
Soft-pulse dynamical decoupling in a cavity

Leonid P. Pryadko and Gregory Quiroz
Department of Physics & Astronomy, University of California, Riverside, California 92521, USA

�Received 31 August 2007; published 24 January 2008�

Dynamical decoupling is a coherent control technique where the intrinsic and extrinsic couplings of a
quantum system are effectively averaged out by application of specially designed driving fields �refocusing
pulse sequences�. This entails pumping energy into the system, which can be especially dangerous when it has
sharp spectral features like a cavity mode close to resonance. In this work we show that such an effect can be
avoided with properly constructed refocusing sequences. To this end we construct the average Hamiltonian
expansion for the system evolution operator associated with a single “soft” � pulse. To second order in the
pulse duration, we characterize a symmetric pulse shape by three parameters, two of which can be made zero
by shaping. We express the effective Hamiltonians for several pulse sequences in terms of these parameters and
use the results to analyze the structure of error operators for a controlled Jaynes-Cummings Hamiltonian. When
errors are cancelled to second order, numerical simulations show excellent qubit fidelity with strongly sup-
pressed oscillator heating.
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I. INTRODUCTION

Quantum coherent control has found its way into many
applications, including nuclear magnetic resonance �NMR�,
quantum information processing �QIP�, spintronics, atomic
physics, etc. The simplest control technique is dynamical de-
coupling �DD�, also known as refocusing. The goal of pre-
serving coherence by averaging out the unwanted couplings
is achieved most readily by running precisely designed se-
quences of uniformly-shaped pulses �1–3�.

In a closed system, the corresponding performance can be
analyzed in terms of the average Hamiltonian theory �4,5�.
To leading order, the evolution over the refocusing period �
is indeed described by the time-averaged Hamiltonian of the
system in the “rotating frame” defined by the control fields.
Generally, the average Hamiltonian is constructed as a series
in powers of �. The number of the leading terms of this
expansion that are exactly zero determines the order K of the
refocusing sequence. Larger K implies asymptotically more
accurate refocusing, with error terms scaling to zero faster
with decreasing �.

For an open system, the dynamics associated with the
bath degrees of freedom can be also averaged out, as long as
they are sufficiently slow. With leading-order �K=1� refocus-
ing, the state decay processes are dramatically suppressed
�6,7�, with a moderate decrease of the dephasing rate �8�,
while with second-order refocusing �K=2� both decay and
dephasing are strongly suppressed �8�.

The decoherence analysis in Ref. �8� was based on the
assumption of the low-frequency oscillator bath being near
thermal equilibrium. This assumption becomes questionable
if the bath has sharp spectral features—e.g., if the controlled
qubit system is coupled to a local high-Q oscillator. On the
other hand, such a situation where the controlled system is
coupled to an oscillator mode is quite common. This situa-
tion is realized in atomic physics, where the oscillator in
question is the cavity mode, while the continuous-wave
�CW� excitation is used to suppress the coupling �9�. In sev-
eral quantum computer designs, nearly linear oscillator

modes are inherently present �e.g., mutual displacement in
ion traps �10–14� or quantum computers �QCs� based on
electrons on helium �15–18��. Finally, there are suggestions
to include local high-Q oscillators in the QC designs to serve
as “quantum memory,” �19� “quantum information bus,”
�20–22� or as a part of the measuring and control circuitry
�23�.

In this work we consider dynamical decoupling in a sys-
tem where the spectral function of the oscillator bath has a
sharp resonance. We include the resonant mode and the cor-
responding couplings in the system Hamiltonian and con-
sider the dynamics of the closed system driven by the refo-
cusing pulses applied to the qubits only. We construct the
average Hamiltonian for a situation where one of the qubits
is driven by a single symmetrical one-dimensional � pulse.
To second order, the expansion is characterized by three pa-
rameters, two of which can be made zero by pulse shaping.
An analysis of any refocusing sequence is then reduced to
computing an ordered product of evolution operators for in-
dividual pulses. We illustrate the technique by analyzing the
controlled dynamics of a single qubit coupled to an oscilla-
tor. One of the analyzed sequences provides an order K=2
qubit refocusing for any form of qubit–oscillator coupling.
The simulations done for the Jaynes-Cummings Hamiltonian
show excellent qubit fidelity with strongly suppressed oscil-
lator heating, as long as the oscillator frequency bias exceeds
the small coupling between the qubit and the oscillator re-
maining in the effective Hamiltonian. We argue that results
of Ref. �8� for the corresponding open system remain appli-
cable as long as this renormalized coupling is small com-
pared to the resonance width.

II. BACKGROUND

A. Dynamical decoupling and effective Hamiltonian theory

The main idea of dynamical decoupling is to drive the
system in such a way as to average out the effect of un-
wanted Hamiltonian couplings. Obviously, this only works if
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the control fields are large compared with the other terms of
the system Hamiltonian HS.

