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Quantum computation is based on tensor products and entangled states. We discuss an alternative to the
quantum framework where tensor products are replaced by geometric products and entangled states by multi-
vectors. The resulting theory is analogous to quantum computation but does not involve quantum mechanics.
We discuss in detail similarities and differences between the two approaches and illustrate the formulas by
explicit geometric objects where multivector versions of the Bell-basis, Greenberger-Horne-Zeilinger, and
Hadamard states are visualized by means of colored oriented polylines.
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I. INTRODUCTION

Coding based on tensor products is well known from
quantum information theory and quantum computation. A bit
is here represented by a qubit, and a sequence of bits is
represented by tensor products of qubits. Nonfactorizable
linear superpositions of simple tensor products are called en-
tangled states. The structures of quantum computation are
highly counterintuitive and, with very few exceptions, resist
common-sense interpretations.

Coding based directly on geometric algebra �GA� is a new
concept �1� and is rooted in the fact that the set of blades
�geometric Grassmann-Clifford products of basis vectors of a
real n-dimensional Euclidean or pseudo-Euclidean space�
contains 2n elements. Each blade can be indexed by a se-
quence of n bits and thus is a representation of a n-bit num-
ber. Linear combinations of blades are called multivectors.
Blades and multivectors possess numerous geometric inter-
pretations and can be visualized in several different ways.

The fact that multivectors can play a role analogous to
entangled states and allow for a GA version of quantum
computation does not seem to be widely known. Apparently,
the first example of a GA version of a quantum �Deutsch-
Jozsa �2�� algorithm was given in Ref. �1�. Each step of the
algorithm was interpretable in geometric terms and allowed
for cartoon visualization �hence the name “cartoon computa-
tion”�. The construction from Ref. �1� was quickly general-
ized to the Simon problem �3� in Ref. �4�. The next step,
done in Ref. �5�, was a GA construction of all the elementary
one-, two-, and three-bit quantum gates. Therefore, the es-
sential formal ingredients needed for a GA reformulation of
all of quantum computation are basically ready.

There were some problems with visualizing situations in-
volving more than three bits due to our habit of thinking in
three-dimensional terms. Therefore, one of the first motiva-
tions for writing the present paper was to introduce a new
method of visualization working for arbitrary numbers of
bits. Multivectors are here represented by sets of oriented
colored polylines. We geometrically interpret distributivity of
addition over geometric multiplication and multiplication of
a blade by a number. We also explain how to deal with the
complex structure �needed for elementary gates and phase

factors� without any need of complex numbers. Our repre-
sentation of the “imaginary number” i differs from the stan-
dard representations used in GA. The reason is that the usual
representation, where i is an appropriate blade, does not al-
low to map entangled states whose coefficients are complex
into unique multivectors. Our formalism is free from this
difficulty.

We begin, in Sec. II, with a detailed explanation of the
GA way of coding, and illustrate each of the concepts by an
appropriate geometric object. In Sec. III we compare tensor-
product and geometric-product coding. We stress important
similarities and differences, and outline certain constructions
�e.g., scalar product and mixed states� that may prove useful
in some further generalizations, but at the present stage are
just a curiosity. We do not explicitly introduce elementary
gates and algorithms, since these can be found elsewhere.
Instead, we concentrate on those elements of the GA formal-
ism where some important differences with respect to quan-
tum computation occur �e.g., the probabilistic nature of
quantum superposition principle versus deterministic inter-
pretation of superpositions of blades�. Finally, in Sec. IV, we
discuss geometric interpretation of multivector analogs of
some important entangled states occurring in quantum
information theory.

II. GEOMETRIC-PRODUCT CODING

The procedure is, in fact, extremely simple and natural.
Indeed, consider an n-dimensional real Euclidean space, and
denote its orthonormal basis vectors by bk, 1�k�n. A blade
is defined by bk1¯kj

=bk1
¯bkj

, where k1�k2� ¯ �kj. The
basis vectors �one-blades� satisfy the Clifford algebra

bkbl + blbk = 2�kl.

A binary number can be associated with bk1¯kj
using the

following recipe. Take a basis vector bk and check if it occurs
in bk1¯kj

. If it does—the kth bit is Ak=1, otherwise Ak=0.
Check in this way all the basis vectors.

