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Quantum Cayley networks of the hypercube
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We develop the work of Christandl et al. [Phys. Rev. A 71, 032312 (2005)], to show how a d-hypercube
homogenous network can be dressed by additional links to perfectly route quantum information between any
given input and output nodes in a duration that is independent of the routing chosen and, surprisingly, the size

of the network.
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I. INTRODUCTION

The study of quantum networks has potential applications
in many areas of quantum information science such as quan-
tum communications within multiparty quantum protocols
(quantum cryptography, quantum secret sharing, etc.), within
quantum computer architectures, and quantum algorithms. In
this paper we focus on a specific class of quantum network,
called the “dressed hypercube,” as a means for perfectly
transporting quantum information between nodes within the
network. These networks are similar to other networks ca-
pable of transporting qubits perfectly but they have the added
quality that the destination of the qubits may be controlled
by an external user.

Any implementation of quantum information processing
which is not based on optical qubits will require a mecha-
nism for transporting qubits between gates and processors.
There have been several theoretical proposals for qubit trans-
port which are based on a chain of spin-half particles that are
coupled by Heisenberg or XY interactions. The first proposal
[1] was a homogenous chain of particles coupled by homo-
geneous, nearest-neighbor interactions. A qubit is encoded at
one end of the chain and the system evolves. The probability
of retrieving an encoded qubit from the destination end of
the chain was found to diminish as the length of the chain
increased. Later, Christandl et al. [2] found that chains of any
length were able to transport qubits perfectly but only if the
coupling between neighboring particles was inhomogeneous
and carefully engineered in such a way as to be strong at the
middle of the chain and weaker towards the ends of the
chain. More recently it was shown that relaxing the degree of
control to encompass global addressing of all the particles in
the chain also allows for perfect transport [3,4].

Some work has also been done in examining the proper-
ties of quantum networks, which are more complicated than
linear chains. It was found in [5] that hypercubic networks of
any dimension are capable of transporting qubits between
pairs of antipodal nodes. In fact, if only a single pair of input
and output nodes is considered, the hypercube reduces to the
inhomogeneous chain. Below we show that by introducing
additional links into a hypercubic network in a specific way,
the destination node of a qubit can be changed. Thus if a user
were able to choose which extra links in the network were
“switched on,” they would be able to route a qubit to any
desired destination within the network and in a duration that
is independent of the network size.

There have also been several studies that have looked at
using quantum graph or network structures in quantum algo-
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rithms. One important example is the work in [6], where the
authors consider the evolution of a quantum state on a graph
as a method for searching a spatially arranged database. They
show that in certain cases, the quantum algorithm achieves a
speedup over the classical counterpart. Additionally, in [7],
quantum graph structures are used in a quantum algorithm
for evaluating Boolean formulas composed of NAND expres-
sions.

We take a quantum network to be a collection of N spin-
half particles, each of which is situated on one of the nodes
of an undirected graph G:={V(G),E(G)}, made up of nodes
V(G), and connecting edges E(G). Theses ideas can be found
in books about graph theory, for example [8]. The edges of
the graph represent the allowed couplings between these par-
ticles, i.e., if two nodes i and j are connected on the graph,
then (i, ) € E(G), and the two particles are coupled by an XY
interaction Hj;=J;[676;+6767]. In what follows we will
choose the coupling strengths J;;=1. The total Hilbert space
of the system is H =8y Hi=(C?)"Y, where N is the car-
dinality of V(G), the number of nodes in G.