The easiest situation to analyze is where “hard”
�-function pulses are used. In this case the system Hamil-
tonian can be ignored altogether during the action of the
pulse. For a single qubit, a � pulse along the x axis corre-
sponds to the evolution operator X�exp�−i�sx�=−i�x,
where sx=�x /2 is the spin-1/2 operator. The evolution opera-
tor for a sequence of such pulses interrupting periods of free
evolution can be written as a product of the corresponding
unitaries. For example, the standard spin echo �24� sequence
of a � pulse and a negative � pulse in the x direction fol-
lowed by intervals of free evolution of equal duration � cor-
responds to the operator

UX−�−X̄−�− = e−iHS�X̄e−iHS�X . �1�

Such expressions are easily simplified using the correspond-
ing matrix algebra. For the case of NMR, the system Hamil-
tonian is that of the chemical shift,

HS =
1

2
��z, �2�

it anticommutes with the pulse unitary X, therefore e−iHS�X̄

= X̄e+iHS�, and the two-pulse sequence �1� simplifies to the
identity operator,

UX−�−X̄−�− = X̄e+iHS�e−iHS�X = X̄X = 1 . �3�

The simplicity of this formalism led to a number of strong
mathematical results applicable to refocusing with ideal �
pulses. In particular, a succession of “concatenated” refocus-
ing sequences provide an excellent refocusing accuracy
which grows very rapidly with the number of pulses in a
sequence �25,26�.

In practice, however, the hard-pulse condition may be dif-
ficult to satisfy, and one has to account for the corrections
associated with the action of the system Hamiltonian HS dur-
ing the pulse. If we denote the control Hamiltonian HC�t�,
the total Hamiltonian is

H�t� = HC�t� + HS. �4�

The simplest first-order decomposition �e.g., see Ref. �3��
amounts to adjusting the intervals of free evolution before
and after the pulse,

e−i�HS+HC�� � e−iHS�1e−iHC�e−iHS�2, �5�

where HC is assumed time-independent, with the precise
value of �1 and �2 computed in order to optimize the accu-
racy according to some fidelity measure. Superficially, any
combination such that �1+�2=� appears to provide equal ac-
curacy to first order in �. In fact, the accuracy of the expan-
sion relies on both HS� and HC� being small; the results
change non trivially for finite-angle rotations.

A more systematic way to analyze the effect of pulse
shape is in terms of the average Hamiltonian theory �4,5�.
This is equivalent to constructing the cumulant expansion of

the evolution operator in powers of the system Hamiltonian
in the interaction representation with respect to the control
Hamiltonian HC�t� which is treated exactly.

For a system of qubits, the single-qubit control can be
written most generally as

HC�t� =
1

2 �
n,�=�x,y,z�

Vn
��t��n

�, �6�

where �n
�, �=x ,y ,z are the usual Pauli matrices for the nth

qubit �spin�. We assume that the qubit levels are nearly de-
generate, or that Eq. �6� is written in the rotating wave ap-
proximation with respect to the qubit working frequency, so
that the system Hamiltonian does not contain large terms.
The control Hamiltonian �Eq. �6�� is a sum of single-qubit
terms, and the zeroth order evolution operator which obeys
the equation

U̇0�t� = − iHC�t�U0�t�, U0�0� = 1 , �7�

can be constructed without much difficulty as a product of
corresponding single-qubit operators. Then, the standard pre-
scription is to separate the fast dynamics due to control fields
out of the evolution operator by the decomposition U�t�
=U0�t�R�t�, and write the equation of slow evolution for
R�t�,

Ṙ�t� = − iH̃S�t�R�t�, H̃S�t� � U0
†�t�HSU0�t� . �8�

The system Hamiltonian in the interaction representation,

H̃S�t�, is small at the scale of the refocusing period �, which
makes the time-dependent perturbation theory �TDPT� ex-
pansion applicable. The Magnus expansion, the exponenti-
ated version of TDPT, has somewhat better convergence
properties. It is written in terms of cumulants Ck,

R�t� = exp�C1�t� + C2�t� + ¯� , �9�

C1�t� = − i�
0

t

dt1H̃S�t1� , �10�

C2�t� = −
1

2
�

0

t

dt2�
0

t2

dt1�H̃S�t1�,H̃S�t2��, . . . . �11�

Generally, the kth cumulant Ck contains a k-fold integration

of the commutators of the rotating-frame Hamiltonian H̃S�ti�
at different time moments ti and has an order �tHS�k.