For notational reasons it is useful to denote the blades in
binary parametrization using a character different from b,
say, c. The blades parametrized in a binary way will be
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termed the combs �5�. Blades and combs are related by the
rule

cA1¯An
= b1

A1
¯ bn

An, �1�

where it is understood that bk
0=1. Combs and blades are, by

definition, normalized if they are constructed by taking geo-
metric products of mutually orthonormal vectors.

Sometimes it is useful to be able to speak of real and
imaginary blades and combs. This can be achieved by an
additional bit, represented by a vector b0. If b0 occurs in
bk1¯kj

, the blade is imaginary—otherwise it is real. Denoting
logical negation by a prime, 0�=1, 1�=0, we define the
“imaginary unit” by the complex-structure map

icA0,A1,. . .,An
= �− 1�A0cA0�,A1,. . .,An

. �2�

Perhaps the following explicit form of i may also be useful:

i�c00A1¯An

c10A1¯An

� = � 0 1

− 1 0
��c00A1¯An

c10A1¯An

� . �3�

A general “complex” element of GA can be written in a form
analogous to the usual representation of complex numbers

zA1¯An
= x00A1¯An

+ iy00A1¯An
, �4�

=x00A1¯An
+ y10A1¯An

. �5�

In Eqs. �3�–�5� the subscripts 0 and 1 appear with subscripts
of their own which are not actually necessary here; we insert
them for consistency with Eq. �9� below, where they are
necessary. Note also that x00A1¯An

=xc00A1¯An
and y00A1. . .An

=yc00A1. . .An
denote elements of GA that are proportional to a

real comb c00A1¯An
, and the proportionality factors x, y are

also real.
The term “comb” inspires Fig. 1, in which two combs

�both missing some teeth� are multiplied. In order to under-
stand it, let us recall the formula for multiplication of two
normalized combs �1�

cA0¯An
cB0¯Bn

= �− 1��k�lBkAlc�A0¯An���B0¯Bn�. �6�

Here �A0¯An� � �B0¯Bn� means pointwise addition mod 2,
i.e., the �n+1�-dimensional XOR. Formula �6� means that the
geometric product may be regarded as a projective �i.e., up to
a sign� representation of XOR. Figure 1 shows how to me-
chanically generate a system that behaves according to Eq.
�6�. The calculation is c10011c01011=−c11000.

Combs �and blades� can be visualized in various ways.
Geometrically, 0-blades are oriented �“charged”� points,
1-blades oriented line segments, 2-blades oriented plane seg-
ments, 3-blades oriented volume segments, etc. More pre-
cisely, each blade corresponds to an equivalence class of
objects. To understand why it is so, consider the algebra of a
plane with basis vectors b1, b2. The oriented plane segment
b12=b1b2 is unaffected by rotations b1�=b1 cos �−b2 sin �,
b2�=b1 sin �+b2 cos �, or rescalings b1�=�b1, b2�=�−1b2. Fig-
ure 2 shows an alternative way of visualizing blades in a
six-dimensional Euclidean space �i.e., six-bit combs�, whose
dimension is sufficiently counterintuitive. The idea is

adapted from a configuration space of three two-dimensional
particles. We distinguish particles by color and tilting of the
basis vectors. Oriented segments are represented by oriented
multicolor polylines.

Blades can be added and multiplied by numbers. Figure 3
illustrates in what sense one can speak of distributivity of
addition over geometric multiplication. The addition of two
identical blades results in a blade one of whose segments is
twice bigger. The three polylines shown in Fig. 3�c� repre-
sent the same equivalence class. Figure 4 shows a represen-
tative of a multivector. Multivectors are “bags of shapes”
that differ from visualization to visualization. The concrete
multivector from Fig. 4 is 5+1.5b1−b2+b1b4+3b5b6
+2b1b4b5. Alternatively, in our binary parametrization, Fig. 4
represents the following superposition of combs:

Combs to be multiplied:

Multiplication:

1st sign change

2nd sign change

3rd sign change

Teeth located at the same position annihilate:

FIG. 1. Mechanical interpretation of the comb multiplication.
�a� Take two combs and flip one of them. Move one comb in the
direction of the other. Each time the teeth located in different places
meet, the comb changes its sign. �b� Teeth located at the same
position annihilate each another.

