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We present a complete characterization for the local distinguishability of orthogonal 2 � 3 pure states except
for some special cases of three states. Interestingly, we find there is a large class of four or three states that are
indistinguishable by local projective measurements and classical communication �LPCC�, but can be perfectly
distinguished by LOCC. That indicates the ability of LOCC for discriminating 2 � 3 states is strictly more
powerful than that of LPCC, which is strikingly different from the case of multiqubit states. We also show that
classical communication plays a crucial role for local distinguishability by constructing a class of m � n states
which require at least 2 min�m ,n�−2 rounds of classical communication in order to achieve a perfect local
discrimination.
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I. INTRODUCTION

The basic problem for distinguishing quantum states by
local operations and classical communication �LOCC� can be
formulated as follows. Suppose two spatially separated par-
ties, say Alice and Bob, share a quantum state which is se-
cretly chosen from a finite set of prespecified quantum states.
They want to figure out the identity of the unknown state, but
are only allowed to manipulate their own quantum systems
and to communicate with each other using classical channels.
This problem has received considerable attention and has
been studied extensively. Numerous interesting results have
been reported; see Refs. �1–36� for an incomplete list. De-
spite this exciting progress, it remains unknown how to de-
termine the local distinguishability of a set of multipartite
states.

For the convenience of the readers, here we briefly review
some of these results. Walgate et al. showed that any two
orthogonal pure states, no matter entangled or not, can al-
ways be perfectly distinguishable by LOCC �5�. Further-
more, it has been shown that the local distinguishability and
the global distinguishability of two pure states have the same
efficiencies �6–11�. However, the situation changes dramati-
cally for a set of orthogonal states with three or more mem-
bers, where a perfect discrimination is generally impossible.
The most surprising discovery on this topic is that there ex-
ists a set of nine 3 � 3 orthogonal pure product states which
are indistinguishable by LOCC, a phenomenon known as
“nonlocality without entanglement” �2–4�. Inspired by this
discovery, many researchers have devoted themselves to the
local distinguishability of product states. It is now clear that
any set of 2 � n orthogonal product pure states are perfectly
distinguishable by LOCC, but a set of incomplete orthogonal
product states which cannot be extended by adding some
additional orthogonal product state �UPB� is indistinguish-
able by LOCC �3,4�. The problem of distinguishing a com-

plete basis has been completely solved �23–25�, but only
very recently a characterization for the locally distinguish-
able 3 � 3 product states was obtained by Feng and Shi �33�.

One of the main difficulties in studying local distinguish-
ability is that there is no effective characterization of LOCC
operations. In order to partially overcome this obstacle,
many researchers began to employ separable operations in-
stead of LOCC operations to study the local distinguishabil-
ity. The effectiveness of this method can be roughly under-
stood as follows. First, the class of separable operations has a
rather beautiful mathematical structure. It is much easier to
work with separable operations rather than LOCC opera-
tions. Second, the class of LOCC operations is a subset of
the class of separable operations �2�. So one can obtain use-
ful necessary conditions about local distinguishability by ap-
plying separable operations. Third, any separable operation
can be implemented by some LOCC operation with a non-
zero success probability. In other words, separable operations
and LOCC operations are probabilistically equivalent. Due
to these reasons, separable operations have been widely used
in studying local distinguishability. We shall briefly review
two kinds of results: Probabilistic discrimination and perfect
discrimination. Chefles first studied the distinguishability of
a set of general quantum states by probabilistic LOCC and
presented a necessary and sufficient condition for the unam-
biguous distinguishability �22�. A simplified version of this
condition when only pure states are under consideration was
independently obtained by Bandyopadhyay and Walgate
�28�, with which it was demonstrated that any three pure
states are distinguishable by stochastic LOCC. Based on
these results, Duan et al. studied the local distinguishability
of an arbitrary basis of a multipartite state space and pro-
vided a universal tight lower bound on the number of locally
unambiguously distinguishable members in an arbitrary basis
�29�. Walgate and Scott further showed that this lower bound
plays a crucial role in deciding the generic properties such as
local unambiguous distinguishability of a set of randomly
chosen states �30�. Separable operations were also used to
show that a certain set of states are not perfectly distinguish-
able by LOCC. More precisely, Nathanson showed that any
�d+1� maximally entangled bipartite states on d � d cannot
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be perfectly distinguishable by separable operations, thus
also are indistinguishable by LOCC �17�. The same result
was independently obtained by Owari and Hayashi using a
slightly different method �18�. It is interesting that before this
result Ghosh et al. and Fan have respectively solved the spe-
cial cases of d=2 and d=3 using a rather different approach
�15,16�. Watrous constructed a class of bipartite subspaces
having no basis distinguishable by separable operations, thus
solved an open problem concerning the environment-assisted
capacity of quantum channels �26�. Hayashi et al. studied the
relation between average entanglement degree and local dis-
tinguishability of a set of orthogonal states, and provided a
very general bound on the number of states which can be
locally distinguishable. In Ref. �32� we systematically stud-
ied the distinguishability of quantum states by separable op-
erations and found a characterization for the distinguishabil-
ity of quantum states by separable operations. Notably, we
showed that separable operations acting on two qubits are
strictly powerful than LOCC operations. A more general
class of locally indistinguishable subspaces was also
constructed.

All of the above work suggests that the problem of decid-
ing the local distinguishability of a set of general quantum
states is rather complicated. Interestingly, for some very
simple cases such as two-qubit states, an analytical solution
is possible. Ghosh et al. first obtained some partial results on
the local distinguishability of two-qubit states using some
bounds on entanglement distillation �19�. Based on an idea
of Groisman and Vaidman �20�, Walgate and Hardy obtained
a very simple characterization for a set of 2 � n orthogonal
pure states to be perfectly distinguishable by LOCC if the
owner of the qubit makes the first nontrivial measurement
�21�. Employing this condition, they finally settled the local
distinguishability of 2 � 2 states �21�. Another immediate
consequence is that local projective measurements and clas-
sical communication �LPCC� is sufficient for the local dis-
tinguishability of multiqubit states �36�, which greatly sim-
plifies the local distinguishability of multiqubit states. But
this is not true in general. In Ref. �3� Bennett and co-workers
constructed a set of five 3 � 4 pure product states which are
perfectly distinguishable by LOCC but not by LPCC. Very
recently a set of 3 � 3 states with similar property was ob-
tained by Cohen �31�. However, we still do not know
whether the general POVM is required in order to distinguish
2 � 3 states. It seems somewhat strange that the local distin-
guishability of 2 � 3 states when the owner of the qutrit per-
forms the first nontrivial measurement has never been
touched yet since the work of Walgate and Hardy �21�.

