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We outline a proposal for a method of preparing an encoded two-state system �logical qubit� that is immune
to collective noise acting on the Hilbert space of the states supporting it. The logical qubit is comprised of three
photonic three-state systems �qutrits� and is generated by the process of spontaneous parametric down conver-
sion. The states are constructed using linear optical elements along with three down-conversion sources, and
are deemed successful by the simultaneous detection of six events. We also show how to select a maximally
entangled state of two qutrits by similar methods. For this maximally entangled state we describe conditions
for the state to be decoherence-free which do not correspond to collective errors.
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I. INTRODUCTION

Quantum information and quantum technologies have
been under active investigation for their practical benefits for
quite some time. However, only fairly recently have re-
searchers begun to investigate more thoroughly the proper-
ties and benefits of using higher dimensional Hilbert spaces
for these purposes. Higher dimensional systems �in analogy
with the term qubit for two state systems, d-state systems are
hereafter referred to as qudits� have properties which are
quite different from their two-state counterparts which could
be useful for quantum information processing. For example,
we note that d-state systems can be more entangled than
qubits �1–3� and can share a larger fraction of their entangle-
ment �4�. We also note that the monogamy rule is different,
but not well understood for qudits �5�. These properties, as
well as the larger dimension alone, could aid many quantum
information processing tasks, including quantum key distri-
bution �6–9�, quantum bit commitment �10,11�, quantum
computing �12–15�, and quantum games. They also seem to
be required, in some form, for the solution to a version of the
Byzantine agreement problem �16�.

As the theoretical benefits become more well-known,
proof-of-principle experiments will help in our understand-
ing of the behavior of qudits for quantum information pro-
cessing as well as a better understanding of quantum me-
chanics itself. In this regard, we note several interesting
experiments using qudits. In the context of quantum comput-
ing nuclear magnetic resonance techniques have been used to
process information encoded in single-qutrit systems �17�.
Qudits have also been used in quantum cryptography to im-
prove reliable detection of eavesdroppers �18,19�, and to
demonstrate the tossing of quantum coins �20�.

In large part, the differences between qubits and higher
dimensional systems stems from the difference in the repre-
sentation theory of the group which governs their closed sys-
tem evolution. For a d-state system this group can be taken
to be SU�d� if we neglect an overall phase. Fundamental

differences include entanglement properties as well as posi-
tivity conditions. �It is known that the two are related, see
�21�.� Such conditions indicate important aspects of various
entanglements between systems and environments �22,23�.
This could be vital for ensuring reliable quantum information
processing such as error correction for open systems which
are initially coupled with their environment in some way
�24�. It is also clear that these differences have implications
for cryptography, shared reference frames �25–30�,
decoherence-free subspaces �DFSs�, and noiseless sub-
systems �NSs� �31–37� �see also �38,39� for reviews�,
through the difference in selection rules for these systems.

In this paper, we aim to provide a method for producing,
albeit indirectly, entanglement between three qutrits. One
particular type of entangled state we present forms a noise-
less state which is protected against noises which are not
collective and another is a NS protected against collective
errors. This subsystem is the smallest subsystem of three
qudits which can be formed which is immune to collective
noise on the set of qudit states. For simplicity, we use qutrits
�d=3� though in principle any d could be used. Here we
propose an experimental realization of a noiseless subsystem
of three qudits. Our experiment uses down converted pho-
tons and linear optical elements to form our NS, the realiza-
tion of which relies on the simultaneous detections of six
photons. This provides a proof-of-principle experiment for
the formation and manipulation of quantum optical entangled
qutrits.

Section II describes the logically encoded states which
protects information from collective errors. Section III de-
scribes the use of the polarization of photons to encode qutrit
states. We then describe, in Sec. IV, methods of selecting
these DFS and NS states using experimental arrangements
consisting of nonlinear crystals, mirrors, wave plates, beam
splitters, and detectors. We conclude with a discussion in
Sec. V.

II. ENCODING LOGICAL STATES

In this section we discuss the encoding of logical
decoherence-free states and noiseless subsystems using stan-*abishop@www.physics.siu.edu
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dard computational basis states. The corresponding physical
states are described in the following section.

A. Encoding into a noiseless subsystem

In �37� it was shown that the Hilbert space of three physi-
cal qutrits can be used to support a single decoherence-free
qubit. Each logical state of this decoherence-free qubit is
given by a superposition of eight states labeled �i

8,j, where
the superscript j is a degeneracy label used to distinguish the
two logical values, i.e., j=0,1. The constant superscript 8
reflects the dimension of the irreducible representation of
SU�3�, and the subscript i labels a particular basis state in the
representation. Using this notation the general form of the
logical zero state is given by

�0L� = �
i

�i�i
8,0. �2.1�

Similarly, the most general logical one state is given by

�1L� = �
i

�i�i
8,1. �2.2�

The initialization itself is arbitrary as described in Ref. �40�.
According to the theory of noiseless subsystems, these sets
of states �i

