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We propose a quantum computational way of obtaining a ground-state energy and expectation values of
observables of interacting Hamiltonians. It is based on the combination of the adiabatic quantum evolution to
project a ground state of a noninteracting Hamiltonian onto a ground state of an interacting Hamiltonian and
the phase estimation algorithm to retrieve the ground-state energy. The expectation value of an observable for
the ground state is obtained with the help of the Hellmann-Feynman theorem. As an illustration of our method,
we consider a displaced harmonic oscillator, a quartic anharmonic oscillator, and a potential scattering model.
The results obtained by this method are in good agreement with the known results.

DOI: 10.1103/PhysRevA.77.012326 PACS number�s�: 03.67.Lx, 03.67.Mn, 03.65.Ud

I. INTRODUCTION

Quantum simulation might be a real application of
medium-scale quantum computers with 50–100 qubits �1�.
As Feynman suggested, a quantum computer can simulate
quantum systems better than a classical computer because it
is also a quantum system �2�. Lloyd demonstrated that al-
most all quantum systems can be simulated on quantum
computers �3�. Abrams and Lloyd presented a quantum algo-
rithm to find eigenvalues and eigenvectors of a unitary op-
erator based on the quantum phase estimation algorithm �4�.
Although it is an efficient quantum algorithm, there is room
for improvement. First, one has to prepare an input state
close to unknown eigenstates. Second, it has been little ex-
plored how to obtain physical properties except the energy
spectrum.

In this paper, we propose a refined quantum computa-
tional method to calculate the ground-state energy and ex-
pectation values of observables for interacting quantum sys-
tems. The main idea is as follows. Adiabatic turning on of an
interaction makes the ground state of a noninteracting system
evolve to the ground state of an interacting system. During
the adiabatic evolution, the phase estimation algorithm ex-
tracts the phase of an evolving quantum system continuously
without the collapse of a quantum state. So the ground en-
ergy of an interacting system is obtained as a function of
coupling strength. With the help of the Hellmann-Feynman
theorem �5�, the expectation value of an observable for the
ground state of an interacting system is obtained. As a test of
our method, we simulate on classical computers three quan-
tum systems: A displaced harmonic oscillator, a quartic an-
harmonic oscillator �6�, and a potential scattering model �7�.

II. METHOD

Let us start with a brief review of Abrams and Lloyd’s
algorithm. Its goal is to find eigenvalues En and eigenstates
�En� of a time-independent Schrödinger equation

H�En� = En�En� . �1�

Their key idea to solve Eq. �1� is to consider its time evolu-
tion

e−iHt/���I� = �
n=0

e−iEnt/�an�En� , �2�

where ��I�=�nan�En� is an input or trial state. The informa-
tion on eigenvalues En in the input state is transferred to
index qubits by applying the quantum phase estimation algo-
rithm. The measurement of the index qubits gives us a good
approximation to En with probability �an�2, and makes ��I�
collapse to �En�. It is instructive to compare Eq. �2� with the
quantum Monte Carlo method which uses the imaginary time
�= it to project the input state onto the ground state �8�

lim
�→�

e−H�/���I� � e−E0�/�a0�E0� . �3�

First, in order to find the ground-state energy, both Eqs. �2�
and �3� require a good input state close to �E0�. If the input
state does not contain the information about the ground state,
both will fail. Second, for each run, while Eq. �2� outputs En
randomly, Eq. �3� produces E0 always. Finally, Eq. �2� is a
real time evolution; however, Eq. �3� is the imaginary time
evolution, i.e., a diffusion process, which is implemented by
classical random walks.

Our goal is to find a ground-state energy with probability
1 even if an input state contains little information on the
ground state. Our method uses a real time projection onto the
ground state by adiabatically turning on an interaction. Ortiz
et al. suggested the use of the Gell-Mann–Low theorem to
find the spectrum of a Hamiltonian with quantum computers
�9,10�. Farhi et al. developed the adiabatic quantum compu-
tation �11�.