The purpose of this paper is to study the local distinguish-
ability of 2 � 3 states. We assume the dimension of Alice’s
system is 2, and the dimension of Bob’s system is 3. Due to
the result in Ref. �21�, we only consider the case when Bob
goes first, which means that Bob first does a nontrivial mea-
surement on his own system. We find that for the discrimi-
nation of six states and five states, LOCC and LPCC are
equally powerful, i.e., a set of six or five 2 � 3 states is lo-
cally distinguishable if and only if they are distinguishable
by LPCC. But for four states and three states, there exists a
large class of states which can be distinguished by LOCC,
but not by LPCC. Therefore, we conclude that local POVM

is strictly powerful than local projective measurements even
for 2 � 3 system. Furthermore, we obtain a complete charac-
terization of four 2 � 3 states that are distinguishable by
LOCC but not by LPCC. For three states, such a character-
ization is very difficult to obtain. Nevertheless, we construct
a general class of three states which are distinguishable by
LOCC but not by LPCC. A feasible procedure for determin-
ing the local distinguishability of three states is also
presented.

We further study the effect of classical communication for
discrimination. We show that in general many rounds of clas-
sical communication are necessary. We demonstrate this re-
sult by constructing a class of m � n orthogonal states which
requires at least 2 min�m ,n�−2 rounds to achieve a perfect
discrimination. In some sense, our result is in accordance
with the recent result by Owari and Hayashi in Ref. �35�,
where they showed that two-way classical communication
can effectively increase the local distinguishability. We
would like to point out that the problem studied in Ref. �35�
is quite different from ours. More precisely, Ref. �35� con-
siders the discrimination between a pure state and a mixed
state and requires that the detection of pure state can be
achieved perfectly. The goal is to minimize the minimal error
of detecting the mixed state. Here we only consider pure
states and require each state to be identified perfectly.

The rest of the paper is organized as follows. In Sec. II we
first give a characterization for the distinguishability of 2
� 3 states by LPCC. Then in Sec. III and Sec. IV we present
in sequel our results about the local distinguishability of six
and five 2 � 3 states. Sections V and VI devote to the local
distinguishability of four and three states, respectively. In
Sec. VII we present a nontrivial set of bipartite pure states
which requires a multiround of classical communication to
achieve a perfect discrimination. We conclude the paper with
a brief discussion in Sec. VIII.

For simplicity, in what follows we shall write ���= ��� for
any two states which are different from each other only with
a nonzero factor. Sometimes we simply say POVM or pro-
jective measurements instead of local POVM or local projec-
tive measurements, respectively.

II. DISTINGUISHABILITY OF 2‹3 STATES BY LPCC

In Ref. �3� Bennett et al. showed that any finite set of 2
� n orthogonal product states can be perfectly distinguish-
able using LPCC. For 2 � 3 states this interesting result has a
converse as follows.

Theorem 1. A set of 2 � 3 states are distinguishable by
LPCC only if there is a set of orthogonal product states such
that each of the given states can be written as a disjoint
summation of these product states.

Let us make the above theorem more transparent. Sup-
pose ���k� :k=1, . . . ,n� is a set of 2 � 3 states. Then these
states are distinguishable by LPCC if and only if there exists
a set of orthogonal product states ��� j� : j=1, . . . ,m� and a
partition of �1, . . . ,m�, say S1 , . . . ,Sn, such that ��k�
�span��� j� : j�Sk�, where �i=1

m Si= �1, . . . ,m� and Si�Sj

=� for any i� j.
Proof. If Alice goes first, then it has been proven in Ref.
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�21� that a set of 2 � n states is distinguishable by LOCC and
can be written as a disjoint summation of states from a set of
orthogonal product states.

Suppose now Bob goes first. If Bob’s measurement opera-
tors can be written as P1= �0�	0 � + �1�	1� and P2= �2�	2�,
then if measurement outcome is 1, we can write Alice’s mea-
surement as �0�	0� and �1�	1�. We construct a set of orthogo-
nal product states as follows: ����A �2�B , ����A �2�B ,
�0�A ���B , �0�A ����B , �1�A ���B , �1�A ����B�, where ���,
����, ���, ���� belong to span��0� , �1��. It is easy to see that if
a set of states is distinguishable by the LPCC we write
above, they can be rewritten as disjoint summation of states
from the above set.

If Bob’s measurement operators can be written as
P1= �0�	0�, P2= �1�	1�, and P3= �2�	2�, then we construct a set
of orthogonal product states as ����A �0�B , ����A �0�B ,
���A �1�B , ����A �1�B , ���A �2�B , and ����A �2�B�. Obviously,
if a set of states can be distinguished by the LPCC we write
above, these states can be rewritten as a disjoint summation
of states from the above set. �

III. SIX STATES

Six states form a complete basis for the 2 � 3 system. By
a result of Horodecki et al. �23�, we know that six states are
distinguishable by LOCC only if they are product states.
Conversely, by the result of Bennett et al. mentioned above,
we conclude that any 2 � 3 product basis is perfectly distin-
guishable by LPCC. Thus we arrive at the following.

Theorem 2. Six orthogonal 2 � 3 states are perfectly dis-
tinguishable by LPCC if and only if they form a complete
orthogonal product basis. Furthermore, the condition for
LOCC distinguishability is the same as LPCC distinguish-
ability.

IV. FIVE STATES

Theorem 3. Five orthogonal 2 � 3 states are locally distin-
guishable if and only if at most one of them is entangled.

Proof. This result is a direct consequence of a more gen-
eral result presented in Ref. �32�. Here we present a self-
contained proof.

Suppose the nontrivial measurement performed by Bob is
�Mm�. We consider rank�Mm� and sort conditions according
to Mm’s rank.

If rank�Mm�=3, then none of these states is eliminated
after measurement. That implies in the next step Alice should
distinguish five orthogonal states. From theorem 1 of Ref.
�21�, we know at most one of the five states is entangled.
Because Mm is of full rank, it does not change the state’s
property of being entangled or separable. Thus at most one
of the five original states is entangled.

If rank�Mm�=2, then Mm ���=0. Let B� denote the sub-
space orthogonal to ���, and system AB� is 2 � 2. As Alice
can distinguish at most four orthogonal states in AB�, one
state must be excluded after Bob’s measurement; then it can
be denoted as ��0�= ���A ���B. The other four states are

��1� = ��1�AB� + �1����A��� ,

��2� = ��2�AB� + �2����A��� ,

��3� = ��3�AB� + �3����A��� ,

��4� = ��4�AB� + �4����A��� . �1�

If one of ��i� is 0, suppose it is ��1�; then to keep orthogo-
nality, only �1 is nonzero, and ��1� is product state. Now we
have three nonzero ��i�, and as I � Mm ��i� can be distin-
guished by Alice, directly from Ref. �21�, at most one of I
� Mm ��i� is an entangled state. On subsystem B�, Mm is of
full rank; because of full rank operator’s property we used
previously, at most one of the three left states ��i�= ��i� is
entangled. We then reach the conclusion that at most one
state is entangled.