8,0 ��i
8,1� will mix with each other, but not with

�i
8,1 ��i

8,0� under collective noise. As long as this condition
holds, the information encoded in ��L�=a �0L�+b �1L� will be
protected. The simplest form of logical zero results when all
but a single expansion coefficient are set to zero. If we let �i�
remain, logical zero takes the form

�0L� = �i��i�
8,0. �2.3�

Suppose that i�=3, then, after normalizing this state
��3=1�, logical zero becomes

�0L� = �3
8,0. �2.4�

The complete set of eight basis states of logical zero �i
8,0

were given explicitly in Ref. �37� in terms of five quantum
numbers. After translating these states into a computational
basis of the three-level system, where the three orthogonal
states are described by the kets �0�, �1�, and �2�, the expres-
sion for our example can be taken to be

�0L� = ��011� − �101��/�2, �2.5�

where we have used, and will continue to use, the shorthand
notation �ABC� for the tensor product of the three qutrit
states �A� � �B� � �C�. In a similar fashion the logical one
state can be observed to take a simple form by choosing to
let all but one of the expansion coefficients �i vanish. If we
choose the nonzero coefficient to be �8, then, after normal-
ization, the logical one state is given explicitly by

�1L� = �− �021� + �120� − �201� + �210��/2. �2.6�

For initialization of the logical qubit state, we may create an
arbitrary superposition of these two logical basis states. After
undergoing collective decoherence effects, the state �0L�
��1L�� will be of the form Eq. �2.1� �Eq. �2.2��.

B. Encoding maximally entangled states

It was noted and discussed in �37� that the two inequiva-
lent fundamental representations of SU�d�, d�3 can have a
fundamentally different impact on the decoherence-free sub-
spaces and noiseless subsystems which they encode. The
simplest example exhibiting such a difference is the combi-
nation of two qutrits of different types. In the case that one of
the two inequivalent irreducible representations �irreps� is of
one type and the other of the other type, a singlet state may
be formed. In the case that they are both the same, a singlet
is not readily available. This is due to the fact that the two
different representations are conjugate to each other and thus
transform in “opposite” ways.

More specifically, in the notation of �37�, a singlet state of
two qutrits can be represented as

��s� =
1
�3

��00̄� + �11̄� + �22̄�� . �2.7�

In this case, the transformation properties are such that one
of the qutrits will transform according to the conjugate rep-
resentation of the other. Parametrizations of these two differ-
ent transformations were given as D�0,1� and D�1,0� in Ref.
�41�.

Alternatively, the barred states could be comprised of two
unbarred states. That is, they may arise from an entangled
state of two unbarred representations. In this case, the state
would appear as the totally antisymmetric state of three
qutrits,

��s� =
1
�6

��012� + �120� + �201� − �102� − �021� − �210�� ,

�2.8�

and the state is invariant under collective transformations,
that is, transformations which act the same on each of the
three qutrit states. �It is interesting to note that this particular
state of three qutrits has cast doubt on the monogamy rela-
tion for qudits �5�.�

In a given experiment which produces a two qutrit state,
the transformation properties may not be important. It could
be that we only want to produce a particular state in the
Hilbert space of two qutrits. Here, our objective is to de-
scribe experiments which enable the selection and explora-
tion of qutrit states. We therefore describe a method of se-
lecting two qutrit states in Sec. IV E before discussing the
transformation properties.

Both the logical qubit as well as the singlet state have
now been encoded in terms of the computational basis states
of three qutrits. This encoding is, however, quite generic. As
mentioned above, these three orthogonal states in which a
qutrit can be described are simply referred to as �0�, �1�, and
�2�. In the next section we will establish a connection be-
tween these generic labels and the polarization states of a
pair of photons.
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III. QUTRIT ENCODING USING PHOTON
POLARIZATION

The preparation of three-level optical quantum systems
has been demonstrated in Ref. �42� using the polarization
states of down-converted photon pairs. There, incident pho-
tons with frequency � entering a nonlinear �-barium borate
�BBO� crystal spontaneously split into two entangled pho-
tons each of which having a frequency of roughly � /2 �con-
servation of energy ensures that the frequencies of the down-
converted photons sum to the frequency of the pump photon,
selection of pairs with common frequency can be accom-
plished by placing narrow-band frequency filters outside of
the crystal� and linearly polarized either along the same axis
or along orthogonal axes depending on how the crystal is cut.
Two orthogonal polarization modes can be constructed using
the former polarization state, corresponding to type-I phase
matching conditions, by a physical rotation of the crystal by
90°. The latter polarization state of the down-converted bi-
photons results from passage through a type-II phase
matched crystal.