Let us consider periodic dynamical decoupling with the
period �, Vn

��t+��=Vn
��t�. In addition, we request that the

zeroth order evolution operator �7� should also be periodic,
U0���=1 �zeroth-order refocusing condition�. Then, the

Hamiltonian H̃S�t� is periodic, and the evolution operator
over a time interval commensurate with �, �n=n�, can be
factorized,

R�n�� = �R����n = exp�− in�Have� , �12�

where the “average” Hamiltonian Have is defined in terms of
cumulants,
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− i�Have = C1��� + C2��� + ¯ . �13�

The main advantage of the average Hamiltonian theory is the
improved convergence at large time: regardless of the value
of t, the TDPT series needs to be convergent only at 	t	��.

B. Order of a refocusing sequence

For order-K refocusing, K�1, we require additionally
that the first K terms in the expansion of the effective Hamil-
tonian vanish, C1���= ¯ =CK���=0. For a closed system, a
refocusing sequence of higher order generally offers better
scaling of accuracy with the sequence period. If we denote
the maximum coupling in the system Hamiltonian as J �more
precisely, J= 
HS
, a norm of the system Hamiltonian�, the
kth cumulant scales as Ck��J��k, while the corresponding
term in the average Hamiltonian Have

�k� �Jk�k−1. Consequently,
for order-K dynamical decoupling, the refocusing error de-
fined as the norm of the deviation of the unitary operator,
�U= 
U�t�−1
, scales as �U��t /���J��K+1, while the corre-
sponding fidelity scales as 1−F��U

2 	�2K. Thus, in the same
system, a refocusing sequence of higher order can be run at a
slower repetition rate.

Additional advantage of the effective Hamiltonian theory
comes from its locality. The first-order effective Hamiltonian
�cumulant C1� contains only the qubit interactions present in
the original Hamiltonian HS. The cumulant C2 contains con-
nected pairs of such coupling terms. Generally, if we repre-
sent system Hamiltonian HS as a graph, with qubits as verti-
ces and two-qubit couplings as corresponding edges, the
expansion of the kth order cumulant Ck can be represented as
connected subgraphs with up to k edges. As a result, the
first-order refocusing condition, C1���=0, can be verified by
analyzing clusters with up to two qubits; second-order refo-
cusing, with the additional condition C2���=0, requires
analysis of all clusters with up to three qubits, etc.

This property, otherwise known as the cluster theorem
�27�, allows one to design scalable refocusing sequences
whose refocusing order is independent of the system size.
For a linear chain with nearest-neighbor interaction, one can
achieve this by intermittently pulsing odd and even-
numbered qubits. Several such particular sequences of order
K=2 and higher were demonstrated in Ref. �28�.

C. Sequence order and open-system refocusing

Dynamical decoupling can be also effective against deco-
herence due to low-frequency environmental modes �29�.
This can be understood by noticing that the driven evolution
with period �=2� /
 shifts some of the system’s spectral
weight by the Floquet harmonics, �→�+n
. With the first-
order average Hamiltonian for the closed system vanishing
�K=1 refocusing�, the original spectral weight at n=0 disap-
pears altogether, and the direct transitions with the bath de-
grees of freedom are also suppressed as long as 
 exceeds
the bath cutoff frequency, 
��c �6,7�. This corresponds to
effective suppression of dissipative �T1� processes.

The full analysis of decoherence, including both dissipa-
tive and reactive �T2� processes, in the presence of order-K
dynamical decoupling, K�2, was done by one of the authors

using the non-Markovian master equation in the rotating
frame defined by the refocusing fields �8�. This involved a
resummation of the series for the Laplace-transformed resol-
vent of the master equation near each Floquet harmonic, with
subsequent summation of all harmonics.

The results of Ref. �8� can be summarized as follows.
With K�1 refocusing, there are no direct transitions, which
allows an additional expansion in powers of the small adia-
baticity parameter, �c /
. In this situation the decoherence is
dominated by reactive processes �dephasing, or phase diffu-
sion�. With K=1, the bath correlators are modulated at fre-
quency 
. This reduces the effective bath correlation time,
and the phase diffusion rate is suppressed by a factor 	�c /
.
With K=2 refocusing, all second-order terms involving cor-
relators of the bath coupling at zero frequency, �=0, are
canceled. Generically, this leads to a suppression of the
dephasing rate by an additional factor 	��c /
�2, while in
some cases �including single-qubit refocusing� all terms of
the expansion in powers of the small adiabaticity parameter
��c /
� disappear. This causes an exponential suppression of
the dephasing rate, so that an excellent refocusing accuracy
can be achieved with relatively slow refocusing, 
��c.