Suppose ��i��0 for each i. As Alice uses projective mea-
surements �0�	0� and �1�	1� to distinguish states after Bob’s
measurement, the five states can be rewritten as

��0� = ���A���B, �2�

��1� = �0�A��1�B + �1����A��� ,

��2� = �0�A��2�B + �2����A��� ,

��3� = �1�A��3�B + �3����A��� ,

��4� = �1�A��4�B + �4����A��� . �3�

To keep the orthogonality relation 	�k ��l�=0, where k
� �1,2� and l� �3,4�, we have �1=�2=0 or �3=�4=0. Sup-
pose �3=�4=0, �1 and �2 are not 0, and we also have
	�3 ��4�=0.

If ���= �1�, then the five states are all product states. We
suppose ���� �1�. Then for arbitrary Em=Mm

† Mm, the follow-
ing condition is satisfied: 	�1 �Em ���= 	�2 �Em ���
= 	�3 �Em ��4�=0.

We choose Mm satisfying Mm ����0. After Bob’s mea-
surement, Alice does a projective measurement ��0�� , �1���.
If ��0�� , �1��� � ���� , �����, then as 	�1 � ����	� � � Em� ��2�
=0; we have 	�1 �Em ��2�=0. So 	�1 � �I � Em� ��2�
=�1�2

*	� �Em ���=0, then one of �1 and �2 is 0. If
��0�� , �1���� ���� , �����, then after Alice’s measurement, at
most three states are left as Bob can now distinguish at most
three states. Because Em ����0, the first three states are not
0. So the last two states must be eliminated after Alice’s
measurement. Then we have Em ��3�=0 and Em ��4�=0.
��3� and ��4� form a basis of the subspace orthogonal to
���; thus Em=k ���	��. As 	�1 � I � Em ��2�= 	�1 �Em ��2�
+�1�2

*	� �Em ���=k�1�2
*=0, one of �1 and �2 is 0. So one of

��1� and ��2� is a product state. Notice that we already have
three product states: ��0�, ��3�, and ��4�; we now have four
product states.

If rank�Mm�=1 for each m, then Em=Mm
† Mm=�m ���	��

for some �m	0. Let B� denote the subspace orthogonal to
���. Then five states can be rewritten as

���A���B + ��0�AB�,
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����A���B + ��1�AB�,

��2�AB�, ��3�AB�, ��4�AB�, �4�

where 	�i �� j�=0.
The system AB� is 2 � 2, so at most four states can be

orthogonal to each other; then one of ��0�AB� and ��1�AB�
should vanish. Therefore, one of ��0� and ��1� is a product
state, and can be written as ���A ���B corresponding to Em
=�m ���	��. The number of measurement operators is at least
3 in order to satisfy 
Em= I. If the number is exactly 3, then
the measurement is actually a projective measurement. By
the result in Sec. II, at most one entangled state exists. We
only need to consider the case when the number is larger
than 3. In this case we have at least four different measure-
ment operators and each of them corresponds to a different
product state. So there must be at least four product states.

From the discussion above, we conclude that at most one
entangled state exists in the set of five orthogonal states
which are distinguishable by LOCC.

Now we turn to show that any five orthogonal 2 � 3 pure
states containing at most one entangled state can be locally
distinguished. By Ref. �3� we know that any set of orthogo-
nal 2 � 3 product states can be extended by a complete or-
thogonal product basis. Thus the entangled state �if it exists�
is actually a superposition of two orthogonal product states
which together with the other four orthogonal product states
form an orthonormal product basis. We have known that an
orthonormal 2 � 3 product basis can be distinguished by
LOCC. It is clear that the same protocol can also be used to
distinguish the original five states with the slight difference
that there are two measurement outcomes corresponding to
the entangled state. �

From the above proof it is obvious that five states are
perfectly distinguished by LOCC if and only if they are per-
fectly distinguished by LPCC.

V. FOUR STATES

Now we consider the LOCC distinguishability of four
states. We have the following key theorem.

Theorem 4. Four orthogonal 2 � 3 states are perfectly dis-
tinguishable by LOCC only if at least two of them are prod-
uct states.

Proof. We consider rank of measurement operators per-
formed by Bob. There are three different cases.

Case 1. One measurement operator has rank 3. After
Bob’s measurement, no state is eliminated. So Alice has to
distinguish four orthogonal states, which is possible only
when at least two states are product states �21�. As a full rank
measurement operator does not change the state’s property of
being entangled or separable, at least two original states are
product states.

Case 2. One measurement operator M1 has rank 2. Let us
assume M1 �2�B=0. There are three subcases we need to con-
sider.

Case 2.1. Two states can be written as ��� �2� and ��� �2�.
Then there are already two product states.

Case 2.2. Only one state can be written as ��� �2�. Then

after Bob’s measurement with outcome 1, three states are
left. As Alice’s measurement can only be a projective mea-
surement like ��0� , �1��, we can rewrite three postmeasure-
ment states as follows:

�0�A�
1�B + ��1�A�2�B,

�1�A�
2�B + ��2�A�2�B,

�0�A�
3�B + �1�A�
4�B + ��3�A�2�B.

To keep orthogonality, we have 	�1 ��2�= 	� ��2�= 	� ��1�
=0. As the dimension of Alice’s system is 2, from the equa-
tion above, we have one of ��1� and ��2� is 0. Then there are
two product states.

Case 2.3. No state can be written as ��� �2�. The four
original states must be written as

�0�A��1�B + ��1�A�2�B,

�0�A��2�B + ��2�A�2�B,

�1�A��3�B + ��3�A�2�B,

�1�A��4�B + ��4�A�2�B.

We choose another measurement operator M2 satisfying
M2 �2��0 which always exists. If the condition for M2 can
be sorted into the above cases 2.1 and 2.2, then we reach the
conclusion that two states are product states. So we only
have to prove the case that I � M2 ��i��0 for each i. From
Ref. �21� we know that the local distinguishability implies
that all postmeasurement states corresponding outcome 2
should be product states.