The adjacency matrix A(G) of a graph G captures all of
the connections of the graph and is defined by

1 if 7 is connected to j
Aij(G) = P . (1)
0 if 7 and j are not connected.
Using the adjacency matrix we can write down the Hamil-
tonian for the network of interacting particles as:

L1 SURIN
Axy= 53 A5+ 5,69, @
L]

where the factor of % accounts for the fact that the summa-
tion includes all pairs of interacting particles twice. Cru-
cially, Hamiltonians of the form (2) (and more generally with
any additional terms of the form 6126';, which then encompass
Heisenberg coupled Hamiltonians) conserve the total z spin

of the particles in the network. That is, [H ,67"]=0, where
¢'=3" 6" is the total z spin. Thus the evolution occurs in
separate invariant eigenspaces of the total Hilbert space, each
labeled by the eigenvalue of ¢%”. In the case where we allow
a single excitation the evolution can be easily studied in a
basis of N node states. We will represent these single excita-
tion basis states for the single excitation subspace as |k),
where all spins are down except the kth spin, which is up.
Further, in this restricted single excitation case the XY
Hamiltonian (2) is proportional to the adjacency matrix of
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the network. Similarly, for a Heisenberg coupled Hamil-
tonian, the total Hamiltonian becomes proportional to a re-
lated matrix known as the Laplacian of the network.

This model now allows us to explore the quantum dynam-
ics of a particular network via the adjacency matrix of the
network. In the case of networks based on the hypercube and
the “dressed hypercube” (which we define below), we will
show that the time evolution of the system performs a per-
mutation of the states of the nodes in the network, and it does
so periodically. This means that any qubit encoded on an
“input” node becomes swapped with the spin state of the
particle at an “output” node, effectively transporting the qu-
bit through the network. Moreover, the permutation that is
performed can be changed by dressing the underlying hyper-
cube network in different ways.

The paper is organized as follows. In Sec. II we review
the work of [5] to show how single-link and double-linked
hypercubes can admit perfect quantum transport. We also
review their construction of a more general network which
admits perfect transport between very particular antipodal
nodes. In Sec. III we expand their analysis to a class of
Cayley graphs, known as dressed hypercubes, which are ba-
sically hypercube networks with specifically chosen addi-
tional links. We prove that the structure of the adjacency
matrices of these dressed networks can always be written as
a Kronecker product between two simple matrices. In Sec.
IV we develop methods to characterize the spectrum of these
dressed networks and thus determine the quantum dynamics
on these networks. We show that the evolution, at specific
times, permutes the quantum states of the nodes in the net-
work in the single excitation subspace. We further find that
the times at which the evolution corresponds to a permuta-
tion are independent of the specific permutation and N, the
number of nodes in the network. We finally show that this
new class of perfect transport networks does not fit into the
very general category discovered in [5].

II. STATE TRANSFER IN HYPERCUBES

As mentioned above, our model consists of dressing a
basic hypercube network with extra links. Before examining
these dressed hypercubes it is instructive to review the per-
fect quantum transport of single excitations between antipo-
des on a d-dimensional hypercube. We follow [5], but later
on we develop another proof that we can also apply to
dressed hypercubes. One considers the network initialized
with one overall excitation localized at one node |A), which
evolves over the network and recoheres at another node
¢'|B)=exp(=iH;7)|a), up to a global phase ¢. One now as-
sumes that the network G appears identical from both view-
points of nodes A and B, i.e., we say that the network is
mirror symmetric, when viewed by A and B. Under this spe-
cial condition the subsequent evolution for a time 7 will
cause the wave function to recohere back again at A (up to a
global phase), and thus [{(A|exp(—2iH;7)|A)|=1. One can
show that for this to be possible, H; must possess an energy
eigenvalue spectrum E;, such that the difference ratios
are all rational fractions, i.e., (E;~E)/(E/—E;)eQ, V
(i,j,i’,j",i’ #j'). In [5] they consider the energy spectra of
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homogeneously coupled nearest-neighbor spin chains of
length N and prove that the above eigenvalue condition for
perfect transfer is only possible for single and double linked
chains, i.e., when N=2,3. To get perfect transport over larger
graphs they consider the Cartesian product of small (single
link), perfect transfer chains. Considering the Cartesian prod-
uct L=G X H, and denoting the eigenvalues of the compo-
nent graphs, {\(G),1<i<|V(G)[}, and {N\(H),1<j
<|V(H)|}, then \(L)=\,(G)+\,(H). To show this, one con-
siders how the adjacency representation of the Cartesian
product is formed. The adjacency matrix of the product
graph is given by A(GXH)=A(G)® Iy +1jy(c) ®A(H).
Using these properties, one can show that the eigenspectrum
condition for perfect transport is satisfied for a graph G?
=GXGX - XG, if G itself does. The authors in [5] also
presented another method of constructing a perfect transport
network via its reduction to a 2D column representation.
More specifically they consider graphs that can be arranged
into columns of nodes and where edges connect only adja-
cent columns. Each node in a column i possesses an identical
number of backward links to nodes in the previous column
i—1, and an identical number of forward links to nodes in the
next column i+ 1. Further, there are no links connecting
nodes within a column i. With this construction they find
examples of perfect transport (via a correspondence with hy-
percubic graphs), and then quantum transport on a one-
dimensional spin chain with engineered coupling strengths.
Below we will show a new construction of a perfect transport
spin network which is not of this (already quite general)
columnar form.