1111 bbbb1111 bbbb2222 bbbb3333 bbbb4444 bbbb5555 bbbb6666

bbbb12121212 bbbb13131313 bbbb14141414 bbbb15151515 bbbb16161616

bbbb23232323 bbbb24242424 bbbb25252525 bbbb26262626 . . .. . .. . .. . .

bbbb123123123123 bbbb1234123412341234 bbbb1324132413241324 = –= –= –= – bbbb1234123412341234 . . .. . .. . .. . .

FIG. 2. �Color online� Colored polyline interpretation of
blades.
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5c000000 + 1.5c100000 − c010000 + c100100 + 3c000011 + 2c100110.

�7�

As one can see, the oriented colored polyline visualization of
multivectors works fine for arbitrary numbers of bits. This
should be contrasted with, say, the representation chosen in

Ref. �1�, where dimensions higher than 3 led to obvious
difficulties.

III. SIMILARITIES AND DIFFERENCES BETWEEN
TENSOR AND GEOMETRIC CODINGS

Let us now list the basic similarities and differences be-
tween coding based on tensor and geometric products.

A. Partial separability

Two �k+ l�-bit kets that share the same part of bits, say,
�A1¯AkB1¯Bl	 and �A1¯AkC1¯Cl	, possess the follow-
ing partial separability property

��A1 ¯ AkB1 ¯ Bl	 + ��A1 ¯ AkC1 ¯ Cl	

= �A1 ¯ Ak	���B1 ¯ Bl	 + ��C1 ¯ Cl	� . �8�

The property is essential for teleportation protocols. In
geometric-product coding we have an analogous rule

�cA1¯AkB1¯Bl
+ �cA1¯AkC1¯Cl

= cA1¯Ak01¯0l
��c01¯0kB1¯Bl

+ �c01¯0kC1¯Cl
� , �9�

and thus teleportation protocols can be formulated in purely
geometric ways.

Since the link between blades and combs can be written
as cA1¯An

=b1
A1
¯bn

An the above rule means simply that

�b1
A1
¯ bk

Akbk+1
B1

¯ bk+l
Bl + �b1

A1
¯ bk

Akbk+1
C1

¯ bk+l
Cl

= b1
A1
¯ bk

Ak��bk+1
B1

¯ bk+l
Bl + �bk+1

C1
¯ bk+l

Cl � . �10�

Hence, yet another notation is possible

�cA1¯AkBk+1¯Bk+l
+ �cA1¯AkCk+1¯Ck+l

= cA1¯Ak
��cBk+1¯Bk+l

+ �cCk+1¯Ck+l
� . �11�

Here we are making use of the fact that the number of zeros
occurring in combs such as cA1¯Ak01¯0l

is a matter of con-
vention: It reflects the freedom of looking at an
n-dimensional Euclidean space from the perspective of
higher dimensions, and treating it as an n-dimensional sub-
space of something bigger. The notions of product and en-
tangled states can be introduced in the GA formalism in ex-
act analogy to the quantum case.

B. Phase factors

Complex phase factors play a crucial role in quantum
computation and are responsible for interference effects. An
analogous structure occurs also in our geometric formalism,
but we first have to comment on the meaning of i.

In geometric algebra it is usual to treat i as a bivector.
Indeed, GA of a plane consists of 1, b1, b2, and b1b2. The
latter satisfies �b1b2�2=−1, and thus “complex numbers” are
often represented in a GA context by multivectors of the
form x1+yb1b2, where x, y are real. This type of complex
structure is employed in Ref. �6�.

However, there is a simple reason why such a type of “i”
is not applicable in our formalism. For assume that i=b1b2.

(a)(a)(a)(a)

= – = == – = == – = == – = =

bbbb1111bbbb2222bbbb5555bbbb6666bbbb2222 = –= –= –= – bbbb1111bbbb2222bbbb5555bbbb2222bbbb6666 ==== bbbb1111bbbb2222bbbb2222bbbb5555 bbbb6666 ==== bbbb1111bbbb5555 bbbb6666

(b)(b)(b)(b)

+ = = =+ = = =+ = = =+ = = =

bbbb1111bbbb2222bbbb4444bbbb6666 ++++ bbbb1111bbbb2222bbbb5555bbbb6666 ==== bbbb1111bbbb2222((((bbbb4444bbbb6666+b+b+b+b5555bbbb6666) = () = () = () = (bbbb1111bbbb2222bbbb4444++++ bbbb1111bbbb2222bbbb5555))))bbbb6666