Suppose no ��i��0 is product state, then only under the
condition that M2 ��i�=�iM2 �2� could I � M2 ��i� be a prod-
uct state. The states after measurement can be written as I
� M2 ��i�= ��i �0�+ ��i��M2 �2� or ��i �1�+ ��i��M2 �2�. Notice
that at most one of ��i� is 0 which means there is at most one
product state. If one of ��i� is 0, then the state is already a
product state. To keep orthogonality, one of the remaining
three �i �0�+ ��i� or �i �1�+ ��i� is 0, which means the state is
also a product state. We then have two product states. If none
of ��i� is 0, then to keep orthogonality, two �i �0�+ ��i� or
�i �1�+ ��i� are 0, and the two states are product states.

Case 3. Each measurement operator has rank 1, and can
be written as Ei= �ei�	ei� �unnormalized�. Let ��i�= �0�A ��i�
+ �1�A ��i�. After the measurement, two states must be elimi-
nated to keep orthogonality. This means that for each �ei�,
there are two states ��i1

� and ��i2
� satisfying

�I � �ei�	ei����ik
� = 0, k = 1,2,

where i can take at least three different values as there are at
least three measurement operators. So we have at least six
orthogonal equations. Then there are two states ��i� such that
both of them have two orthogonality equations, i.e., each of
them is orthogonal to two �ek�. We can write these orthogo-
nality equations explicitly as follows: 	�i �ei1�= 	�i �ei2�
= 	�i �ei1�= 	�i �ei2�=0. As �ei1� and �ei2� are linearly indepen-
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dent, ��i�= ��i�. It follows that two states should be product
states. �

But different from the condition of five or six states, we
find two classes of four states which can only be distin-
guished by LOCC but not by projective measurements. The
result suggests that LOCC are more powerful than LPCC.
We list our results as two following theorems and each theo-
rem discusses one class of states. We then prove that these
two classes consist of all states which can be distinguished
by LOCC but not by LPCC. Note that in the following we
label four states by ��k� with k=1,2 ,3 ,4.

Theorem 5. The following four orthogonal 2 � 3 states can
be distinguished by LOCC but not by LPCC.

�0�A�0�B, �1�A���B,

�0�A�a1�1� + b1�2��B + �1�A�c1���� + d1�2��B,

�0�A�a2�1� + b2�2��B + �1�A�c2���� + d2�2��B, �5�

where a1a2
*+c1c2

*=b1b2
*+d1d2

*=0, ��� and ���� belong to
span��0� , �1��, ���� �0�, and k=−a1a2

* /b1b2
*=−c1c2

* /d1d2
* is a

real number and satisfies 0�k�1.
Proof. First, to prove these states can be distinguished by

LOCC, we give a set of Bob’s measurement operators:

M1 = �1 0 0

0 1 0

0 0 �k
, M2 = �0 0 0

0 0 0

0 0 �1 − k
 .

If the measurement outcome is 1, then four postmeasure-
ment states would be

�0�A�0�B, �1�A���B,

�0�A�a1�1� + �kb1�2��B + �1�A�c1���� + �kd1�2��B,

�0�A�a2�1� + �kb2�2��B + �1�A�c2���� + �kd2�2��B. �6�

The above four states then can be distinguished by Alice
with a projective measurement ��0� , �1��.

If the measurement outcome is 2, then two left states are

�1 − k�b1�0� + d1�1��A�2�B,

�1 − k�b2�0� + d2�0��A�2�B. �7�

We can verify that the above two states are orthogonal, and
thus can be perfectly distinguished. As a result, the original
four states can be perfectly distinguished by LOCC.

Next we shall show that the above four states cannot be
distinguished by LPCC. Suppose Bob goes first. Since

Pm= I, there is a rank 1 projective measurement operator
which can be written as P1= ���	��. If 	� �0��0, then
�I � ���	� � � ��1�= 	� �0� �0� ���. To keep orthogonality be-
tween ��1�, ��3�, and ��4�, ��� should be orthogonal to
a1 �1�+b1 �2� and a2 �1�+b2 �2�. The above two states are lin-
early independent because if a1 �1�+b1 �2�=��a2 �1�+b2 �2��,
then k=−a1a2

* /b1b2
*=−a1a1

* /b1b1
*�0. Then 	� �1�= 	� �2�=0,

���= �0�. However, the projector �0�	0� cannot keep orthogo-

nality, because we can prove that orthogonality requires k
=1. Thus the assumption of 	� �0��0 is incorrect. So we
should have 	� �0�=0.

Similarly, we can prove 	� ���=0. As ���� �0�, ��� is or-
thogonal to span��0� , �1��, P1= ���	� � = �2�	2�. The other pro-
jective measurement operator can only have rank 2 and
should be P2= �0�	0 � + �1�	1�. Unfortunately, by a similar ar-
gument we can show that P2 ��i� cannot be distinguished by
Alice. So the original four states cannot be distinguished by
projective measurements if Bob goes first.

If instead of Bob going first, Alice goes first, then after
Alice’s measurement at most three states are left. In order to
eliminate one state, Alice’s measurement operators must be
�0�	0� and �1�	1�. But these operators cannot keep orthogo-
nality between the four states. So the original four states
cannot be distinguished by LOCC if Alice goes first. Thus
we finish our proof. �

An explicit example is as follows:

�0�A�0�B, �1�A�1�B,

�0�A��1� + �2��B + �1�A��0� − 2�2��B,

�0�A��1� − 2�2��B − �1�A��1� + �2��B. �8�

The measurement operators performed by Bob are

M1 = �1 0 0

0 1 0

0 0 �1/2
, M2 = �0 0 0

0 0 0

0 0 �1/2
 .

Another different class of states is as follows.
Theorem 6. The following four orthogonal states can be

distinguished by LOCC but not by LPCC:

�0�A�0�B, ���A�1�B,

a1�1�A�0�B + b1����A�1�B + c1�1�A�2�B,

a2�1�A�0�B + b2����A�1�B + c2����A�2�B, �9�

where a1a2
*+b1b2

*+c1c2
*	�� �1�=0, and k=−a1a2

* /
c1c2

*	�� �1� is a real number which satisfies 0�k�1. ���
� �0� and �1�.

Proof. Consider the following general measurement:

M1 = �1 0 0

0 0 0

0 0 �k
, M2 = �0 0 0

0 1 0

0 0 �1 − k
 .

If the measurement outcome is 1, then after the measure-
ment, three left states are

�0�A�0�B,

a1�1�A�0�B + c1
�k�1�A�2�B,
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a2�1�A�0�B + c2
�k����A�2�B. �10�

Alice can distinguish the states using projective measure-
ments �0�	0� and �1�	1�. If measurement result is 2, then three
left states after the measurement are

���A�1�B,

b1����A�1�B + �1 − kc1�1�A�2�B,

b2����A�1�B + �1 − kc2����A�2�B. �11�

Alice can distinguish the three states using ���	�� and
����	���.