III. DYNAMICAL DECOUPLING OF
A GENERICALLY-COUPLED QUBIT

The analysis in Ref. �8� was done for a generic thermal
bath with a featureless quasicontinuous spectrum character-
ized by the upper cutoff frequency �c. The absence of sharp
features justified an approximation where bath memory ef-
fects were essentially ignored at the scale of the decoherence
time, although bath correlations at shorter times are crucial
for describing the effects of dynamical decoupling. A sharp
spectral feature, like a high-Q cavity mode, makes the start-
ing point of the analysis �8�, the non-Markovian master
equation involving only qubits, questionable, unless the de-
coherence time in the absence of refocusing is long com-
pared with the equilibration time of the high-Q mode.

A. Model

In this work we include any sharp quantum mode�s� into
the “system” part of the Hamiltonian HS, and consider the
driven quantum dynamics of the resulting closed system.
Compared with a system of qubits, a quantum oscillator ad-
mits a wider variety of linear or nonlinear couplings. By this
reason we begin with a model of a qubit with most general
couplings,

HS = �xAx + �yAy + �zAz + A0, �14�

where �� are the qubit Pauli matrices and A, =0,x ,y ,z are
the operators describing the degrees of freedom of the rest of
the system which commute with ��, ��� ,A�=0, but not
necessarily with each other.

B. Pulse structure to linear order

First, consider the qubit evolution driven by a one-
dimensional pulse,
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HC = 1
2�xVx�t�, 0 � t � �p, �15�

where the field Vx�t� defines the pulse shape. The unitary
evolution operator to zeroth order in HS is simply

U0�t� = e−i�x��t�/2, ��t� � �
0

t

dt�Vx�t�� . �16�

When acting on the spin operators, this is just a rotation, e.g.,
U0�t��yU0

†�t�=�y cos ��t�+�z sin ��t�.
For inversion pulses with the net rotation angle ���p�

=�, with a symmetric shape, Vx��p− t�=Vx�t�, the average of
the cosine over pulse duration is zero by symmetry,

�cos ��t�p �
1

�p
�

0

�p

dt cos ��t� = 0. �17�

In such a case, the first two terms of the expansion, X=X�0�

+�pX�1�+�p
2X�2�+¯, of the unitary evolution operator X

�U��p� in powers of pulse duration �p read:

X�0� = − i�x, �18�

X�1� = − Ax − �xA0 + is��yAy + �zAz� . �19�

Here the dimensionless parameter

s � �sin ��t�p �20�

is the only one that characterizes the pulse shape in this
order.

We note that for � pulses the sine of evolution angle is
nonzero only over the duration of the pulse; the time inter-
vals before the beginning and after the end of the pulse
where Vx�t�=0 do not contribute to the value of s. Because of
that, this parameter can be viewed as a measure of the effec-
tive duration of the pulse. For example, while s=0 for an
infinitely short � pulse, for a Gaussian pulse �32� of width �,

G��t + �p/2� �
�1/2

�
e−t2/�2

, � � �p, �21�

this parameter is s�1.5� /�p �see Table I�.
To create a pulse shape with effectively zero width to

linear order, one can compensate for positive values of
sin ��t� near the middle of the interval by making Vx�t�
somewhat negative near the beginning and the end of the
interval. Such a first-order self-refocusing pulse was first
suggested by Warren �30� as a “Hermitian” shape,

H��t + �p/2� � G��t + �p/2�
1 − �t2/�2

1 − �/2
, �22�

where the precisely computed value �=0.960 931 721 7 is
somewhat different from that in Ref. �30�. The corresponding
fixed-length first-order self-refocusing pulse shapes SL, with
all derivatives up to and including the�2L−1�st vanishing at
the ends of the interval, L=1,2, were constructed �28� in
terms of their Fourier coefficients �31�,

V�t + �p/2� = A0 + �
m

Am cos�m
pt� , �23�

where the angular frequency 
p=2� /�p is related to the full
pulse duration �p; the coefficients Am are listed in Ref. �28�.
Compared to Hermitian pulse shape, the main advantage of
pulses SL is their smaller power �the maximum amplitude of
the field V�t��.

For first-order self-refocusing pulse shapes such as H� or
SL, the terms proportional to s in Eq. �19� disappear, and the
expansion of the unitary operator simplifies to

Xs=0 = − i�x − �p�Ax + �xA0� + O��p
2� . �24�

C. Pulse structure to quadratic order

The structure of the pulse to quadratic order is easily com-
puted as the next order in the TDPT. We have �cf. Eqs. �18�
and �19��,

X�2� = +
i

2
��A0,Ax� + �x�A0

2 + Ax
2�� + ���A0,�yAz − �zAy�

+ i�Ax,�
yAy + �zAz�� +

s

2
��A0,�yAy + �zAz�

− i�Ax,�
yAz − �zAy�� + ��Ay

2 + Az
2 + i�x�Ay,Az��

+
s2

2
��Az,Ay� + i�x�Ay

2 + Az
2�� , �25�

where we parametrized the pulse shape in terms of two ad-
ditional parameters

� � ���t − t��sin���t� − ��t���p, �26�

� � ���t − t��cos ��t��p, �27�

with the two-time averages over pulse duration

TABLE I. Parameters of several symmetric pulse shapes. The
first line represents the “hard” �-function pulse, G0.05 denotes the
Gaussian �32� pulse with the width �=0.05�p, see Eq. �21�, H0.05 is
the corresponding Hermitian �30� pulse, see Eq. �22�, while SL and
QL denote the first- and second-order self-refocusing pulses from
Ref. �28�, with up to 2L−1st derivative vanishing at the ends of the
interval of duration �p.