==== bbbb1111bbbb2222((((bbbb4444++++bbbb5555))))bbbb6666

(c)(c)(c)(c)

+ =+ =+ =+ = 2 = =2 = =2 = =2 = =

==== bbbb4444bbbb5555bbbb6666 ++++ bbbb4444bbbb5555bbbb6666 = 2= 2= 2= 2 bbbb4444bbbb5555bbbb6666 = (2= (2= (2= (2bbbb4444))))bbbb5555bbbb6666

= = = == = = == = = == = = =

==== bbbb4444bbbb5555(2(2(2(2bbbb6666) =) =) =) = bbbb4444(2(2(2(2bbbb5555))))bbbb6666

FIG. 3. �Color online� Arithmetic of blades in six-dimensional
space. �a� Two subsequent segments can be interchanged but orien-
tation �i.e., overall sign� is then changed. Two identical �here unit�
segments annihilate when placed one after another. �b� Distributiv-
ity of addition of two blades. �c� Multiplication of a blade by a
number is derived from distributivity. The blade 2b4b5b6 is illus-
trated by means of three different polylines belonging to the same
equivalence class.

(a)(a)(a)(a)

(b)(b)(b)(b)

5555

FIG. 4. �Color online� Two equivalent bag-of-shapes represen-
tations of the multivector 5+1.5b1−b2+b1b4+3b5b6+2b1b4b5. The
black vector represents 1.5b1−b2. Representation of scalars by
numbers, as in �b�, is perhaps more convenient than in terms of
“charged points”—represented by five circles in �a�. Yet another
representation involves three-dimensional visualization where the
scalar part, here 5, is the height of suspension of the plane contain-
ing the collection of polylines.
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Then ic00=b1b21=c11 whose quantum counterpart should
read i�00	= �11	, making �00	 and �11	 linearly dependent. We
have to proceed differently.

A way out of the difficulty was proposed in Ref. �5� and is
based on i defined by Eq. �2�. Intuitively, this i is equivalent
to a � /2 rotation in a real plane �the convention used in Ref.
�5� differed by a sign from Eq. �2�, but we prefer the latter
choice�. The additional bit A0 introduces the doubling of the
dimension analogous to the one associated with real and
imaginary parts of a single complex number.

Our definition also implies that i2=−1 so that

ei�c00A1¯An
= cos �c00A1¯An

+ sin �ic00A1¯An
, �12�

=cos �c00A1¯An
+ sin �c10A1¯An

�13�

has all the required properties of, simultaneously, a complex
number multiplied by a complex phase factor, and a two-
dimensional real vector rotated by an angle �. Let us illus-
trate these considerations by a GA representation of the state

�		 =
1

2

��10	 + ei��01	� . �14�

Now we have to use three bits and a three dimensional space
spanned by b0, b1, and b2. The GA analog reads

	 =
1

2

�c010 + ei�c001� , �15�

=
1

2

�c010 + cos �c001 + sin �ic001� ,

�16�

=
1

2

�c010 + cos �c001 + sin �c101� ,

�17�

=
1

2

�b1 + cos �b2 + sin �b02� . �18�

Obviously, the multivector �18� can be easily visualized in
various ways.

C. Scalar product

The scalar product does not seem important for GA com-
putation �we do not really need “bras”�. However, just for the
sake of completeness let us mention the following construc-
tion.

Consider a comb cA1¯An
=b1

A1
¯bn

An. Its reverse is cA1¯An

�

=bn
An
¯b1

A1. The geometric product cA1¯An

� cB1¯Bn
equals 1 if

and only if �A1 , . . . ,An�= �B1 , . . . ,Bn�. If the two sequences
of bits are not identical, the product cA1¯An

� cB1¯Bn
is a blade

different from 1. Let now 
0 denote the projection of a mul-
tivector on the scalar part 1=c0¯0. Then


0cA1¯An

� cB1¯Bn
= �A1B1

¯ �AnBn
. �19�

The latter formula might be used to define a GA scalar prod-
uct, if needed.

D. Elementary gates

GA analogs of elementary gates �Pauli, Hadamard, phase,
� /8, CNOT, and Toffoli� were described in Ref. �5�. Here we
want to shed some light on the issue of how many elemen-
tary operations are associated with networks of gates.