The next part is to prove that the four states cannot be
distinguished by LPCC. As 
Pm= I, there is P1= ���	��. If
	� �0��0, then as 	� �0��0, to keep orthogonality between
��1� and ��2� we have 	� �1�=0. Because 	�� �0��0, to keep
orthogonality between ��1� and ��4� we also have 	� �2�=0;
therefore ���= �0�. But �0�	0� cannot distinguish the four
states, so 	� �0� must be 0.

Using the same method, we can also first assume 	� �1�
�0, then we prove that ���	�� cannot distinguish states, so
	� �1�=0. Therefore, ���= �2�. But 	�3 � �I � �2�	2 � � ��4��0, so
the four states cannot be distinguished by projective mea-
surements if Bob goes first.

Suppose Alice goes first. After Alice does any operator
���	�� there are at most three states left. As ��3� and ��4� are
entangled states, ����	� � � I� ��3�4���0, so one of ����	� �
� I� ��1�2��=0. ��� must be �1� or ����. But �1�	1� and
����	��� cannot keep orthogonality. So the four states can-
not be distinguished if Alice goes first. Hence we finish the
proof. �

We also give an explicit example:

�0�A�0�B, � �0� + �1�
�2

�
A

�1�B,

−
1

2
�1�A�0�B + � �0� − �1�

2�2
�

A

�1�B + �1�A�2�B,

1
�2

�1�A�0�B − � �0� − �1�
2

�
A
�1�B − � �0� − �1�

�2
�

A

�2�B.

The measurement performed by Bob is given by

M1 = �1 0 0

0 0 0

0 0 �1/2
, M2 = �0 0 0

0 1 0

0 0 �1/2
 .

Interestingly, the above two classes of states completely
characterize the local distinguishability of four 2 � 3 states.

Theorem 7. Any four 2 � 3 orthogonal states can be dis-
tinguished by LOCC but not by LPCC if and only if they can
be written as one of the forms in the above two theorems.

Proof. We have proved in lemma 2 that two of the four
states should be product states if they are distinguishable by
LOCC.

Case 1. If the two product states can be written as
�0�A �0�B and �1�A ��0�B, where ��0� and ��0

�� belong to
span��0� , �1��. Then the other two states can be written as

�0�A��1�B + �1�A��1�B,

�0�A��2�B + �1�A��2�B, �12�

where ��1� and ��2� belong to span��1� , �2��, and ��1� and ��2�
belong to span���0

�� , �2��.
We assume that ��1�� ��2� and ��1�� ��2� and ��0�� �0�.

Other cases such as ��1�=� ��2� or ��1�=� ��2� or ��0�= �0�
will be discussed later. To keep orthogonality after measure-
ment, 	0 �Em ��1�= 	0 �Em ��2�=0, as ��1�� ��2�, we have
	0 �Em �1�= 	0 �Em �2�=0. For the same reason, 	�0 �Em ��0

��
= 	�0 �Em �2�=0, as ��0�� �0�, 	1 �Em �2�=0. We obtain that
Em is diagonal under the bases ��0� , �1� , �2��, Em

=diag��0 ,�1 ,�2�. We rewrite ��3� and ��4� as

�0�A�a1�1� + a2�2��B + �1�A�a3�0� + a4�1� + a5�2��B,

�0�A�b1�1� + b2�2��B + �1�A�b3�0� + b4�1� + b5�2��B.

To keep orthogonality, we should have 	�3 � I � Em ��4�=0,
which is equivalent to

a3b3
*�0 + �a1b1

* + a4b4
*��1 + �a2b2

* + a5b5
*��2 = 0.

There are only two linearly independent solutions to the
above equation. Suppose E1=diag��0 ,�1 ,�2� and E2

=diag��0� ,�1� ,�2�� are two independent solutions. If we have
another operator E3, it must be written as E3=aE1+bE2, so
we can use only E1 and E2 to distinguish the states instead of
using three or more operators. Therefore, there are only two
measurement operators E1=diag��0 ,�1 ,�2� and E2=diag�1
−�0 ,1−�1 ,1−�2�.

If �0�0, E1 �0��0. After Alice’s measurement ���	��,
	�1 � ����	� � � E1� ��3�=�0	0 ���	� �1�	0 ��1�=0. If ���� �0� or
�1�, then as ��1� belongs to span���0

�� , �2��, ��1�= �2�. For the
same reason ��2�= ��1�= �2�, but we have assumed in the be-
ginning that ��2�� ��1�. So ���= �0� or �1� and Alice’s mea-
surement operators are �0�	0� and �1�	1�. Similarly, if �1�0,
then Alice’s measurement operators must also be �0�	0� and
�1�	1�.

From 	�3 � ��0�	0 � � Em� ��4�=0, and 	�3 �1�	1 � � Em ��4�
=0, we have a1b1

*�2+a2b2
*�3=0 and a3b3

*�1+a4b4
*�2

+a5b5
*�3=0. If 1−�1�0 or 1−�2�0, we also have a1b1

*�1
−�2�+a2b2

*�1−�3�=0 and a3b3
*�1−�1�+a4b4

*�1−�2�
+a5b5

*�1−�3�=0. Then from those equations above,
a1b1

*+a2b2
*=0 and a3b3

*+a4b4
*+a5b5

*=0 stand; therefore, the
four states can be distinguished by Alice first doing measure-
ments �0�	0� and �1�	1�. As we have assumed these four states
cannot be distinguished by projective measurements, we
have either �1=�2=0 or 1−�1=1−�2=0. So the POVM
consists of E1=diag�1,1 ,k� and E2=diag�0,0 ,1−k� which is
just the case in theorem 4.

Here we will discuss other conditions we mentioned in
the beginning. First, if ��0�= �0�, then �0�	0� can distinguish
��1� and ��2�. As ��i� and ��i� belong to span��1� , �2��,
�1�	1 � + �2�	2� can distinguish ��3� and ��4�. Therefore, the
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four states can be distinguished by projective measurements.
Secondly, if ��2�=� ��1�, we choose M1 which satisfies

M1 ��1��0. Then Alice’s measurement cannot be �0�	0� and
�1�	1�, because 	�3 � ��1�	1 � � E1� ��4�=�	�1 �E1 ��1��0.
Then to keep orthogonality after measurements �0��	0� �
� M1 and �1��	1� � � M1, we have 	�1 � ��0��	0� � � E1� ��2�
= 	0 �0��	0� �1�	0 �E1 ��0�=0, so E1 �0�� ��0�. Similarly,
we have E1 �0� � ���0� , ��1� , ��2� , ��1�� and E1 ��0�
� ��0� , ��1� , ��2� , ��1��.