We divide the Hamiltonian H into two parts: Noninteract-
ing Hamiltonian H0 and interaction H1, H=H0+H1. As
usual, it is assumed that the eigenvalues Wn and eigenstates
�Wn� of H0 are known, H0�Wn�=Wn�Wn�. We recast H to be
time-dependent

H�t� = H0 + f�t�H1 + Ec, �4�

where a slowly varying function f�t� satisfies f�0�=0 and
f�TR�=1 with running time TR. The role of the constant en-
ergy Ec will be explained later. As the interaction is turned on
slowly, the input state �W0� evolves adiabatically to �E0�*scoh@pks.mpg.de

PHYSICAL REVIEW A 77, 012326 �2008�

1050-2947/2008/77�1�/012326�5� ©2008 The American Physical Society012326-1

http://dx.doi.org/10.1103/PhysRevA.77.012326


T̂e−i/�	0
t H�t��dt��W0� � e−i/�	0

t E0�t��dt��E0� , �5�

where T̂ is a time-ordering operator �13�. Notice the similar-
ity and difference between Eqs. �2�, �3�, and �5�. The quan-
tum phase estimation algorithm can extract the information
on E0 from Eq. �5�. Since, during the adiabatic evolution, the
quantum system is in an instantaneous ground state �E0�t�� of
H�t�, one can apply frequently the phase estimation algo-
rithm without the collapse of the quantum state to the excited
states.

Since the phase �=Ent /� is defined in 0���2�, the
phase estimation algorithm gives us only the absolute value
of an energy �En�. Its sign can be determined by adding Ec.
When E0 is negative, while W0 is positive, Ec	E0 makes all
the spectrum positive. Also Ec is useful for stabilizing the
algorithm. If �E0� is close to zero, a long time is needed to
make the phase �=E0t /� finite.

The expectation value of an observable O can be obtained
with the help of the Hellmann-Feynman theorem �5�. It states
that if H�
��En�
��=En�
��En�
�� with parameter 
, then the
following relation holds:

dEn�
�
d


= 
En�
��
dH

d

�En�
�� . �6�

By modifying the full Hamiltonian to have a linear coupling
to O, H�t�=H0+ f�t��H1+
O�+Ec, Eq. �6� becomes

�dEn�
�
d


�

=0

= 
En�O�En� . �7�

Therefore, the expectation value of an observable is obtained
from a derivative of En�
� at 
=0. In practice, Eq. �7�
is obtained from a numerical approximation 
En�O�En�
= �En�
�−En�−
�� /2
+O�
2�. This is comparable with an
expectation estimation algorithm �12�. Notice that our
scheme does not require the repeated measurements and the
average over the individual outcomes �1�.

III. APPLICATION TO QUANTUM SYSTEMS

A. Displaced harmonic oscillator

As an illustration of our method, let us consider a simple
Hamiltonian,

H0 =
p2

2m
+

m�2x2

2
, H1 = �x . �8�

For convenience, we set �=m=�=1. It is well known that
Eq. �8� is exactly solvable, a usual perturbation theory for it
works well, and its ground state is a coherent state.

The first step to quantum simulation is to map a physical
system to a qubit system. The position x in Eq. �8� is con-
tinuous, but qubits are discrete. A usual approach is to dis-
cretize x. Another way is to map the eigenstates �n� of H0 to
the computational basis of N qubits, �n�= �jN−1� � �jN−2�
� ¯ �j0� with n= jN−12N−1+ jN−22N−2+ ¯ + j020 and jk=0 or
1. Then H0 is given by a diagonal matrix,

H0 � �
n=0

2N−1 
n +
1

2
��n�
n� . �9�

The quantum dynamics of Eq. �9� was simulated on an NMR
quantum computer by Somaroo et al. �14�. On the other
hand, H1 is written as a tridiagonal matrix,

H1 �
1
�2

�
n=0

2N−2

��n�n�
n + 1� + �n�n + 1�
n�� . �10�

A quantum state �
�t�� at time t can be expressed in terms of

�n�, �
�t��=�n=0
2N−1an�t��n�.