We have to begin with yet another additional dimension,
represented by the basis vector bn+1. This additional dimen-
sion will not be used for coding, but for defining certain
bivector operations. We do it as follows �5�. Let aj =bjbn+1,
0� j�n, and consider any complex—in the sense of Eq.
�5�—vector zA1¯Ak¯An

. Negation of a kth bit, 1�k�n,

nkzA1¯Ak¯An
= bk��

j=0

k−1

aj��

zA1¯Ak¯An�
j=0

k−1

aj = zA1¯Ak�¯An

�20�

is defined in purely algebraic terms. The same with another
important operation, multiplication by �−1�Ak,

ak
�zA1¯Ak¯An

ak = �− 1�AkzA1¯Ak¯An
. �21�

All the elementary one-, two-, and three-bit gates can be
defined in terms of nk, �−1�Ak, and i �5�. Of particular impor-
tance is the linear map

ÂkzA1¯Ak¯An
=

1

2
zA1¯Ak¯An

−
1

2
ak

�zA1¯Ak¯An
ak

= AkzA1¯Ak¯An
. �22�

Now let X be any map of GA into itself satisfying X�0�=0.

Then Xk=1−Âk+XÂk is a control-X, controlled by the kth

bit. Let us note that Âk is a projector on the subspace
spanned by those blades that contain the vector bk. In par-
ticular, in Fig. 5 the selection of blades containing the red ↗
is performed, algebraically speaking, by means of Â8.

In order to understand how to count the number of algo-
rithmic steps let us take a concrete example of, say, n Had-
amard gates acting on different bits. Let 	 be a multivector,
not necessarily a single blade, but a general combination of
2n possible blades. The Hadamard gate simultaneously af-
fecting the kth bits of all the 2n blades of 	 is �5�

Hk	 =
1

2

�nk	 + ak
�	ak� . �23�

Similarly to 	, Hk	 is a single multivector.
The latter observation is trivial, perhaps, but crucial for

the problem. A simple illustration of a two-bit multivector
	=	01+	1b1+	2b2+	12b1b2 is a two-dimensional oriented
plane segment �represented by 	12b1b2�, suspended at the
height 	0, and whose center of gravity is above the point
	1b1+	2b2. A gate maps 	 into some new 	� which has a
similar geometric interpretation.
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So when it comes to the question of how many operations
are performed while computing H1¯Hn	, the answer is
this: Two for computing Hn	, another two for computing
Hn−1Hn	, yet another two for computing Hn−2Hn−1Hn	, and
so on. Finally, we need 2n operations. The same argument
applies to all the other elementary gates.

If we do not know how to treat multivectors as single
geometric objects, then computing H1¯Hn	 will involve an
exponential number of steps. So the key ingredient of effi-
cient geometric-algebra computation is to implement all the
needed gates in a geometric manner. In Sec. IV C we give a
concrete example of realization of H1¯Hn	 in 2n steps, if
	=c01¯0n

.

E. Reading superposed information

An important difference between quantum and geometric
coding is in the ways one gets information from superposi-
tions of states. In quantum coding a measurement projects a
superposition on a randomly selected basis vector. Such mea-
surements destroy the original state. In GA coding the onto-
logical status of superpositions is different. Here one has a
collection of geometric objects and thus can perform many
measurements on the same system without destroying its
state. As a consequence certain standard ingredients of quan-

tum algorithms are not needed in GA-based computations.
Shor’s algorithm �7� for factoring 15 into 3�5 provides a

simple illustration. The entangled state �		
=�x=0

15 �x	�ax mod 15	, for a=2, reads

�		 = ��0	 + �4	 + �8	 + �12	��1	 + ��1	 + �5	 + �9	 + �13	��2	

+ ��2	 + �6	 + �10	 + �14	��4	 + ��3	 + �7	 + �11	

+ �15	��8	 .

The goal is to find the period of the function x�2x mod 15,
but the problem is that the sequences of numbers correlated
with the values 20=1, 21=2, 22=4, 23=8, are periodic, but
shifted by, respectively, 0, 1, 2, and 3. To get rid of this shift
one performs quantum Fourier transformation on the first
register.

