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We discuss a measurement-based implementation of a controlled-NOT �CNOT� quantum gate. Such a gate has
recently been discussed for free electron qubits. Here we extend this scheme for qubits encoded in product
states of two �or more� spins 1/2 or in equivalent systems. The key to such an extension is to find a feasible
qubit-parity meter. We present a general scheme for reducing this qubit-parity meter to a local spin-parity
measurement performed on two spins, one from each qubit. Two possible realizations of a multiparticle CNOT

gate are further discussed: electron spins in double quantum dots in the singlet-triplet encoding, and �=5 /2
Ising non-Abelian anyons using topological quantum computation braiding operations and nontopological
charge measurements.
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I. INTRODUCTION

Single-quantum-bit �qubit� operations and a two-qubit
gate that generates entanglement are sufficient for universal
quantum computation �1�. One such two-qubit gate is the
controlled-NOT �CNOT� gate which flips the state of a target
qubit if the control qubit is in the logical �1� state. A physical
implementation of the CNOT gate typically requires a control
of the interaction between the qubits, e.g., for spin qubits see
�2–4�. However, introducing interactions between qubits in-
evitably introduces additional decoherence sources and is not
possible in some quantum computation proposals such as, for
instance, in linear-optics quantum computation, due to the
fact that photons interact in a negligible way. However,
Knill, Laflamme, and Milburn �KLM� have shown that mea-
surements rather than interactions can provide the means to
implement a CNOT gate on photons using nonunitary opera-
tions �5�. Shortly thereafter, additional measurement-based
approaches for quantum computation were proposed �6,7�.

The KLM model indeed served as a stepping stone for
coherent quantum information processing, but was restricted
to the underlying physical system, relying on the bosonic
properties of photons. Attempts to design a similar imple-
mentation for fermionic systems encountered some difficul-
ties in the form of a no-go theorem �8,9�, which showed that
for fermions, single-electron Hamiltonians and single-spin
measurements are simulated efficiently by classical means.
This no-go theorem, however, was sidestepped recently in a
work by Beenakker et al. �10�. By taking advantage of the
additional charge degree of freedom of an electron, a two-
spin parity measurement was proposed. Using this parity
meter, a measurement-based CNOT gate for free “flying” elec-
trons was designed. Following this result, implementations
of a parity gate for spin �11� and charge qubits �12� have
been proposed.

The setup in Ref. �10� was proposed for qubits encoded in
the spin states of free electrons, i.e., the electron spin up
�down� is interpreted as a logical 1 �0� state. Many qubit-
encoding schemes, however, encode a qubit in two states
from a Hilbert space larger than the two-dimensional spin-
1/2 Hilbert space, specifically, from a product Hilbert space

of two �or more� two-level systems. An example is the
singlet-triplet �S-T0� encoding �13�. For simplicity, we refer
to the composing particles of this kind of qubit as spins 1/2,
yet we emphasize that they can have various physical ori-
gins. Such encoding schemes result from system-dependent
constraints, for instance, seeking a less noisy physical system
as in the case of electron spins in double quantum dots �13�,
or due to topological constraints in the case of �=5 /2 Ising-
type anyons, where two quasiparticles form a two-level sys-
tem equivalent to a spin 1/2 �14�.

In this paper we discuss a qubit-parity measurement-
based implementation of a CNOT gate for such multiparticle
qubits. The implementation is a direct extension of the
schemes proposed in �5,10�. The key to such an extension is
to find a feasible qubit-parity measurement. We present a
general scheme to reduce this measurement to a local spin-
parity measurement of a representative spin from each qubit.
For concreteness, we specifically discuss qubits based on the
S-T0 basis and present for this case a proof of the linearity of
the measurement-based CNOT gate operation. The linearity
proof is required due to the nonlinear nature of the
measurement-based implementation of the gate and can be
used similarly for the case of Ref. �10�. We also propose a
possible realization of such an S-T0 CNOT on double quantum
dots using a recently proposed spin-parity meter �11�.