III. CAYLEY NETWORKS

We now introduce another method of constructing hyper-
cube networks which also encompasses more general
“dressed” hypercube networks called Cayley networks. By
going to a binary labeling of the nodes we can find a group
representation decomposition of the adjacency matrix of
Cayley networks that allows us to prove the perfect transfer
properties of hypercubes and dressed hypercubes. We first
define the Cayley network Cay(G,S) of a finite group G
(with identity element ¢), with respect to the generating set
S C G, to be the network Cay(G,S)={V,E}, where the vertex
set V corresponds to the elements of G, while the edge set E
is given by

E ={(x,y)|y = xg, for some g € S}. (3)

We now consider G=Zg, the group whose elements are bi-
nary strings of length d. G is an elementary commutative
group under bitwise addition modulo 2, and has order 2¢.
The identity element of this group is ¢={(0,0,...,0)}. In
this analysis, we consider the family of generating subgroups
S'=H\U H3, where

Hy={(xy, ... ,x,) € Zonly one of x,, ...,xyis 1} (4)

is the set of elements of G containing a single 1, and

012334-2



QUANTUM CAYLEY NETWORKS OF THE HYPERCUBE

13 (1100)

9
(1000)

(1111)

Column 0 Column 4

(0001)
2

(0111)
8

Column 1 0011) Column 3
4

Column 2

FIG. 1. (Color online) Illustration of the binary labeling of the
nodes of a d-dimensional hypercube (here d=4). Nodes with equal
Hamming weight can be arranged into columns. Edges only have
unit Hamming length.

Hfl:{(xl, R | [ S = le\e} (5)

is the set of elements for which the trailing d—1 entries are
Zero.

One can compute that |H)|=d, while |H3=2'-1,
and [S'|=2/+d~1-1. Using these tools one can form the
Cayley binary network Z4(I)= Cay(74,S!). Initially we will
set [=1, to consider d-dimensional hypercubes, and as an
illustration we set d=4. In this case, the components
of the generating set are Hi:{(l ,0,0,0)}, H;
={(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}, and |S}|=4.
The 2* nodes of Z3(1) are connected via the Cayley edge
relation g;=s,®g;, where g, € V(G), and s; € S3, and the
group multiplication operation is addition modulo 2. Thus
the node (0, 0, 0, 0) is connected to the nodes (1, 0, 0, 0), (0,
1,0,0), (0,0, 1,0), (0, 0, 0, 1), while the node (1, 1, 0, 0) is
connected to the nodes (1, 0, 0, 0), (0, 1,0, 0), (1,1, 1, 0), (1,
1, 0, 1) (see Fig. 1). From this construction it is clear that
Zg(l) are regular networks, i.e., the number of edges meeting
at a node is identical throughout the network. The regular
hypercubic networks, Zg(l: 1), exhibit d edges per node, and
it is clear from simple examples that one can arrange the
nodes into columns, labeled by the Hamming weights of the
corresponding elements in G, and connected by edges of unit
length Hamming distance. Such a columnar arrangement sat-
isfies the general construction of [5], and thus, by their proof,
exhibits perfect quantum transport between nodes (0, 0,..., 0)
and (1, 1,..., 1). We now exhibit an alternative proof that will
be used later when [/ # 1.