Pulse s � /2 �

���t−�p /2� 0 0 1/4

G0.05 0.0744895 0.0349708 0.249476

G0.10 0.148979 0.0653938 0.247905

H0.05 0 0.00153849 0.249647

H0.10 0 0.00615393 0.248589

S1 0 0.0332661 0.238227

S2 0 0.0250328 0.241377

Q1 0 0 0.239889

Q2 0 0 0.242205
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�f�t,t��p � �
0

�p dt

�p
�

0

�p dt�

�p
f�t,t�� . �28�

We also use the notations �A ,B��AB−BA for the commu-
tator and �A ,B�=AB+AB for the anticommutator of two op-
erators.

The effect of the parameter � was studied previously in
Ref. �28�. The condition �=0 is necessary to obtain NMR-
style one-dimensional second-order self-refocusing pulses.
Indeed, the corresponding system Hamiltonian is just that of
the chemical shift, Eq. �2�, thus Ax=Ay =A0=0 and Az=� /2
in Eq. �14�. Then, the evolution operator to quadratic order in
�̄��p� /2 is simply

X� = − i�x + is�̄�z + �̄2�� + i�xs2/2� + O��̄3� , �29�

the linear and quadratic corrections disappear entirely for
second-order self-refocusing pulses such that �=s=0. These
are exactly the conditions used to design pulse shapes QL
�Ref. �28��. The index L=1,2 denotes the parameter for the
additional condition that the first 2L derivatives vanish at the
ends of the interval, V�l��0�=V�l���p�=0, l=0, . . . ,2L−1.

The actual values of the parameters s, �, and � for several
pulse shapes are listed in Table I. We note that for an ideal �
pulse, the parameters s=�=0, whereas �=1 /4 is not particu-
larly small. For all “soft” pulse shapes listed, the values of �
are quite close to this value. The values of the parameter �
are numerically small for all first-order self-refocusing pulses
with s=0. The second-order self-refocusing pulses Q1, Q2
with s=�=0 may work as a perfect replacement of � pulses
to second-order accuracy �28�.

IV. COMMON PULSE SEQUENCES

Transforming Eqs. �19� and �25� appropriately, we can
now easily compute the result of application of any pulse

sequence. In particular, the � pulse X̄ applied along the −x
direction can be obtained from �−X� with the substitution �
→−�. As a result, e.g., the expansion of the evolution op-

erator for the one-dimensional sequence X̄X �cf. Eq. �1�� can
be written as

X̄X = 1 − 2i�p�A0 + �xAx − s��yAz − �zAy��

− 2�p
2�A0 + �xAx − s��yAz − �zAy��2 + O��p

3� , �30�

or it can be reexponentiated as evolution over time interval
2�p with the average Hamiltonian

HX̄X = A0 + �xAx − s��yAz − �zAy� + O��p
2� . �31�

We can attempt to correct for the terms proportional to s by

using a longer sequence, e.g., XX̄X̄X. However, while the
term is corrected in the leading-order effective Hamiltonian,
we acquire a correction in the next order,

HXX̄X̄X = A0 + �xAx − s�p�Ax,�
yAy + �zAz�

+ is�p�A0,�yAz − �zAy� + O��p
2� . �32�

While the external Hamiltonian A0 cannot be averaged out
by acting on the qubit, the term proportional to �x can be
also suppressed with the help of two-dimensional sequences.
The expression for the unitary UY��p��Y resulting from ap-
plication of the pulse along the y direction can be easily
obtained from Eqs. �19� and �25� by cyclic permutation of
indices. Then, for example, the refocusing sequence 4p
�4p�xy��XȲXY corresponds to the effective Hamiltonian

H4p = A0 +
s

2
��xAz − �zAy� +

i�p

2
�A0,�xAx − �yAy�

− �p
�

2
�y�Ax

2 + Az
2� + �p

i�

2
�Az,Ay�

− �p
1 + 4�

4
�z�Ax,Ay� + O��p

2,s�p� , �33�

where we dropped linear in �p terms proportional to s.