For �=5 /2 Ising-type anyons, a meter equivalent to a
spin-parity meter involves measuring the charge of four qua-
siparticles. Such measurements have been recently proposed
�15–19� and first steps toward their implementation have
been presented �20,21�. In Ref. �14� this type of parity mea-
surement was invoked alongside topological braiding opera-
tions to implement a two-qubit entangling gate. We use this
parity meter to construct the measurement-based CNOT gate
for this system. A comparison to the scheme of Ref. �14�
shows the following differences: The present scheme re-
quires only local braiding between the anyons composing a
qubit but also additional anyons for an ancilla and an addi-
tional parity measurement. The scheme in Ref. �14� is thus
more efficient in anyon resources and uses one parity mea-
surement less, but it requires long-ranged anyon braiding op-
erations between qubits, which will be experimentally chal-
lenging.

PHYSICAL REVIEW A 77, 012327 �2008�

1050-2947/2008/77�1�/012327�8� ©2008 The American Physical Society012327-1

http://dx.doi.org/10.1103/PhysRevA.77.012327


The paper is structured as follows: In Sec. II we present
the scheme for the qubit-parity meter using a representative
spin-parity measurement. The scheme is presented fully for
the S-T0 qubit encoding. We then extend the result of Ref.
�10� and present the measurement-based CNOT setup using
the S-T0 qubit-parity meter. In Sec. III we discuss possible
implementations of the CNOT scheme, focusing on two physi-
cally entirely different systems: double quantum dots and �
=5 /2 Ising-type anyons. In the Appendix we prove the lin-
earity of the measurement-based CNOT gate.

II. SCHEME FOR QUBIT-PARITY MEASUREMENT
AND CNOT GATE

In order to extend the measurement-based CNOT gate pro-
posed in Ref. �10� to a multiparticle qubit encoding, one
must find a way to measure the qubit parity of two such
qubits. We propose a general scheme in which the qubits are
rotated to “witness” states such that a representative spin-
parity measurement demonstrates their qubit parity. We illus-
trate this scheme on a specific two-spin singlet-triplet qubit
encoding where two selected Bell states serve as the qubit’s
logical state, i.e., �0�= �T0�= ��↑↓�+ �↓↑�� /�2, �1�= �S�= ��↑↓�
− �↓↑�� /�2. This is an encoding scheme used for electron
spins in double-quantum-dot setups �13,22–27�. We show
that a spin-parity measurement is sufficient for an S-T0 parity
meter and detail the CNOT implementation.

In order to demonstrate the equivalence between spin par-
ity and S-T0 qubit parity, we rotate the qubit states to witness
states over which a spin-parity measurement will make the
distinction of qubit parity. An important building block in

this scheme is the single-qubit Hadamard gate Ĥ. Applied to
the computational basis states ��0� , �1�	, it has the matrix rep-
resentation 1

�2
� 1 1

1 −1
�, and it yields for the S-T0 encoding

Ĥ�T0� = �↑↓� ,

Ĥ�S� = �↓↑� . �1�

Therefore, the left spin in the right-hand side of Eq. �1� can
serve as a witness for the original two-spin state. For ex-
ample, if the left spin is in the �↑ � state, the original pre-
rotated state was a �T0�. Hence, the spin parity of the left
spins of two rotated S-T0 qubits indicates the qubit parity. If

P̂s is a spin-parity gate �as used in Refs. �10,28�� we obtain
an S-T0 qubit-parity gate from the operation

P̂ = Ĥ1Ĥ2P̂sĤ1Ĥ2, �2�

where Ĥ1 , Ĥ2 are the Hadamard gates operating on qubits 1

and 2, and P̂s measures the spin parity between the two left
spins of qubits 1 and 2. A sketch of this gate is shown in Fig.
1.

As an example for the operation of P̂, let ���= �T0�1
� ���T0�2+��S�2� be a two-qubit state. Once rotated by

Hadamard gates the state becomes ��̃�= �↑↓�1 � ���↑↓�2

+��↓↑�2�. Measuring the spin parity of the left spins in each

qubit results in ��̃�1	�= �↑↓�1 � �↑↓�2 if even spin parity is

measured �ps=1� and ��̃�0	�= �↑↓�1 � �↓↑�2 if odd spin parity
is measured �ps=0�. Rotating the qubits by Hadamard gates
again results in the projected qubit states with a qubit parity
equivalent to the measured spin parity.