We make use of the following decomposition of the over-
all adjacency matrix of the graph G into components within
the generating set

AG)= 2 pla), (6)
aESiJ

where p is the fundamental adjacency representation
of an element a, in the generating set Sld, given by pla
=(x1,%, .., x)]=X; ®X, ® - -+ ® X,;, where
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]12 if.xi:O,
X;= ) (7)
C ifx;=1,
and where
: (1 0)
7o 1)
and

o)

C —

10

is the fundamental matrix representation of a swap permuta-
tion. Thus for a d=3 (hyper)cube, A(G)=C®Ix1+I®C
®l+I®1® C. We further note that all matrices of the form
X, ®X,®--- ®X,: each X; is either I, or C} form a much
larger group under matrix multiplication that we will call the
Kronecker product group of dimension d. This group is iso-
morphic to 74.

The eigenstructure of A(G), can now be broken down via
the decomposition (6), as the eigenvectors of D=A ® B, are
of the form |a) ®|b), where |a) is an eigenvector of A, and
similarly for |[b). Thus the eigenvectors of the adjacency ma-
trix of the d-hypercube must then take the form

N =lx) @)@ - ®lxy, (8)

where |x;)=|1) or |~1). These two vectors correspond to the
eigenvectors of the matrix C: (1, 1) with eigenvalue 1, and
(-1,1) with eigenvalue —1. Given that A(G)=C®I®---
QI+l C® - @[+---+1®---®1® C, with d terms for the
d hypercube, we can see that the maximal eigenvector is
Np=[1)®|1)---|1), with eigenvalue d. Since switching an x;
in |\), from x;=1 to x;=—1, reduces the overall eigenvalue by
2, we can see that there is a ladder of eigenvalues of A(G).
We can classify this ladder into three categories: (H1) The
maximal eigenvector, with an eigenvalue )\ﬁnzd; (H2) the
nth even group of eigenvectors with 2n|—1) components
in each eigenvector, with an overall eigenvalue of \%,(n)
=d-4n; (H3) the nth odd group of eigenvectors with (2n
—1)|-1) components in each eigenvector with an overall ei-
genvalue of \%;(n)=d—4n+2. The eigenvalues form a lad-
der from +d, +d-2,...,—d+2,—d, with minimum eigenstate
IN_))=|-1)® -+ ® |~1). Crucially, we now note that given d,
we can always choose an integer k, such that d—k, )\?ﬂ(n)
—k, and )\,‘113(n)—k+ 2, are all multiples of 4. This fact now
allows us to express the quantum evolution of a state initially
localized on node |m>=2jy=1cj|)\j>, when decomposed over
the eigenstates of A(G), over a period of time 7=7/2, to be

N
ﬁ|m> — e—iHﬂ-/2|m> — E Cje—i)\jw/2|7\j> (9)
j=1
N
— e—ikﬂ'/22 ¢ e—i(}\j—k)ﬂ'/2| )\j) . (10)

J=1
From the above we can see that the phase factor within the
sum will take the value +1{-1} for all eigenvectors in the
categories (H2){(H3)}, and thus pP2=1 (up to a possible global
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phase factor). All of the eigenstates are either symmetric or

antisymmetric under P (up to a global phase factor). From
our category analysis above there are equal numbers of sym-
metric and antisymmetric eigenstates.

To show that P generates a permutation of the nodes, and

in particular, that P=C®? which swaps the quantum state
between antipodes, we recall that for d hypercubes the
Hamiltonian and adjacency matrix is a sum of matrices from

the Kronecker product group of dimension d. Since P
:exp(ikw/Z)exp(—iI:I 77/2)=E;°=0dj(1:1)j, this power series ex-
pansion of the operator exponential must also be expressible
as a sum of elements of the d-Kronecker product group.