The symmetric 8-pulse sequence 8s=YXȲXXȲXY pro-
duces the effective Hamiltonian

H8s = A0 + s�p� i

4
�Az,Ax + Ay� +

1

2
��xAy

2 − �yAx
2�

+
1

4
�y�Ax,Ay� +

1

4
�z�Ay,Az�

+
i

2
�A0,�yAz + �zAx +

3

2
�zAy −

5

2
�xAz��

−
��p

2
��y�Ax

2 + Az
2� + i�Ay,Az�� + O��p

2� , �34�

while the antisymmetric sequence 8a� ȲX̄YX̄XȲXY corre-
sponds to

H8a = A0 +
s

2
��xAz − �zAy� + O��p

2� . �35�

We note that in the latter case there is a leading-order term
proportional to s but no terms in order �p; this sequence
produces second-order refocusing already with first-order
pulses.

V. QUBIT IN A CAVITY

To illustrate these results, consider a qubit placed in a
lossless cavity with a single mode nearly resonant with the
qubit. We consider the simplest case where the system can be
described by the Jaynes-Cummings Hamiltonian,

HS = �rb
†b +

�0

2
�z − g�b†�− + �+b� , �36�

where �����x� i�y� /2, and �r and �0 are the frequency
biases for the cavity and the qubit, respectively. Equation
�36� can be also written in the form �14� with Ax=−g�b
+b†� /2, Ay = ig�b†−b� /2, Az=�0 /2, and A0=�rb

†b. We con-
centrate on the special case �0=0 which corresponds to
working in the “rotating frame,” with the control fields �Eq.
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�6�� applied on resonance with the qubit. Note that we as-
sume the control fields to be applied directly at the qubit and
not at the oscillator �23�; for a linear oscillator the corre-
sponding compensation can be achieved by a spectral filter.

A. Sequence 4p

When the sequence 4p is used with a Gaussian or other
pulse shape with s�0, the effective Hamiltonian to leading
order can be written as

H4p = �rb
†b +

s�0

4
�x −

isg

4
�z�b† − b� + O��p� . �37�

The original exchangelike oscillator coupling in Eq. �36� is
replaced by the qubit phase coupling in Eq. �37�. While the
coupling magnitude is reduced by a small factor 	s, it does
not go down with more frequent pulse application. The same
holds true if the oscillator is replaced by an auxiliary qubit
�left panel in Fig. 1�, or if the pulses are applied in the x-z
direction �dashed lines in Fig. 1; the effective Hamiltonian is
given by Eq. �39� below�. One can see from Fig. 1 that the
refocusing accuracy is more or less similar for all these
cases.

When the sequence 4p is applied with first-order self-
refocusing pulses �Hermitian or SL�, the first-order terms in
the effective Hamiltonian are gone. This leaves terms linear
in �p as the leading-order correction

H4p = �rb
†b − i

�pg�r

2
��+b† − �−b� − i

1 + 4�

8
�pg2�z�b2

− H.c.� + O�s,��p,�p
2� , �38�

where we set s=0 and dropped the relatively small term
	��p. We note that the first two terms in Eq. �38� disappear
with �r=0. The third term is suppressed when the oscillator
is replaced by an auxiliary qubit �b→�−, b†→�+, b†b
→�z /2�. The same happens if the sequence is applied in the

x-z direction �sequence 4p�xz�=XZ̄XZ�, with the correspond-
ing effective Hamiltonian

H4p
�xz� = �rb

†b +
isg

4
�x�b† − b� +

s�0

4
�z − i

�pg�r

4
�x�b† − b�

− �pg�0
1 + 4�

8
�z�b† + b� + O�s�p,��p,�p

2� . �39�

The net effect is that the refocusing accuracy is dramatically
improved when the oscillator is replaced by an auxiliary qu-
bit, or when the four-pulse sequence is applied on resonance
��0=0� in the x-z plane using first-order pulses �s=0�, with
the oscillator also being in resonance with the qubit, �r=0.
In such cases, the only remaining linear in �p terms in the
effective Hamiltonian are those proportional to the small pa-
rameter �, which allows for increased accuracy, see Fig. 2.

B. Sequence 8a

The antisymmetric eight-pulse sequence 8a produces the
effective Hamiltonian

H8a
�xy� = �rb

†b −
isg

4
�z�b† − b� +

s�0

4
�z + O��p

2� . �40�

The refocusing is first-order with Gaussian pulses �Fig. 3�,
with the errors comparable to those of the sequence 4p �cf.
Fig. 1�. The corresponding expression with pulses applied in
the x-z plane �sequence 8a�xz�� can be obtained by the sub-
stitution �x→�z, �z→−�x; this results in an almost identical
performance �cf. dashed and solid lines in Figs. 3 and 4�.
With self-refocusing pulses S1 �Fig. 4� or Q1 �not shown� the
sequence produces second-order refocusing. With all first-
and second-order error terms canceled, the refocusing accu-
racy is improved dramatically.