We claim that in a GA version of the algorithm the Fou-
rier transform step will not be needed. What we have to do is
to localize the vectors �x	�1	 and the smallest x�0 is the
solution. The GA analog of the calculation is given by the
multivector

�c01020304
+ c01120304

+ c11020304
+ c11120304

�c05060718

+ �c01020314
+ c01120314

+ c11020314
+ c11120314

�c05061708

+ �c01021304
+ c01121304

+ c11021304
+ c11121304

�c05160708

+ �c01021314
+ c01121314

+ c11021314
+ c11121314

�c15060708
.

The cartoon version of this computation is shown in Fig. 5.
Selecting an appropriate subset of shapes we find that the
period is x=4. The factorization is given by 2x/2±1. We have
not needed the Fourier transform. An analogous observation
was made in the context of the Simon algorithm in Ref. �4�.

F. Mixed states

The example of the Shor algorithm shows clearly that
multivector coefficients, as opposed to wave functions, do
not have a probabilistic interpretation. For this reason the
GA analogs of quantum algorithms are not probabilistic.
Still, probabilistic algorithms will occur if one replaces mul-
tivectors by multivector-valued random variables. The result-
ing states will be mixed in the usual meaning of this term
�probability measures defined on the set of pure states� but
nevertheless will not, in general, lead to a density matrix
formalism �the latter occurs only in theories where pure-state
averages of random variables are bilinear functionals of pure
states�.

In this context we should mention Ref. �8� where
multivector-valued hidden variables were used to violate an
analog of the Bell inequality. The construction employs a
hidden-variable state that is mixed in our sense. Although the
problem posed in Ref. �8� is not exactly equivalent to the one
addressed in the original Bell construction �9�, it is neverthe-
less interesting from our point of view, and shows a way of
generating certain GA analogs of quantum correlation func-
tions.

G. GA versions of quantum algorithms

We will not give here explicit GA versions of quantum
algorithms, since other papers �1,4,11� were devoted to this

Basis:Basis:Basis:Basis:

bbbb1111 bbbb2222 bbbb3333 bbbb4444 bbbb5555 bbbb6666 bbbb7777 bbbb8888

Resulting superposition:Resulting superposition:Resulting superposition:Resulting superposition:

Selection of :Selection of :Selection of :Selection of :

The smallestThe smallestThe smallestThe smallest xxxx>0:>0:>0:>0:

==== bbbb2222 bbbb8888 ==== cccc01000001010000010100000101000001

FIG. 5. �Color online� Shor-type algorithm. Euclidean space is
eight-dimensional. Oracle first produces the multivector playing a
role of the entangled state. Then a selection of blades containing the
red ↗ is performed. The blade c01000001 corresponding to the small-
est number x�0 is selected. The first half of bits represents x=4.
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subject. The general conclusion is that any quantum algo-
rithm has a GA analog, a fact following from the GA con-
struction of the elementary quantum gates �5�. The main for-
mal difference between GA and quantum computation is that
the GA formalism is not bound to use unitary gates. Indeed,
the unitarity of quantum gates follows from the Schrödinger
equation formula Ut=exp�−iHt�, which is irrelevant for GA
computation. What is relevant in the GA framework are
those operations that have a geometric meaning. In particu-
lar, one of the most important nonunitary geometric opera-
tions is a projection on a subspace. This projection has noth-
ing to do with the projection postulate of quantum
mechanics. Indeed, in quantum mechanics the projection
“collapses” a superposition on a basis vector. The geometric
projection projects a multivector on another multivector, but
in general not on a single comb.

A situation where geometric projections play a simplify-
ing role in GA analogs of quantum algorithms is the problem
of deleting intermediate “carry bits” in quantum adder net-
works �12–15�. A glimpse at the network proposed in Ref.
�12� shows that the number of gates could be reduced by
almost a half if one did not insist on performing this task in
a reversible way. This is especially clear if one compares
alternative adder networks discussed in Ref. �15�.