As ��0�=a1 �0�+a2 �1�, ��i�=b1 �1�+b2 �2� and ��1�
=c1 ��0

��+c2 �2�, at most one of the next two equations holds:
��i�=�i ��0�+i ��1� and ��i�=�i �0�+i ��1�.

If both of the above equations don’t hold, then dimension
of each set is 3. So E1 �0�=E1 �1�=0, E1= �2�	2�, and the four
states can be distinguishable by Bob’s projective measure-
ments �0�	0 � + �1�	1� and �2�	2�.

Without loss of generality, suppose that the second one
does not hold, then we have E1 ��0�=0, and because ��i�
=�i ��0�+i ��1� the four states can be rewritten as

�0��0�, �1���0� ,

�1�0���0� + ��1���1� ,

�2�0���0� + ��2���1� . �13�

	�3 � �I � E1� ��4�=�1�2	�0 �E1 ��0�+ 	�1 ��2�	�1 �E1 ��1�=0,
so 	�1 ��2�=0, then 	�3 ��4�=�1�2=0. One of �1 and �2 is 0;
then the four states can be distinguished by projective mea-
surements. The condition ��2�=� ��1� can be discussed simi-
larly.

Case 2. If two product states can be written as �0�A �0�B
and ���A �1�B, then the other two states are

a1�1�A�0�B + b1����A�1�B + ��1�A�2�B,

a2�1�A�0�B + b2����A�1�B + ��2�A�2�B. �14�

As the condition that ���= �1� can be counted into case 1,
we suppose here ���� �1�. If one of ��i� is 0, then the four
states can be distinguished by projective measurements �2�	2�
and �0�	0 � + �1�	1�. So we suppose none of ��i� is 0. We also
assume that at least one of ai or bi is not 0, because otherwise
the four states can be distinguished by projective measure-
ments.

To keep orthogonality between ��1� and ��2� after
Bob’s measurement, 	0 �Em �1�=0. And as 	�1 � I � Em ��3�
= 	0 ��1�	0 �Em �2�=0 and 	�1 � I � Em ��4�= 	0 ��2�	0 �Em �2�
=0. If ��1� or ��2� is not �1�, then 	0 �Em �2�=0. Similarly, if
��1� or ��2� is not ����, then 	1 �Em �2�=0. So Em is diagonal,
Em= ��1 ,�2 ,�3�.

We also suppose ���� �0�. The conditions such as ��1�
= ��2�= �1� or ����, and ���= �0� will be discussed later.
We choose M1 satisfying M1 �0��0, and denote Alice’s mea-
surement operators as �0��	0�� and �1��	1��. As we suppose
one of ai is not 0, without losing generality, a1�0, then
	�1 � ��0��	0� � � E1� ��3�= 	0 �0��	0� �1�	0 �E1 �0�=0. 	0 �E1 �0�
�0, so either 	0 �0��=0 or 	0� �1�=0, then Alice’s measure-
ments should be �0�	0� and �1�	1�.

Similarly, we consider distinguishability between ��2�,
��3�, and ��4�. If M1 �1� is also not 0, then Alice’s measure-
ments should be ���	�� and ����	���. Notice that the two
sets ��0�	0 � , �1�	1 � � and ����	� � , ����	�� � � are different as
we suppose ��� is not equal to �0� or�1�, Alice cannot distin-
guish the four states after Bob’s measurement. Therefore,
only one of M1 �0� and M1 �1� is not 0. As Em is diagonal,
there are at most two linear independent solutions of
��1 ,�2 ,�3� which results from similar discussion as in
case 1. The two measurements can be written as: E1
=diag�1,0 ,k� and E2=diag�0,1 ,1−k�. If the result is 1,
then Alice’s measurements should be �0�	0� and �1�	1�.
	�3 � ��0�	0 � � E1� ��4�=k	�1 �0�	�2 �0�=0, so one of ��i� is �1�.
For the same reason, the other is ����. It is the case in
theorem 5.

We discuss other conditions here. First, if ��1�= ��2�= �1�,
then ��3� and ��4� are

�1�A�a1�0� + c1�2��B + b1����A�1�B,

�1�A�a2�0� + c2�2��B + b2����A�1�B. �15�

If ���= �0�, then the four states are all product states, and
can be distinguished by projective measurements. We
then suppose ���� �0�. To keep orthogonality between
I � Mm ��1� and I � Mm ��2�, 	0 �Em �1�=0. 	�2 � �I � Em� ��3�
=c1	� �1�	1 �Em �2�=0. As at least one of ci is not 0, we have
	1 �Em �2�=0.

We choose M1 satisfying M1 �1��0. After Bob’s mea-
surement, Alice should distinguish four states I � M1 ��i�.
Suppose one of Alice’s measurement operators is �0��	0��;
then 	�2 � ��0��	0� � � E1� ��3�= 	� �0��	0� ����*b1	1 �E1 �1�=0.
The equation is also satisfied for b2. As we suppose one of bi
is not 0, 	0� ���=0 or 	0� ����=0. So Alice’s measurement
should be ���	�� and ����	���. As 	1 �E1 �0�= 	1 �E1 �2�=0,
	�3 � ����	� � � E1� ��4� = 	1 ���	1 ���*�a1	0 � +c1	2 � �E1�a2 �0�
+c2 �2��=0, therefore �a1	0 � +c1	2 � �E1�a2 �0�+c2 �2��=0. It
results in 	�3 � �����	�� � � E1� ��4�= 	1 ����	1 ����*�a1	0 �
+c1	2 � �E1�a2 �0�+c2 �2��+b1b2

*	1 �E1 �1� = b1b2
*	1 �E1 �1� = 0;

so one of bi is 0. Then the four states can be distinguished by
Bob’s measurement operators �1�	1� and �0�	0 � + �2�	2�. Simi-
larly, the condition that ��1�= ��2�= ���� can be discussed us-
ing the above method.

Secondly, we discuss the condition that ���= �0� while one
of ��i� is not �1�. The four states are

�0�A�0�B, �0�A�1�B,

�1�A�a1�0� + b1�1��B + ��1�A�2�B,

�1�A�a2�0� + b2�1��B + ��2�A�2�B. �16�

If one of ��i�= �1�, we will have three product states, then
these four states can be distinguished by Alice first doing
measurement �0�	0� and �1�	1�, so we suppose none of ��i� is
equal to �1�. From orthogonality, we can get that Em is diag-
onal. We choose M1 satisfying M1 �0��0 or M1 �1��0 then,
as we proved above, Alice’s measurement should be �0�	0�
and �1�	1�. So 	�3 � ��0�	0 � � E1� ��4�= 	�1 �0�	�2 �0�	2 �E1 �2�
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=0, M1 �2�=0. As a result, if M1 �0��0 or M1 �1��0,
then M1 �2�=0. One measurement operator must be �2�	2�
as 
mEm= I; then we get 	�1 ��2�=0. These four states
can be distinguished by Bob’s measurement �2�	2� and
�0�	0 � + �1�	1�. �

VI. THREE STATES

We can easily construct a class of three states that are
distinguishable by LOCC but not by LPCC as follows.