The adiabatic time evolution �5� is implemented by solv-
ing the time-dependent Schrödinger equation with the fourth-
order Runge-Kutta method on a classical computer. We take
N=3–6. We assume that the phase estimation algorithm is
implemented very accurately. The adiabatic switching-on
function f�t� used here is given by f�t�= 1

2 + 1
2 tanh�20t /TR

−10�. One may expect it would take a long time for a quan-
tum system to evolve adiabatically. However, in the case
considered here, it takes the running time TR=15 T0 to ob-
tain the ground-state energy with accuracy �E0= �E0

exact

−E0
num��10−6, where T0�2� /� is the period of the ground

state of H0, E0
exact= 1

2��−�2 /2m�2, and E0
num is the numeri-

cal value.
Figure 1 shows how the dynamical phase of the system

changes as the interaction is slowly turned on. In Fig. 1�a�,
�=0, and the oscillation period is T0. Figures 1�b� and 1�c�
show how the constant energy Ec is used to change the fre-
quency corresponding to the ground-state energy of an inter-
acting Hamiltonian. In Fig. 1�b�, �=0.9 and Ec=0. So the
frequency E0 /� becomes very low. However, in Fig. 1�c�, the
constant energy Ec=1 /4 shifts the frequency so it can be
easily measured. In Figs. 1�d� and 1�e�, we take �=�2 so the
exact energy is E0=−1 /2. Since the phase estimation algo-
rithm produces only the absolute value of energy, �E0�, the
constant energy Ec is added in Eq. �4� to decide its sign. In
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FIG. 1. �Color online� Re�a0�t�� as a function of t /T0 for �a� �
=0 and Ec=0, �b� �=0.9 and Ec=0, �c� �=0.9 and Ec=0.25, �d�
�=�2 and Ec=0, and �e� �=�2 and Ec=1.0. Here N=4 and T0

=2�� /W0=4� with W0=�� /2.
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Fig. 1�d�, Ec=0. At the end of running, the estimated energy
is E0=1 /2. So the phase estimation algorithm fails to calcu-
late the exact ground-state energy E0=−1 /2. However, in
Fig. 1�e�, Ec=1. The phase estimation algorithm gives us the
energy 1/2. So we know that the exact energy is E0=1 /2
−1=−1 /2.

For any �, the ground state of Eq. �8� is a coherent state.
As shown in Fig. 2, the probability that qubits are in the
number state �n� follows a Poisson distribution. So the
ground state obtained by the quantum simulation might be
called a pseudocoherent state because it is defined on the
truncated Hilbert space. It is a collective state of N qubits.

The coherent state is also characterized by the minimum
uncertainties in x and p. Its mean square deviation of x,
�x2= 
x2�− 
x�2, is 1/2 for any �. The ground state of Eq. �8�
is displaced from the origin to x=−�. So 
x�=−�. With the
help of the Hellmann-Feynman theorem, we calculate 
x2�
for �=0 and �=1. To this end, the final Hamiltonian is modi-
fied as H�t�=H0+ f�t���x+
x2�+Ec. Figure 3 shows the
ground-state energy E0�
� as a function of 
. The derivative
of E0�
� at 
=0 gives us the expectation value of x, 
x2�
= �dE0�
� /d
�
=0. As illustrated in Fig. 3, we have 
x2�
=0.02 /0.04=1 /2 for �=0. Thus �x2=1 /2. For �=1, 
x2�
=0.03 /0.02=3 /2. Again we have �x2=3 /2−1=1 /2.

B. Quartic anharmonic oscillator

Let us consider an anharmonic oscillator, whose Hamil-
tonian is given by

H0 =
p2

2m
+

m�2x2

2
, H1 = �x4, �11�

where �	0 is the coupling constant. In their seminal paper
�6�, Bender and Wu showed that the Rayleigh-Schrödinger

perturbation theory for Eq. �11� becomes divergent for any �.
Various nonperturbative methods have been applied to this
simple model.