The fact that Hadamard gates rotate to witness states and
back in this S-T0 encoding results from the fact that the com-
putational states are a superposition of the two product spin
states ��↑↓� , �↓↑�	 with equal amplitudes. Thus, for an
x-aligned single-spin qubit encoding �� �= ��↑ �� �↓ �� /�2,
the same qubit parity routine as shown in Fig. 1 is valid. The
difference between the above setup and a parity setup for
other types of encoding lies in the single-qubit rotation that
rotates the qubits to the witness states and back, i.e., the
Hadamard gates in the entrance and exit of the parity gate are
replaced by different rotations for other encoding schemes.
Additionally, one must note that some of such rotations to
witness states might require the qubit to leave the computa-
tional subspace. For example, if one uses a unitary two-spin
rotation that maps �S�→ �↓↓� , �T0�→ �↑↑�, the target states
are outside the qubit encoding subspace. However, they can

P̂s,1

P̂s,2

aout
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ain = |T0〉

tin
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cout
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σ̂c
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Ĥ Ĥ

Ĥ

FIG. 2. Measurement-based CNOT gate for S-T0 qubits. The
boxes represent spin-parity measurements of the left spins �see Eq.
�1�� of each qubit. Three Hadamard gates rotate the qubits entering
and leaving the first box. The input of the CNOT gate consists of
control and target qubits plus an ancilla which is prepared in the
�T0� state. The ancilla is measured at the output in an �S� or �T0�
state. The outcome of this measurement plus the two measured spin
parities determine which operators �̂c , �̂t one has to apply on the
control and target qubits, respectively, in order to complete the
CNOT operation: We apply on the control qubit �̂c= �̂z if p2=0 and
�̂c=1 if p2=1. For the target qubit, �̂t= �̂x if p1=1 and the ancilla is
measured in the �S� state, or if p1=0 and the ancilla is measured in
the �T0� state. Otherwise, �̂t=1. See �10�.
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Ĥ1 Ĥ1
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FIG. 1. A gate that uses a spin-parity measurement to measure
the parity of S−T0 qubits. A pair of S-T0 qubits enters the gate in

arms a and b. Each of the qubits is rotated by a Hadamard gate Ĥ.
The spin parity of the left spins �see Eq. �1�� from each qubit is then

measured in the P̂s box. The qubits are rotated back by Hadamard
gates and the parity of the spins is equivalent to the parity of the
qubits.
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still be used as witness states for the qubit-parity measure-
ment. In this case it is, of course, required that those addi-
tional states are energetically accessible from the computa-
tional subspace.

We can now extend the result of Ref. �10�, where spin
parity is used to implement a CNOT operation on a single-
spin qubit, by using the S-T0 parity in the same way for an
S-T0 CNOT implementation. The resulting gate is shown in
Fig. 2. The gate can be seen as a Hadamard-rotated version
of the gate from Ref. �10� that operates on two-spin qubits
instead of free flying electron qubits. In addition, the gate has
the following advantages over the gate from Ref. �10�:
�1� The ancilla is prepared in a pure computational state in-
stead of a superposition of computational states, and �2�
fewer Hadamard operations are required.

The parity and ancilla measurements �see Fig. 2� are pro-
jective nonlinear operations. Each measurement projects the
state onto one of two possible outcome states. In Fig. 3 we
present the “calculation tree” of the CNOT gate where the
three consecutive measurements lead to eight possible out-
come states. With the last tuning step of the gate, however,
we obtain a single deterministic result, i.e., all branches have
the outcome �up to a global phase�

���c � ���t → ���T0�c�T0�t + ���T0�c�S�t + ���S�c�S�t

+ ���S�c�T0�t, �3�

where ���c=��T0�c+��S�c and ���t=��T0�t+��S�t are the con-

trol and target input states, respectively. Hence Eq. �3� de-
scribes the operation of a CNOT gate on S-T0 qubits.

In the Appendix we follow the calculation tree in Fig. 3
when the gate in Fig. 2 is applied to an arbitrary two-qubit
state. The result yields Eq. �3� and proves that the gate is
indeed a CNOT gate and that its operation is linear.

III. POSSIBLE IMPLEMENTATIONS

We present here two possible implementations of the
CNOT gate for two types of systems that have been proposed
for quantum computation. In the first part we discuss how it
may be realized on double-quantum-dot qubits. In the second
part we consider an implementation for non-Abelian Ising-
type anyons that have been proposed to exist as elementary
excitations in a fractional quantum Hall system with filling
factor �=5 /2.