In terms of GA computation this concrete part of the net-
work will be replaced by an appropriate projection which, in
spite of being irreversible, is geometrically allowed. For ex-
ample, in a three-bit case the operation of resetting the third
bit cABC→cAB0 corresponds to the following set of projec-
tions:

1 = c000 → c000 = 1, �24�

b1 = c100 → c100 = b1, �25�

b2 = c010 → c010 = b2, �26�

b3 = c001 → c000 = 1, �27�

b1b2 = c110 → c110 = b1b2, �28�

b1b3 = c101 → c100 = b1, �29�

b2b3 = c011 → c010 = b2, �30�

b1b2b3 = c111 → c110 = b1b2. �31�

Each of them has a geometric interpretation: b1b2b3→b1b2
squeezes a cube into its x-y wall; b2b3→b2 squeezes a
square lying in the y-z plane into its side parallel to the y
axis, and so on. An interpretation in terms of the polylines is
left to the readers.

IV. MULTIVECTOR ANALOGUES OF IMPORTANT PURE
STATES

Let us finally give explicit multivector counterparts of
some important entangled states occurring in quantum infor-
mation problems.

A. Bell basis

The Bell basis consists of four mutually orthogonal two-
qubit entangled states

�
±	 =
1

2

��01	 ± �10	� , �32�

��±	 =
1

2

��00	 ± �11	� . �33�

There are two bits and thus a two-dimensional Euclidean
space will suffice as long as we do not need complex num-
bers. Let the basis be b1, b2. The corresponding multivectors
then read


± =
1

2

�c01 ± c10� =
1

2

�b2 ± b1� , �34�

�± =
1

2

�c00 ± c11� =
1

2

�1 ± b12� . �35�

Figure 6�a� shows the corresponding sets of blades. The
blades 
± are represented simply by two unit vectors rotated
by ±� /4 with respect to the axis spanned by b1. It is inter-
esting that an analogous simple representation of an en-
tangled state occurs in quantum optics formulated in the so-
called � representation of canonical commutation relations
�10�. The two basic blades correspond there to two modes of
light behind a beam splitter.

B. GHZ state

The three-bit GHZ state reads

�
GHZ	 =
1

2

��000	 + �111	� . �36�

The GA representation

(a) Bell basis(a) Bell basis(a) Bell basis(a) Bell basis

ΨΨΨΨ++++ = ,= ,= ,= , ΨΨΨΨ–––– ====

ΦΦΦΦ++++ = ,= ,= ,= , ΦΦΦΦ–––– ====

(b) GHZ state(b) GHZ state(b) GHZ state(b) GHZ state

ΨΨΨΨGHZGHZGHZGHZ ====

(c) 3-bit Hadamard state(c) 3-bit Hadamard state(c) 3-bit Hadamard state(c) 3-bit Hadamard state

====

FIG. 6. �Color online� Cartoon versions of entangled states: �a�
The Bell basis and �b� the three-bit GHZ state. �c� Action of a
three-bit Hadamard gate on c000. The combination b1+b2 is shown
as a single black vector. All the blades are assumed to be appropri-
ately normalized.
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GHZ =
1

2

�c000 + c111� =
1

2

�1 + b123� �37�

is shown in a cartoon form in Fig. 6�b�.

C. n-fold Hadamard state

An n-fold Hadamard state is obtained if one acts with an
nth tensor power of a Hadamard gate on a “vacuum” �0¯0	.
As a result one gets a superposition of all the n-bit numbers
�A1¯An	. Such a state is the usual starting point for quantum
computation. In the GA formalism the corresponding multi-
vector reads �5�

2−n/2�1 + b1� ¯ �1 + bn� = 2−n/2 �
A1¯An

cA1¯An
. �38�

Figure 6�c� shows its three-bit illustration.
Let us note that the superposition of 2n combs cA1¯An

,
representing all the n-bit numbers, is here obtained by means
of n additions and n multiplications. This step is as efficient
as its quantum version and agrees with our previous analysis
of the n-fold Hadamard gate in Sec. III D.

V. CONCLUSIONS

It seems fair to say that quantum computation looks from
the GA perspective as a particular implementation of a more
general way of computing. The implementation based on
tensor products of qubits and quantum superposition prin-
ciple is characteristic of the quantum world. However, the
formalism of quantum computation loses its microworld fla-
vor when viewed from the GA standpoint. Actually, there is
no reason to believe that quantum computation has to be
associated with systems described by quantum mechanics.
GA occurs whenever some geometry comes into play. It is
enough to browse the monographs of the subject �16–23� to
understand its ubiquity, interdisciplinary character, and vast
scope of applications. The question of concrete practical
implementation of GA coding is an open one and is certainly
worthy of further studies.
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