One can write H1= �� /4��a†+a�4=3� /4+ �� /4�V, where

Vmn = ��n � 1��n � 2��n � 3��n + 2 � 2��m,n�4

+ 2�2n + 1 � 2���n � 1��n + 1 � 1��m,n�2

+ 6n�n + 1��m,n. �12�

The matrix of Eq. �12� is denser than Eq. �10�. So more
qubits are used in Eq. �12� in order to get the accurate en-
ergy.

Figure 4 shows the ground-state energy E0��� and �x2���
as a function of �. For �=2.0 and time step �t=5.0�10−5,
we obtain E0=0.951 568 472 125, which is comparable to
the best known results E0=0.951 568 472 722 �15�. For the
calculation of �x2, we obtain E0�� ,
� of H0+�H1+
x2 for

= �0.001. Thus we have 
x2���E0�� ,
�−E0�� ,−
�� /2
.

C. Potential scattering model

Finally, we consider spinless electrons with a contact po-
tential with Hamiltonian

0

0.5

1

pn(t)

(a) p0
p1
p2
p3
p4
p5
p6

-2

-1

0

0 0.2 0.4 0.6 0.8 1
0

0.5

1

t/TR

(b)

E0(t) f(t)

0

0.1

0.2

0.3

0 2 4 6 8 10 12 14 16

n

(c)
pn

FIG. 2. �Color online� �a� Probability pn�t�= �an�t��2 of qubits in
the computational basis �n�, and �b� the instantaneous ground-state
energy E0�t� in the unit of �� as a function of the dimensionless
time t /TR for �=�6. In �b�, f�t� is an adiabatically switching-on
function. �c� At t=TR, pn obeys the Poisson distribution of a coher-
ent state.
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FIG. 3. �Color online� Ground state energy E0�
� in the unit of
�� as a function of 
 for �a� �=0 and �b� �=1. The points are
numerical results. The line in �a� is the plot of f�
�= 1
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FIG. 4. �Color online� For a quartic anharmonic oscillator, �a�
E0��� in the unit of �� and �b� �x2 as a function of �. Here N=6
and TR=15 T0.

QUANTUM COMPUTATIONAL METHOD OF FINDING THE… PHYSICAL REVIEW A 77, 012326 �2008�

012326-3



H0 = �
n=1

2N

�ncn
†cn, H1 =

g

2N�
n,m

cn
†cm, �13�

where �n= �n−1�� with level spacing �, cn
† is a creation op-

erator, and g is the coupling constant. Although this model is
very simple and exactly solvable, it contains rich physics �7�.
The naive perturbation theory breaks down no matter small g
is. For an attractive potential, i.e., g�0, the lowest eigenstate
of Eq. �13� becomes a bound state. Also it exhibits the
Anderson orthogonality catastrophe �16� which states that
the ground state of H0+H1 becomes orthogonal to the
ground state of H0 in the thermodynamic limit.

We map the single-particle energy level of H0 to a com-
putational basis, �n�=cn

†cn�vac�, where �vac� is a vacuum
state. In Eq. �13�, H0 can be written as a diagonal matrix,
�H0�mn=�n�mn, whereas H1 are given by �H1�mn=g /2N,
which is more dense than Eqs. �10� and �12�.

As g is turned on adiabatically, the initial state �n� evolves
to the final state �En�g��. We use the notation �En�0��= ��n�
= �n�. Figure 5�a� illustrates the single-particle levels En�g�.
One can see that there is one bound state with negative
energy E0�g��0 for g�0, but otherwise it is positive. Fig-

ure 5�b� shows the fidelity Fn�g�= �
En�g� �n��2 as a function
of g. Surprisingly, it is also calculated with the help of
the Hellmann-Feynman theorem. One can rewrite Fn�g�
= 
En�g��O�En�g�� with O= �n�
n�. As shown in Fig. 5�b�, the
fidelity decreases more rapidly for g�0 than for g	0. One
can see that even single-particle levels for g=0 and g�0
become orthogonal. It is interesting that the fidelity between
the interacting and noninteracting many-body ground states
can be obtained from all the information of single-particle
levels �17�.