However, since f’zz]l, the sum must only contain one term.
The only such term that possesses the appropriate symmetry
conditions (an equal number of symmetric and antisymmet-

ric |\)) is P=C®?. Thus by direct computation we have
shown that the Hamiltonian, evolved for a duration 7=1/2,
yields a permutation of the single excitation subspace ex-
changing antipodes of the hypercube.

IV. DRESSED HYPERCUBES

We now consider the Cayley networks where /> 1. From
the definition of Zg(l), the set of generators now expands,
introducing new edges into the network. For example, in the
case for d=3, when [ is increased from 1 to 2, we obtain the
single extra generator (1, 1, 0) (see Fig. 2). This method
introduces edges such that the network remains regular, and
its degree is increased by 1. The Kronecker decomposition of
the adjacency matrix A(G) into products of I, and C via Egq.
(6) still holds, and thus the eigenstates of A(G) are composed
of Kronecker products of |+ 1). We again use this to map out
the eigenspace of the overall adjacency matrix. As before we
find a ladder of eigenvalues ranging from the maximum
Npax=2!+d—1-1 (also the degree of the network) to a mini-
mum, but now crucially \,,;,, 7 —\,,..- One can follow the
same arguments as for the hypercube to find that eigenvec-
tors fall into two categories, even and odd, which determine

their symmetries under the quantum evolution operator P
=exp(=iHm/2). We also find P>=1 (again up to some global

phase factor), and thus Pis again expressible as one element
of the Kronecker product group. This time, however, there
are unequal numbers of symmetric and antisymmetric eigen-

states of H~ A(G), and we are led to identify P with a dif-
ferent permutation of the nodes of the network, depending on
the value of /.

The choice of permutation is dictated by which eigenvec-
tors are symmetric and which are antisymmetric. More spe-
cifically, we find that the eigenvalues of A(G) ensure that the
permutation operation is such that eigenvectors with even
numbers of |-1)’s in the last d—[ terms of their Kronecker
product expansion are symmetric while those with an odd
number are antisymmetric, e.g., for d=3, [=2, the symmetric
eigenstates are those with a |1) in the rightmost slot. When
I=1, categorizing these eigenvectors was relatively straight-
forward but this becomes more complex when [>1. It is
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FIG. 2. (Color online) (i) The graph of the dressed hypercube
Z;(2). The link labeled (a) is the link generated from (000) by the
generating set element (110). (ii) The graph of the dressed hyper-
cube 73(3), a complete graph with eight nodes.

useful to break up the terms in the Kronecker product sum
expansion of A(G) into two classes. The first, called S, is the
sum of elements generated by generators with (d—[) 0’s at
the end, which corresponds to Kronecker terms that end with
[®4-!, The remaining class S, is the sum of all other terms
that are not in S;. For example, d=3, [=2, A(G)=S,+S,
where

S1=C®]I2®]Iz+][2®C®H2+C®C®Hz, (11)

52=H2®}12®C. (12)

One can compute the eigenvalue for any given eigenvector
by considering the terms in the adjacency expansion in the
two categories S ,. Each term in the adjacency sum expan-
sion will contribute *£1 to the overall eigenvalue. For each
term in this expansion, if the number of C’s that coincide
with a |-1) in the product expansion of that term is even
(0dd) then this term contributes +1 (—1) to the overall eigen-
value.

Using this, and after some work, one can show that the
contribution of all terms in the sum expansion of the eigen-
vector in the category S, contribute a factor of 2/ to the
overall eigenvalue if that eigenvector contains no |-1) in the
first [ slots, and contributes only —1 otherwise. Similarly the
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TABLE 1. Eigenvectors of the network 73(2) and their eigenval-
ues. Those eigenvectors marked with an § are symmetric under time
evolution for 7=1/2, whereas those marked with an A are antisym-
metric under the same evolution.