C. Sequence 8s

The symmetric eight-pulse sequence 8s produces the ef-
fective Hamiltonian
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FIG. 1. �Color online� Evolution of the qubit fidelity and the
number of quanta at the oscillator �n �minimized and maximized
over initial qubit states, respectively� at the end of the refocusing
interval. Length-4 sequence 4p with Gaussian pulses G010 applied
on resonance with the qubit, �0=0 in Eq. �36�. Coupling constant
g=0.1 /�p. Left panels: oscillator restricted to n=0,1 states, which
makes it effectively a qubit. Right panels: oscillator restricted to n
�8 levels, which over the simulation time is equivalent to infinity.
Bottom panels correspond to oscillator in resonance with the qubit,
top panels correspond to oscillator frequency bias �r=0.02 /�p.
Solid lines correspond to control pulses applied along the x and y
axes �sequence 4p�xy��; dashed lines correspond to control pulses
applied along the x and z axes �sequence 4p�xz��.
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FIG. 2. �Color online� As in Fig. 1 but with first-order self-
refocusing pulses S1. The corresponding curves for pulses Q1 �not
shown� are virtually identical with linear scale.
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H8s
�xy� = �rb

†b −
��p

8
�g2�y�b† + b�2 − �0

2�y� + O��p
2� ,

�41�

which corresponds to Eq. �38� with the larger terms already
suppressed. The refocusing is first-order with either Gaussian
�Fig. 5� or first-order pulses �see Fig. 6 with pulses S1�, and
second-order with second-order pulses QL �not shown�. With
the linear scale of our plots, there is only a slight difference
between zeroth and first order pulses �due to higher-order
terms�, and no visible difference between pulses S1 and Q1.
When this sequence is applied in the x-z plane, we obtain

H8s
�xz� = �rb

†b −
�g2�p

4
�y�b†,b� + O��p

2� . �42�

As can be also seen by comparing the dashed and solid lines
in Figs. 5 and 6, the performance of this sequence depends
little on how it is applied.

The performance of this sequence with self-refocusing
pulses �e.g., S1, Q1� is also very close to that of the antisym-
metric sequence 8a. Nevertheless, the symmetric sequence
8s provides better stability with respect to the pulse shape
errors, and, according to results in Ref. �8�, it is also ex-
pected to result in better visibility �smaller initial decoher-
ence� when applied in an open system.

D. Finite-width resonance

We analyzed in detail the performance of dynamical de-
coupling in a closed system. In particular, with properly de-
signed refocusing fields, to an excellent accuracy, the quan-
tum oscillator coupled to the qubit remains in the ground
state, while the qubit fidelity remains very close to unity.
Numerical results agree with the predictions from the ana-
lytically computed effective Hamiltonians which show
greatly reduced coupling between the qubit and the oscilla-
tor. A very small frequency bias �of order of renormalized
coupling value� becomes sufficient to effectively disconnect
the oscillator mode and protect the qubit coherence.

A similar effect can be expected in an open system, where
the resonant mode acquires a finite width �. For refocusing
to be effective, � should exceed the renormalized qubit cou-
pling. To test this prediction, we repeated the simulations
with the imaginary oscillator frequency, �r=−i�, while
keeping all other simulation parameters the same as in Figs.
1–6. The corresponding results are shown in Fig. 7. While
low-order sequences �e.g., 4-pulse sequence 4p with Gauss-
ian or S1 pulses, bottom panes in Fig. 7, or sequence 8a with
Gaussian pulses� show rapid fidelity decay, the decay is sub-
stantially reduced for more accurate sequences. At the same
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FIG. 5. �Color online� As in Fig. 1 but for the sequence 8s.
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FIG. 6. �Color online� As in Fig. 1 but for the sequence 8s with
pulses S1. Formally, the sequence is of the same order as with
Gaussian pulses, see Fig. 5; the noticeable differences are due to
error terms of higher order which we dropped in our calculations.
The off-resonance refocusing is excellent �the fidelity and �n
curves in the top right panel run along the corresponding axes�,
while the on-resonance performance is also good. The plots with
second-order pulses Q1 �not shown� look almost identical. Note also
that with the linear scale of these plots, the curves here are almost
indistinguishable from those in Fig. 4.
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FIG. 3. �Color online� As in Fig. 1 but for the sequence 8a. The
term 	s in Eq. �40� produces large errors comparable for those for
4p sequence in Fig. 1. This indicates that this sequence is less stable
to pulse shape errors as compared to, e.g., the symmetric sequence
8s.
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FIG. 4. �Color online� As in Fig. 1 but for the sequence 8a with
pulses S1. The corresponding curves for pulses Q1 �not shown� are
virtually identical with linear scale.
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time, due to the decay, the number of quanta at the oscillator
remains small.