IV. CONCLUSIONS

In conclusion, we have proposed a method to find the
ground-state energy by adiabatically turning on an interac-
tion. The expectation values of an observable have been ob-
tained by switching on a modified interaction which contains
an observable and by applying the Hellmann-Feynman theo-
rem. Our method has been successfully tested by solving
three quantum systems. We expect that our method could be
applied to the simulation of more interesting quantum sys-
tems.

Finally, let us discuss the limits of our method. Our
method is based on the combination of adiabatic quantum
computation and the phase estimation algorithm. So, the
computational resources needed to implement our method
are approximately equal to the sum of those involved in adia-
batic quantum computation and the phase estimation algo-
rithm. The running time of the adiabatic evolution increases
if the gap between the energy levels decreases. However, it is
expected that the quantum Zeno effect �18� might release this
limitation. A quantum state after applying a quantum phase
estimation algorithm is approximately given by ���t��
�a0�E0�S��0�I+a1�E1�S��1�I, where �a1�2=1−� and �a1�2=�
for small � and subscripts S and I refer to the system and the
index qubits, respectively. The measurement on the index
qubits gives us ���t��= �E0�S��0�I with high probability. The
frequent applications of a quantum phase estimation algo-
rithm and measurement on the index qubits could accelerate
an adiabatic evolution. This will be investigated in a future
study.

ACKNOWLEDGMENT

S.O. thanks A. Buchleitner for helpful comments.

�1� R. Schack, Informatik Forsch. Entw. 21, 21 �2006�.
�2� R. P. Feynman, Int. J. Theor. Phys. 21, 467 �1982�.
�3� S. Lloyd, Science 273, 1073 �1996�.
�4� D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 83, 5162 �1999�.
�5� H. Hellmann, Einfuhrung in die Quantenchemie �Deuticke,

Leipzig, 1937�; R. P. Feynman, Phys. Rev. 56, 340 �1939�.
�6� C. M. Bender and T. T. Wu, Phys. Rev. 184, 1231 �1969�.
�7� S. Kehrein, The Flow Equation Approach to Many-Particle

Systems �Springer-Verlag, Berlin, 2006�.

�8� W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal,
Rev. Mod. Phys. 73, 33 �2001�.

�9� M. Gell-Mann and F. Low, Phys. Rev. 84, 350 �1951�.
�10� G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, Phys.

Rev. A 64, 022319 �2001�; 65, 029902�E� �2002�.
�11� E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren,

and D. Preda, Science 292, 472 �2001�.
�12� E. Knill, G. Ortiz, and R. D. Somma, Phys. Rev. A 75, 012328

�2007�.

-1

-0.5

0

0.5(a)

En(g)

n = 0
n = 1
n = 2
n = 3

0

0.5

1

-4 -2 0 2 4 6

g

(b)

Fn(g)

n = 0
n = 1
n = 2
n = 3

FIG. 5. �Color online� �a� Energy levels En �in arbitrary units�
and fidelity Fn as a function of g. Here N=6 and �=10 /64.

SANGCHUL OH PHYSICAL REVIEW A 77, 012326 �2008�

012326-4



�13� In addition to the dynamical phase, the system acquires a geo-
metric phase.

�14� S. Somaroo, C. H. Tseng, T. F. Havel, R. Laflamme, and D. G.
Cory, Phys. Rev. Lett. 82, 5381 �1999�.

�15� W. Janke and H. Kleinert, Phys. Rev. Lett. 75, 2787 �1995�.

�16� P. W. Anderson, Phys. Rev. Lett. 18, 1049 �1967�.
�17� K. Ohtaka and Y. Tanabe, Rev. Mod. Phys. 62, 929 �1990�.
�18� B. Misra and E. C. G. Sudarshan, J. Math. Phys. 18, 756

�1977�.

QUANTUM COMPUTATIONAL METHOD OF FINDING THE… PHYSICAL REVIEW A 77, 012326 �2008�

012326-5