Eigenvector Eigenvalue in 73(2) Symmetry
e [1)e|1) 4 A
- |1)®|1) 0 A
He-1)®|1) 0 A
Hel)e|-1) 2 s
-he-1)®]1) 0 A
-hel)e|-1) -2 S
Hel-1ye|-1) -2 S
- ®|-1)®|-1) -2 S

terms in the expansion in S, give an overall contribution to
the eigenvalue of —P,+ P,, where P, is the number of |-1)’s
in the rightmost d—/ slots of the eigenvector, and likewise P,
is the number of |+1)’s occurring in those positions. Using
these rules one finds that the eigenvalues for Zg(l), form a
ladder and can be classified into four groups:

N (n)=2"+d—1-1-4n

even s 13
N (n)=d—1-1-4n (13)
N(n) = 2'+d-1+1-4n

odd ,‘jdd() (14)
Noga(n) = d—1+1-4n

Here, the parameter n begins at zero and increases in integer
steps until the minimal eigenvalue is reached. In the net-
works for which /> 1, the minimal eigenvalue is \,,;,,=I—d
—1. The groups labeled “a” in the above are those eigenval-
ues that correspond to eigenvectors that have no |~1)’s in the
first [ positions of their Kronecker product expansion, and
the groups that are labeled “b” have at least one |-1) in those
positions.

We can again find an integer k such that A%, (n)—k and
A4, (n)—k+2 are all multiples of 4 and thus all these eigen-
states have eigenvalues * 1, under P. However, we find now
that if the eigenvector |7\j> has an even number of |-1)’s in
the last d—1 slots, then it is symmetric under the permutation

PI\;)=|\;), otherwise it is antisymmetric, i.e., P]\)=—|\).
As P2=I, the only single term in the Kronecker product

group possible which respects these symmetries is, apart
from a global phase factor

P=1®gCc®! 1<i<d. (15)
For example, in the case where d=3, [=2, the eigenvalue
structure and eigenvector symmetries can be found in Table
I. The only permutation that preserves these symmetries is

P=I®I®C.
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FIG. 3. (Color online) Graphs of [{O|U(7)|0)|> (dotted) and
(T\U(D|TH? (solid) for Z5(1), where I=1,...,6, and T is the node
targeted for perfect transport.

It is interesting to note that this predicts that for /=d (a

fully connected graph) P=1% the identity. This means that
the excitation, after evolving for a period 7=/2, returns
perfectly to its starting node. When d=3, and /=1, we get the
permutations (1, 8)(2, 7)(3, 6)(4, 5), and when /=2 we obtain
(1, 2)(3, 4)(5, 6)(7, 8). Figure 3 shows the evolution of the
probability distribution of finding the excitation in the net-
work Zg(l)

V. CONCLUSION

We have investigated a complex class of quantum net-
works and found that it allows for the perfect transport of a
quantum state. We have seen that the natural evolution of the
network performs a permutation of the states of the spin-half
particles located on each of the nodes. This arises from the
structure of the eigenvalues of the adjacency matrices. Im-
portantly, these networks are more complicated than the lin-
ear chains that have been studied in the past. Further, the
Cayley networks Z‘zj(l), for /> 1, no longer satisfy the general
columnar construction of [5], as the new generators add links
connecting nodes separated by Hamming distances greater
than unity.

For the above we have assumed that we have been given
the static spin network of Eq. (2) that results in the Cayley
network Z‘z‘{(l) and quantum information passively is trans-
ported through this network. If instead we assume a fully
connected network of spins, which results in Z‘zi(l =d), and
we have the additional ability to execute decoupling pulses
on the individual spins making up this network, then we can
find decoupling pulse sequences that can reduce Z’zi(d)
HZZ(Z). We expect that this protocol for perfect quantum
routing by dressing the basic hypercube network with addi-
tional links may be of use in quantum computation, cryptog-
raphy, and communication.
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