A. Double quantum dots

Since the introduction of electron spins in quantum dots
�QDs� as a platform for quantum-information processing �2�,
there has been much research in this direction. Several pro-
posals specifically focus on an S-T0 qubit encoding where
two electrons in neighboring QDs form the �S� and �T0�
states. Possible implementations of single-qubit operations as
well as a CNOT gate based on control of the design and the

|ψ̃〉

|ψ0,0,z〉

|ψ0,1,z〉

|ψ1,0,z〉

|ψ1,1,z〉

|ψ̃1,p2,z〉

|ψ̃0,p2,z〉 p2 = 0

p2 = 0

z = 0

z = 1

z = 0

z = 1

z = 0

z = 1

z = 0

z = 1

|ψ0,0,0〉

|ψ0,0,1〉

|ψ0,1,0〉

|ψ0,1,1〉

|ψ1,0,0〉

|ψ1,0,1〉

|ψ1,1,0〉

|ψ1,1,1〉

|ψf 〉|ψi〉

|ψ1,p2,z〉

|ψ0,p2,z〉

p1 = 1

p2 = 1

p2 = 1

p1 = 0

Ĥc P̂1 Ĥc P̂2 M̂a σ̂c σ̂tĤa

FIG. 3. Calculation tree of the measurement-based CNOT gate in Fig. 2. The computation splits in accordance with the parity and ancilla
measurements. Due to the Hadamard gate rotations, the measurements do not destroy the initial state and each path of the computation has
the same probability of occurring. We obtain eight possible result states, which we denote as ��p1,p2,z�. In the Appendix we follow the
execution of the gate and show that the results in each of the calculation arms indeed merge into a single result �� f�, which is equal to the
result of the CNOT operation.
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interactions in the system have been discussed in the last few
years �13,22–27�.

In Fig. 4 we show that the measurement-based CNOT gate
can be realized in such systems as well. The spin parity can
be measured using a recently proposed spin-parity meter
�11�. This meter, however, is local and cannot measure spins
in distant QDs, i.e., if we label the electrons by 1,2 �first
qubit� and 3,4 �second qubit�, the required witness parity of
spins 1 and 3 cannot be measured. From Eq. �1� we see,
however, that measuring even parity between spins 2 and 3 is
the same as measuring odd parity between spins 1 and 3, and
vice versa. Upon this reinterpretation, the CNOT gate remains
unchanged. With the suggested geometric arrangement of
QDs shown in Fig. 4, it may further be possible that a single
spin-parity meter, coupling alternately to the left or right QD
of the ancilla, is sufficient for the operation.

B. Ising-type anyons

Topological quantum computation �TQC� �29–31� pro-
poses a scheme in which coherent quantum computation is
done by topological operations performed on non-Abelian
anyons. A physical system that may serve as a platform for
TQC is the two-dimensional electron gas in the fractional
quantum Hall regime. At filling fraction �=5 /2, localized
elementary excitations �quasiparticles� are proposed to have
non-Abelian anyon statistics and are dubbed Ising anyons
�32–34�.

Two such quasiparticles form a two-level system equiva-
lent to a spin 1/2. However, in Ref. �14� it is shown that due
to topological superselection rules the qubit is encoded in
two product states �0�= �0,0� , �1�= �1,1� from the Hilbert
space formed by four quasiparticles. Thus, this system forms
a Hilbert space equivalent to that of a product Hilbert space

of two spins 1/2.1 In addition, it is shown in Ref. �14� that, in
order to implement universal quantum computation on this
system, nontopological paritylike measurements are re-
quired. Such measurements may be carried out by an inter-
ferometric device recently proposed in �15–19� and first
steps have been taken toward its implementation �20,21�. We
refer to these references for more details.