Theorem 8. Three orthogonal 2 � 3 states ��i�= �0�A ��i�B
+ �1�A �
i�B, which have the following forms are distinguish-
able by LOCC but not by LPCC:

�0�A�0�B,

�0�A�a1�1� + a2�2��B + �1�A�a3�0� + a4�1� + a5�2��B,

�0�A�b1�1� + b2�2��B + �1�A�b3�0� + b4�1� + b5�2��B,

where ai and bi satisfy a1b1
*+a2b2

*+a3b3
*+a4b4

*+a5b5
*=0,

�a1b1
*+�a2b2

*=0, a3b3
*+�a4b4

*+�a5b5
*=0, 	�2 ��3��0,

	
2 �
3��0, 	�2 ��3�+ 	
2 ��2�	�2 �
3��0, 	�2 ��3�+ 	
2 ��3�
�	�3 �
3��0, ��2�� ��3�, a3b3

*�0, and 0�� ,��1.
Proof. Consider the following two-outcome measurement:

M1 = �1 0 0

0 �� 0

0 0 ��
, M2 = �0 0 0

0 �1 − � 0

0 0 �1 − �
 .

If the measurement outcome is 1, then the postmeasurement
states are

�0��0� ,

a3�1��0� + �a1�0� + a4�1�����1� + �a2�0� + a5�1�����2� ,

b3�1��0� + �b1�0� + b4�1�����1� + �b2�0� + b5�1�����2� .

�17�

Due to the relationship given above, these three �unnor-
malized� states I � M1 ��i� are mutually orthogonal and can
be distinguished if Alice performs a measurement �0�	0� and
�1�	1�.

If the measurement result is 2, then there are only two
orthogonal states I � M2 ��2� and I � M2 ��3� left, and 	�2 � I
� E2 ��3�=0. So the two states can be distinguished by
LOCC.

The next part of the proof is to prove the three states
cannot be distinguished by projective measurements. Let
P1= ���	��. We assume 	� �0��0, then, to keep orthogonality
between the three states, one state should be eliminated if the
measurement result is 1 as dimension of Alice’s part is 2.
Without losing generality, we can suppose I � P1 ��3�=0,
then 	� ��3�= 	� �
3�=0. From 	�1 � I � P1 ��2�=0, we have
	� ��2�=0. The conditions in the theorem indicate that ��2�,
��3�, �
3� are linear independent; therefore ��� does not exist.
Then 	� �0� must be equal to 0.

The left projective measurement is P2= �0�	0 � + ����	���,
where ���� belongs to span��1� , �2��. Notice that the
necessary condition for Alice to distinguish three states
is at most one state is entangled, then one of I � ��0�	0 �
+ ����	�� � � ��2�3�� must be product state. As P2 ��i�� P2 �
i�
and P2 �
i��0, we have P2 ��i�=0 if the state is product
state. It indicates that one of ��2� or ��3�must be orthogonal
to ����. Suppose ���� is orthogonal to ��2�; then ��2�= ���.
Because the condition 	�2 ��3�+ 	
2 ��2�	�2 �
3��0 is satis-
fied, P1= ���	� � = ��2�	�2� cannot keep orthogonality between
��2� and ��3�. Thus, if Bob goes first, these states cannot be
distinguished by LPCC.

On the other hand, suppose Alice goes first with measure-
ment ��0�� , �1���. As 	�1 � ��0��	0� � � I ��2�=a3	0 �0��	0� �1�
=0, Alice’s measurement must be �0�	0� and �1�	1�. Because
	�2 ��3��0, �0�	0� cannot keep orthogonality. Therefore,
these three states cannot be distinguished by LPCC. �

We give a specific example of three states which have the
form in the theorem:

�0�A�0�B,

�0�A�3�0� + 3�2��B + �0�A��0� + 3�1� − 2�2��B,

�0�A�3�0� − 2�2��B + �0�A�2�0� − 1�1� + �2��B. �18�

The measurement performed by Bob is as follows:

M1 = �1 0 0

0 �1/3 0

0 0 �1/2
, M2 = �0 0 0

0 �2/3 0

0 0 �1/2
 .

It is easy to prove that the above three states can be dis-
tinguished by the above general measurement but not by
projective measurements.

For three states, to determine whether they can be distin-
guished by LOCC is much complicated. We will give a pro-
tocol to determine whether three given orthogonal states can
be distinguished.

First, the three states ��i� are denoted as �0�A ��i�B
+ �1�A ��i�B. After Bob’s measurement, states become I
� Mm ��i�. Taking the condition for Alice to distinguish three
states into consideration, the three states after Bob’s mea-
surement can be written as �0*�A �
i�B+ �1*�A ��i�B, where �
i�
and ��i� are two sets of orthogonal states of Bob’s system;
�0*� and �1*� are two specific bases of Alice’s. In spite of
coefficients, we have 
�
i�	
i � = I and 
��i�	�i � = I.

Suppose �0*�=a �0�+b �1� and �1*�=−b* �0�+a* �1�. Then
we have �0*�	0* � � Mm ��i�= �0*�AMm�a ��i�+b ��i��B

= �0*�A �
i�B and �1*�	1* � � Mm ��i�= �1*�AMm�−b* ��i�
+a* ��i��B= �1*�A ��i�B.

Let ��i� denote a ��i�+b ��i�, then we can construct an-
other set of states ��i� satisfying 	�i �� j�=0 for any j� i.
Because �
i� is a set of orthogonal states, 	
i �
 j�
= 	
i �Mm �� j�=0. Comparing to the definition of ��i�, we
have ��i�=Mm �
i�. So we can choose positive numbers �i, to
have the following equation satisfied: 
�i ��i�	�i �
=
Mm

† �
i�	
i �Mm=Mm
† Mm=Em.
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If we let ��i�=−b* �
i�+a* ��i� then, using the same
method, we can find 	i �� j�=0, for any j� i. We can also
choose proper positive numbers �i to have the following
equation satisfied: 
�i �i�	i � =Em.

We finally have the equation


 �i�i�	i� = 
 �i��i�	�i� = Em.