We note that the simulation with �r=−i� corresponds to a
�Markovian� thermal bath with very fast relaxation rate,
which can be seen as the limit of very large upper cutoff
frequency, �c→�. Strictly speaking, one does not expect the
dynamical decoupling to be effective in this regime. The fi-
delity improvement in our simulations occurs because the
spectral function of the Markovian environment is “filtered”
through the resonant oscillator mode which results in a sup-
pression of the high-frequency tail of the spectral function of
the entire bath. While the effect is not as strong as we expect
with true low-frequency bath �the upper cutoff frequency �c
is small on the scale of the refocusing period 
�, there is a
definite fidelity improvement.

To summarize, refocusing in the presence of a slow ther-
mal bath characterized by the upper cutoff frequency can be
effective even in the presence of sharp resonances in the
spectral function. Specifically, this would happen as long as
the renormalized qubit coupling with the resonant mode is
small on the scale of the resonance width. This gives the
modified, more broadly applicable, criterion for applicability
of the results of Ref. �8�. In particular, we expect the second-
order sequence 8s with second-order pulses Qn to provide an
excellent refocusing accuracy to system Hamiltonian of
Jaynes-Cummings form �36� also in the presence of a ther-

mal bath, as long as the refocusing rate is sufficiently high.
In addition to the condition on the renormalized value of the
high-Q oscillator mode coupling, the refocusing period �
must be below the threshold value of order of the inverse
bath cutoff frequency, �c

−1, see Ref. �8�.

VI. CONCLUSIONS

In this work we analyzed the performance of soft-pulse
dynamical decoupling in the presence of a sharp resonance
mode. Because of the associated memory effects, such a
problem cannot be addressed by considering master-equation
dynamics for the qubit-system density matrix alone. Instead,
we included the resonant mode and the corresponding cou-
plings in the system Hamiltonian, and considered the dynam-
ics of the resulting closed quantum system driven by a se-
quence of soft or hard refocusing pulses applied to the qubit.
The analysis was done in terms of the effective Hamiltonian
theory which describes the evolution of the system “stro-
boscobically” at the time moments commensurate with the
refocusing period.

In fact, to make our results applicable to a large number
of possible coupling terms between the qubit and the oscil-
lator, we solved a more general problem of an arbitrary
coupled �see Eq. �14�� controlled qubit. The main result of
this work is the expansion of the unitary evolution operator
Eqs. �19� and �25�, and the classification of the correspond-
ing parameters in Table I. This allows an explicit computa-
tion of the error operators associated with refocusing in sys-
tems of arbitrary complexity.

We also computed the effective Hamiltonians for several
single-qubit refocusing sequences. To quadratic order, all
coupling terms are canceled if the length-8 sequences 8a
�Eq. �35�� or 8s �Eq. �34�� are used with first- or second-
order self-refocusing pulses, respectively. We illustrated the
general analytical results on the specific example of the
driven Jaynes-Cummings Hamiltonian. The results of simu-
lations agree with the predictions based on the analytically
computed second-order effective Hamiltonians, although in
some cases the effects of higher-order terms are noticeable.

For robust single-qubit refocusing, we recommend the

symmetric 8-pulse sequence 8s=YXȲXXȲXY applied with
second-order self-refocusing pulses. This sequence provides
excellent refocusing accuracy for any form of the coupling of
the qubit with the outside world, and it is stable with respect
to pulse shape errors. As the second-order symmetric se-
quence, it should also work well for open systems, as long as
the environment is slow on the scale of the refocusing rate
�8�. The thermal bath is expected to remain close to equilib-
rium, and refocusing to perform well, as long as sharp fea-
tures in the spectral function are wide on the scale of the
renormalized value of the corresponding couplings.
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FIG. 7. �Color online� Refocusing with finite-width resonance at
zero frequency bias. Simulation parameters as in Figs. 1–6 except
that the oscillator frequency is taken to be purely imaginary, �r=
−i�. The curves show evolution of the qubit fidelity and the number
of quanta at the oscillator �n �minimized and maximized over ini-
tial qubit states, respectively� at the end of the refocusing interval.
Left panes from bottom to top: sequences 4p, 8a, 8s with Gaussian
pulses G010 �cf. Figs. 1, 3, and 5, respectively�. Right panes show
the results of the simulation with pulses S1 �cf. Figs. 2, 4, and 6,
respectively�. Oscillator is restricted to n�8 levels, which over the
simulation time is equivalent to infinity. Solid lines correspond to
control pulses applied along the x and y axes �sequences 4p�xy�,
8a�xy�, 8s�xy��; dashed lines correspond to control pulses applied
along the x and z axes �sequences 4p�xz�, etc.�.
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