The measurement-based CNOT scheme can be imple-
mented over this system as well. The parity meter here acts
directly on the computational states so that no rotation prior
to the parity measurement is required. If we label the anyons
forming the first qubit 1,2,3,4 and those of the second qubit
5,6,7,8, the parity of two qubits can be measured by an in-
terferometer which measures the charge of the four adjacent
anyons 3,4,5,6. This measurement is equivalent to the spin-
parity measurement of two neighboring spins, one from each
qubit, as discussed in Sec. III A. The required Hadamard
rotations by the measurement-based CNOT scheme �10� can
be implemented using topological braiding of the Ising
anyons �35,36�. If we consider the qubit formed by the
anyons 1,2,3,4, the braiding of anyons 1,2 results in an ei	�̂z/4

qubit rotation and braiding of 2,3 results in ei	�̂x/4 �14�. Since

iĤ=ei	�̂z/4ei	�̂x/4ei	�̂z/4, the operation shown in Fig. 5 per-
forms a Hadamard rotation on such a qubit �up to a global
phase� �35,36�.

Figure 6 presents the measurement-based CNOT operation
on this system. The parity measurement of anyons 3,4,5,6
gives the parity of the control and ancilla qubits. The parity
measurement of anyons 7,8,9,10 gives the parity of the an-
cilla and target qubits.

Upon comparing the CNOT operation in Fig. 6 to the two-
qubit gate proposed in Ref. �14�, we see that the present
measurement-based scheme requires an ancilla and an addi-
tional parity measurement that are not needed in �14�. This is
due to the fact that the present scheme does not take advan-
tage of the underlying anyon system statistics. Using the
anyon statistics as in Ref. �14�, however, requires braiding of

1An alternative qubit encoding scheme to the four-quasiparticle
qubit is to encode the qubit in three quasiparticles, for which a CNOT

gate has been proposed in �35�.

FIG. 4. Double-quantum-dot implementation setup for the
measurement-based CNOT gate. A dot with an electron in it is rep-
resented by an empty circle containing a filled circle. The ancilla
dots are situated next to a spin-parity meter �proposed in Ref. �11��.
In order to measure the parity of the ancilla and control qubits, P1,
the spin parity of the right electron spin of the control and the left
electron spin of the ancilla is measured. The parity of the ancilla
and target qubits, P2, is measured by the spin parity of the right
electron spin of the ancilla and the left electron spin of the target.

=iĤ

3 421

T
im

e

FIG. 5. Hadamard gate using braiding of �=5 /2 Ising anyons
�35,36�. The gate adds a global 	 /2 phase which can be ignored.
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distant anyons between qubits, while in the present scheme
all braiding operations are strictly local, i.e., we require only
braiding operations of nearest-neighbor quasiparticles. Fur-
thermore, we braid the anyons only within the qubit they
define.

IV. CONCLUSION

We have presented a general scheme to measure the qubit
parity of two multiparticle qubits via a representative spin-
parity measurement in some rotated state. Using this qubit-
parity meter we have extended the measurement-based CNOT

setup proposed in Ref. �10� to additional encoding schemes.
As an example, we discussed the S-T0 qubit encoding case in
detail. In this encoding, as shown in Fig. 2, the rotations used
by the qubit-parity meter led to a slightly simpler rotated
setup of the CNOT gate as compared to �10�. We also used the
S-T0 setup to provide a proof of the linearity of the gate �see
Fig. 3�, which is required as the CNOT gate is implemented
by nonunitary operations. As an illustration, we presented
two possible implementations of the CNOT gate. We have
proposed a possible setup for the S-T0 encoding �see Fig. 4�.
For �=5 /2 Ising-type anyons, the CNOT gate can be imple-
mented with braiding operations and the parity meter pro-
posed in �14� �see Fig. 6�. In contrast to a similar gate de-
scribed in �14�, the present CNOT gate requires one more
parity measurement and the additional ancilla. But all braid-

ing operations remain strictly local and confined within the
individual qubits. Both schemes have their strengths but it is
yet unknown which is a more efficient route for implemen-
tation.
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APPENDIX: PROOF OF LINEARITY

To prove the linearity of the measurement-based CNOT

gate shown in Fig. 2, we follow the gate execution that is
portrayed in Fig. 3 when the control and target qubits are
taken initially to be in arbitrary states:

�c� = ��0� + ��1� = ��T0� + ��S� , �A1�

�t� = ��0� + ��1� = ��T0� + ��S� . �A2�

The initial state of the input qubits plus the ancilla is

��i� = �c� � �a� � �t� . �A3�

The calculation splits in accordance with the parity and an-
cilla measurements. We obtain eight optional result states
which we denote as ��p1,p2,z� as seen in Fig. 3. We prove that
the results in each of the calculation arms finally merge into
a single result �� f� which is equal to the result of the CNOT

operation.
At the first step, the control is passed through an S-T0

Hadamard gate, resulting in

��̃� = 
 �

�2
��T0�c + �S�c� +

�

�2
��T0�c − �S�c�� � �a� � �t� .