There are eight independent variables a, b, �i, �i and nine
equations. Getting value of the variables which satisfy the
above equation, we can construct a set of POVM to distin-
guish the three given states. From the equation, we can see
that it is much more difficult than four states’ condition to
judge whether the three states can be distinguished by
LOCC. Actually we cannot provide an analytical character-
ization. Nevertheless, we can still get some results qualita-
tively.

If the equation is satisfied for any a and b, we can adjust
a and b to make Em satisfy 
mEm= I. If the equation is sat-
isfied for a certain value a0 and b0, then we only have E0
= I. Therefore, Bob can only do a trivial operation on his
system. Now we only need to judge whether these states can
be distinguished if Alice goes first, which is much easier. If
there is no solution to the equation, then these three states
cannot be locally distinguished.

VII. NONTRIVIAL EXAMPLE REQUIRING MULTIROUND
CLASSICAL COMMUNICATION

Now we turn to discuss the role of classical communica-
tion in local discrimination. We find a set of m � n states
needs at least 2 min�m ,n�−2 rounds to be distinguished us-
ing LOCC.

First, suppose m=n, where m is the dimension of the first
system, Alice’s system, and n is the dimension of the second
system, Bob’s system. We construct a set of states as follows:

�0���00�+ ��00��0�+ �1���10�+ ¯+ �n − 1��n − 2� ,

�0���01� , ��01��0� , �1���11� , ¯ , �n − 1��n − 1� ,

�0���02� , ��02��0� , �1���12� , ¯ ,

] ] ] ¯ ,

�0���0n−1� , ��0n−2��0� , �1���1n−2� , ¯ ,

where ���ki� ,0� i�n−k−1� is an orthonormal basis for
span��k� , . . . , �n−1�� and ���li� ,0� i�n− l−2� is an ortho-
normal basis for span��l+1� , . . . , �n−1��. 	�k1 ��l1��0,
	�k1 ��l1��0, and 	�k0 � i��0 for k� i�n−1, 	�l0 � j��0 for
l+1� j�n−1. The total number of the states is n2−2n+3.

Theorem 9. The above n2−2n+3 states need at least 2n
−2 rounds classical communication to be distinguishable by
LOCC.

Proof. The key idea is to prove that measurement opera-
tors should be projective measurements. Suppose Alice goes
first, and let Em denote Alice’s POVM operator with outcome
m. As 	�01 ��k1��0 and the orthogonality between �0�A ��01�
and �k�A ��k1� should be kept after the measurement, we have
	0 �Em �k�=0; similarly, 	j �Em �k�=0. Therefore, Em is diago-
nal and Em=diag��0 ,�1 , . . . ,�n−1�.

To keep orthogonality of ��0� and ��0i�A �0�B,
Em should also be diagonal under the bases
���0i� , �0��, then Em=�0� ��00�	�00 � +�1� ��01�	�01 � + ¯

+�n−2� ��0n−2�	�0n−2 � +�n−1� �0�	0�. From the restriction
in the theorem, we have 	�00 � j��0, for any j�0.
Therefore, 	�00 �Em � j�=� j	�00 � j�=�0�	�00 � j�, � j =�0�, so Em

=diag��0 ,�0� , . . . ,�0��.
If �0� and �0 are both not 0, then after Alice’s measure-

ment, Bob should do a nontrivial operation on his own sys-
tem according to Alice’s result. We denote Fn as Bob’s op-
erator. As we discussed above, we can conclude that Fn is
diagonal on bases ��0� , �1� , . . . , �n−1��. To keep orthogonality
of ��0� and �0�A ��0j�B, we can also rewrite Fn
=0� ��00�	�00 � +1� ��01�	�01 � + ¯ +n−1� ��0n−1�	�0n−1�. Fol-
lowing the steps above, as 	�00 � j��0, we have  j =0� for
arbitrary j. Thus Fn=0�I is a trivial operator. Finally, either
�0=0 or �0�=0.

Notice that this result also suggests that these states can-
not be distinguished if Bob goes first. As we can see the
process as Alice first does a diagonal operator on her system,
�0=�0�=1. As they are both not 0, we have proved in the
above paragraph that, after Alice’s measurement, these states
cannot be distinguished.

We go back to Alice’s first nontrivial measurement. Due
to the above result, Alice’s measurement only has two mea-
surement operators: E1=diag�1,0 , . . . ,0� and E2

=diag�0,1 , . . . ,1�. If the measurement outcome is 1, Bob
only needs to do projective measurements to distinguish the
left states. If the measurement outcome is 2, the system is
then �n−1� � n.

It is then Bob’s turn to do measurement. Following the
method we used above, we can similarly prove that Bob’s
measurement must be E1=diag�1,0 , . . . ,0� and E2

=diag�0,1 , . . . ,1�. By induction, we find the number of
rounds needed for distinguishing is 2n−2. Hence we com-
plete the proof. �

In general case, m�n; we can suppose m�n, then to
distinguish the set of states we give in the theorem 2m−2
rounds are needed. We can also construct a set of states
which requires 2m−1 rounds to achieve a perfect discrimi-
nation. An explicit construction is as follows:

��00��0�+ �0���00�+ ��10��1�+ ¯+ �m − 1��m − 2� ,

��01��0� , �0���01� , ��11��1� , ¯ , �m − 1��m − 1� ,

��02��0� , �1���02� , ��12��1� , ¯ ,

] ] ] ¯ ,

��0m−1��0� , �1���0n−2� , ��1m−2��1� , ¯ ,

where ���ki� ,0� i�n−k−2� is an orthonormal basis for
span��k+1� , . . . , �n−1�� and ���li� ,0� i�m− l−1� is an or-
thonormal basis for span��l� , . . . , �n−1��. 	�k1 ��l1��0,
	�k1 ��l1��0, and 	�k0 � i��0 for k+1� i�n−1, 	�l0 � j��0
for l� j�m−1.

The proof of the example above is almost the same as the
previous one.
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VIII. CONCLUSION

We have studied the local distinguishablity of 2 � 3 states
when the owner of the qutrit performs the first nontrivial
measurement. We surprisingly find that for certain four or
three states we need to perform the general local measure-
ment in order to achieve a perfect discrimination; only LPCC
is not sufficient. We have almost completely characterized
the local distinguishability of 2 � 3 states except for some
special cases when only three states are under consideration.
It would be of great interest to extend these results to 2 � n
states where n	3.

We further construct a special set of m � n states which
require at least 2 min�m ,n�−2 rounds of classical communi-
cation to finish the discrimination. Our result indicates that
classical communication plays a crucial role in local dis-
crimination. An interesting open problem is to construct a set

of states which may require more rounds to achieve a perfect
discrimination.
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