz. The target time is T=10 �s.

MEIYU ZHAO AND DMITRI BABIKOV PHYSICAL REVIEW A 77, 012338 �2008�

012338-4



��z�1% of �z� should permit one to carry out very accurate
state-to-state transformations using short �T�10 �s� simple-
shaped pulses. Amplitude of the electric ac field required for
such pulses is on the order of Emax�2.5 mV /cm. In general,
the values of �z, T, and Emax are all coupled and the pulse
optimization is required in order to achieve high fidelity of
the state-to-state transformations. This control scheme can be
used for state initialization, for simple “cooling,” and even
for applying the quantum logics gates. Its practical realiza-
tion seems to be in the reach of today’s technology. Note that
the gate pulses optimized using the coherent control theory
represent unitary transformations, i.e., they preserve phase
information and act on an arbitrary superposition state
�14,16�, which makes this scheme suitable for quantum com-
putation.

When several ions are trapped, a multiqubit system can be
created by encoding different qubits into different motional
modes of the Wigner crystal �e.g., symmetric and antisym-
metric vibration modes�. Again, the electric field can be used
to control and couple those modes. Note that the single ion

addressing is not required for this control scheme. The Cou-
lomb interactions between different ions introduce additional
anharmonicities into the spectra of the motional states, which
facilitates the control. Recent work on vibrational qubits
�13–17� indicates that the two-qubit gates are possible. Op-
timization of such control pulses is technically feasible, al-
though the pulse shapes may be somewhat more complicated
due to the presence of several modes with different frequen-
cies and the interference between multiple transformation
pathways. Thus there are no fundamental difficulties for the
extension of this theory onto a multi-ion–multiqubit system
and we plan to do this in the near future.
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