�A4�

The first parity measurement is performed on the control and
ancilla qubits. To present the result of the spin-parity mea-
surement, we first write the control and ancilla in the product
spin basis ��↑↓� , �↓↑�	,

��̃� = ���↑↓�c + ��↓↑�c� �
�↑↓�a + �↓↑�a

�2
� �t� . �A5�

Measurement of the spin parity of the left spins of the
control and ancilla qubits has two possible outcomes:

9 1211103 421 5 6 7 8

M̂a

P̂2

P̂1

T
im

e

Control Ancilla Target

FIG. 6. Measurement-based CNOT gate implemented on �=5 /2
Ising anyon qubits. The control, ancilla, and target qubits are shown
from left to right, e.g., the control qubit is represented by anyons
1,2,3,4. The representative “spin”-parity measurements are shown

by the P̂ boxes and the ancilla measurement by the box at the
bottom. The braiding between the measurements represents Had-
amard rotations on the qubits.
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��̃1,p2,z� = ���↑↓�c�↑↓�a + ��↓↑�c�↓↑�a� � �t� , �A6�

��̃0,p2,z� = ���↑↓�c�↓↑�a + ��↓↑�c�↑↓�a� � �t� . �A7�

The ancilla and control qubits are then rotated by Had-
amard gates:

��1,p2,z� = ���T0�c�T0�a + ��S�c�S�a� � �t� , �A8�

��0,p2,z� = ���T0�c�S�a + ��S�c�T0�a� � �t� . �A9�

Now the ancilla and target qubits enter a spin-parity mea-
surement. Once more we write their states in the product spin
basis:

��1,p2,z� = 
��T0�c

�↑↓�a + �↓↑�a

�2
+ ��S�c

�↑↓�a − �↓↑�a

�2
�

� 
�
�↑↓�t + �↓↑�t

�2
+ �

�↑↓�t − �↓↑�t

�2
� , �A10�

��0,p2,z� = 
��T0�c

�↑↓�a − �↓↑�a

�2
+ ��S�c

�↑↓�a + �↓↑�a

�2
�

� 
�
�↑↓�t + �↓↑�t

�2
+ �

�↑↓�t − �↓↑�t

�2
� . �A11�

Measuring the spin parity of the left spins of the ancilla
and target qubits again splits the result set into two possible
branches:

��1,1,z� =
��

�2
��T0�c�↑↓�a�↑↓�t + �T0�c�↓↑�a�↓↑�t�

+
��

�2
��T0�c�↑↓�a�↑↓�t − �T0�c�↓↑�a�↓↑�t�

+
��

�2
��S�c�↑↓�a�↑↓�t − �S�c�↓↑�a�↓↑�t�

+
��

�2
��S�c�↑↓�a�↑↓�t + �S�c�↓↑�a�↓↑�t� , �A12�

��1,0,z� =
��

�2
��T0�c�↑↓�a�↓↑�t + �T0�c�↓↑�a�↑↓�t�

−
��

�2
��T0�c�↑↓�a�↓↑�t − �T0�c�↓↑�a�↑↓�t�

+
��

�2
��S�c�↑↓�a�↓↑�t − �S�c�↓↑�a�↑↓�t�

−
��

�2
��S�c�↑↓�a�↓↑�t + �S�c�↓↑�a�↑↓�t� , �A13�

��0,1,z� =
��

�2
��T0�c�↑↓�a�↑↓�t − �T0�c�↓↑�a�↓↑�t�

+
��

�2
��T0�c�↑↓�a�↑↓�t + �T0�c�↓↑�a�↓↑�t�

+
��

�2
��S�c�↑↓�a�↑↓�t + �S�c�↓↑�a�↓↑�t�

+
��

�2
��S�c�↑↓�a�↑↓�t − �S�c�↓↑�a�↓↑�t� , �A14�

��0,0,z� =
��

�2
��T0�c�↑↓�a�↓↑�t − �T0�c�↓↑�a�↑↓�t�

−
��

�2
��T0�c�↑↓�a�↓↑�t + �T0�c�↓↑�a�↑↓�t�

+
��

�2
��S�c�↑↓�a�↓↑�t + �S�c�↓↑�a�↑↓�t�

−
��

�2
��S�c�↑↓�a�↓↑�t − �S�c�↓↑�a�↑↓�t� . �A15�

The ancilla and target qubits can be rewritten in the S-T0
basis using the following relations:

�↑↓� =
1
�2

��T0� + �S�� ,

�↓↑� =
1
�2

��T0� − �S�� . �A16�

Substituting Eq. �A16� into Eqs. �A12�–�A15� and rewriting
the expressions we obtain

��1,1,z� =
��

�2
��T0�c�T0�a�T0�t + �T0�c�S�a�S�t�

+
��

�2
��T0�c�S�a�T0�t + �T0�c�T0�a�S�t�

+
��

�2
��S�c�S�a�T0�t + �S�c�T0�a�S�t�

+
��

�2
��S�c�T0�a�T0�t + �S�c�S�a�S�t� , �A17�

��1,0,z� =
��

�2
��T0�c�T0�a�T0�t − �T0�c�S�a�S�t�

+
��

�2
��T0�c�T0�a�S�t − �T0�c�S�a�T0�t�

+
��

�2
��S�c�S�a�T0�t − �S�c�T0�a�S�t�

+
��

�2
��S�c�S�a�S�t − �S�c�T0�a�T0�t� , �A18�
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��0,1,z� =
��

�2
��T0�c�S�a�T0�t + �T0�c�T0�a�S�t�

+
��

�2
��T0�c�T0�a�T0�t + �T0�c�S�a�S�t�

+
��

�2
��S�c�T0�a�T0�t + �S�c�S�a�S�t�

+
��

�2
��S�c�S�a�T0�t + �S�c�T0�a�S�t� , �A19�

��0,0,z� =
��

�2
��T0�c�S�a�T0�t − �T0�c�T0�a�S�t�

+
��

�2
��T0�c�S�a�S�t − �T0�c�T0�a�T0�t�

+
��

�2
��S�c�T0�a�T0�t − �S�c�S�a�S�t�

+
��

�2
��S�c�T0�a�S�t − �S�c�S�a�T0�t� . �A20�

Measuring the ancilla in a singlet or triplet results in the final
eight states:

��1,1,1� = ���T0�c�S�t + ���T0�c�T0�t + ���S�c�T0�t + ���S�c�S�t,

�A21�

��1,1,0� = ���T0�c�T0�t + ���T0�c�S�t + ���S�c�S�t + ���S�c�T0�t,

�A22�

��1,0,1� = − ���T0�c�S�t − ���T0�c�T0�t + ���S�c�T0�t

+ ���S�c�S�t, �A23�

��1,0,0� = ���T0�c�T0�t + ���T0�c�S�t − ���S�c�S�t − ���S�c�T0�t,

�A24�

��0,1,1� = ���T0�c�T0�t + ���T0�c�S�t + ���S�c�S�t + ���S�c�T0�t,

�A25�

��0,1,0� = ���T0�c�S�t + ���T0�c�T0�t + ���S�c�T0�t + ���S�c�S�t,

�A26�

��0,0,1� = ���T0�c�T0�t + ���T0�c�S�t − ���S�c�S�t − ���S�c�T0�t,

�A27�

��0,0,0� = − ���T0�c�S�t − ���T0�c�T0�t + ���S�c�T0�t

+ ���S�c�S�t. �A28�

Applying the gates �̂c , �̂t on the control and target qubits in
accordance with the results of the parity and ancilla measure-
ments �as shown in Fig. 2� gives the same state in all eight
computation branches �up to a global phase�:

�� f� = ���T0�c�T0�t + ���T0�c�S�t + ���S�c�S�t + ���S�c�T0�t.

�A29�

Under the qubit encoding this state is indeed the result of
the CNOT gate:

�� f� = ���0�c�0�t + ���0�c�1�t + ���1�c�1�t + ���1�c�0�t.

�A30�

This proves the linearity of the gate.
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