Twin photons of equal wavelength produced in a type-I
crystal have collinear polarization vectors and thus propagate
through the crystal with equal group velocities and emerge
from the crystal on a cone due to the conservation of trans-
verse momentum. Spatial mode selection of a pair may be
obtained by placing optical fibers or small apertures in a
screen on regions of the cone that are on opposite sides of the
pump beam. In type-II down-conversion photon pairs are
orthogonally polarized and experience different refractive in-
dices inside the crystal. Their respective group velocities are
not equal and they emerge on two separate cones, one cone
for each of the two orthogonal polarizations. By adjusting
the angle between the crystal optic axis and the pump beam
the authors in Ref. �43� demonstrated how the cones can be
made to overlap, thereby producing entangled Bell-type
states along the two directions of cone intersection. Along
these directions the light can be described by the state

��� = ��HV� + ei��VH��/�2, �3.1�

where �H� and �V� indicate horizontal and vertical polariza-
tion, respectively. The relative phase �, arising from the
crystal birefringence, can be arbitrarily chosen by an appro-
priate crystal rotation or by using an additional birefringent
phase shifter �43�. All four Bell states were realized as spe-
cial cases of this general state, in particular, the states

��+� = ��HV� + �VH��/�2, �3.2�

and

��+� = ��HH� + �VV��/�2, �3.3�

relevant for our purposes here, were obtained by setting �
equal to zero �for both Eqs. �3.3� and �3.2�� and placing a
half-wave plate in one photon path angled to rotate horizon-
tal polarization to vertical and vice versa �for Eq. �3.3��. An
alternative approach to the creation of the same entangled
states was demonstrated in Ref. �44� by replacing the single
type-II crystal with two adjacent type-I crystals oriented at
90� with respect to each other.

Suppose now, for simplicity, that we choose the set ��HH�,
�VH�, �VV�� as a basis for the qutrit states. In order to connect
these basis states with the previously labeled basis states �0�,
�1�, and �2� let us make the following definitions �45�:

�0� 	 �VV� ,

�1� 	 �VH� ,

�2� 	 �HH� . �3.4�

These relations can then be used to encode the logical zero
and one states of the decoherence-free qubit:

�0L� = ��V1V2V3H4V5H6� − �V1H2V3V4V5H6��/�2,

�1L� = �− �V1V2H3H4V5H6� + �V1H2H3H4V5V6�

− �H1H2V3V4V5H6� + �H1H2V3H4V5V6��/2.

�3.5�

Each of the three qutrits have now been encoded in terms of
the polarization states of entangled photons produced via
down conversion. The numbers attached to the H’s and V’s
serve as spatial mode labels and indicate a specific photon
having a polarization of the type to which it is attached, for
example, the state �H1H2� corresponds to a qutrit state repre-
sented by two horizontally polarized photons labeled photon
1 and photon 2, etc.

Now that a physical encoding has been established, the
next step is to produce the superpositions given by Eqs.
�3.5�.

IV. DFS STATE PREPARATION

Polarizing beam splitters �PBSs�, wave plates, and photo-
detectors have been widely used for the preparation of quan-
tum states �46–48� and in the implementation of quantum
gates �49–52�. Before discussing the details of our proposal,
we first review the basic idea, given in Ref. �48�, and the
extension �47� on which it rests. During our discussion of the
experiments we will assume that each of the nonlinear crys-
tals being used simultaneously emits one pair of photons and
that our detectors are highly efficient. We will also assume
that we can eliminate which-way information through, for
example, the insertion of appropriate narrow-band filters as
discussed in �48,46�. These assumptions will simplify our
argument.

A. Selection of a four-particle Greenberger-Horne-Zeilinger
state

Consider the arrangement in Fig. 1. Ultraviolet light is
pumped through two separate parametric down-conversion
�PDC� sources �e.g., BBO, BiBO crystals� which, upon suc-
cessful down conversion, emit pairs of photons in the Bell
state Eq. �3.3�, see �53�. The beam splitter is made to trans-
mit horizontally polarized light while reflecting light polar-
ized along the vertical axis. Therefore, the photons reaching
detector D2 are those from path 2 �path 3� having exited the
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PBS with a vertical �horizontal� polarization. Similarly, pho-
tons reaching detector D3 arrive with a vertical �horizontal�
polarization after entering the PBS via path 3 �path 2�.

With a fourfold coincidence detection, one can infer that
the polarization state of the four-photon system being de-
tected is either �H1H2H3H4� or �V1V2V3V4�. The reason is
this; in order for detectors D2 and D3 to fire at the same time
one of two photons being detected must have come from the
left crystal via path 2 and the other from the right crystal via
path 3, and as mentioned above, if photons coming from
paths 2 and 3 have orthogonal polarizations they will both
arrive at the same detector thereby ruling out a fourfold co-
incidence detection. If detectors D2 and D3 fire simulta-
neously both photons being detected are projected into the
same polarization state which then implies that the photons
arriving at detectors D1 and D4 have that same polarization
since pairs created in these type-II crystals are emitted in the
state Eq. �3.3�. Given our assumptions of path indistinguish-
ability �46,48�, the state �1 /�2���H1H2H3H4�+ �V1V2V3V4��.

The optical arrangement just discussed was extended in
�47� to include an additional nonlinear crystal is produced.
Using three crystals, along with the action of a Hadamard
gate, the authors just mentioned were able to produce a six-
photon “cluster” state. We will briefly discuss their method
in order to clarify the details of our proposal.

B. Selection of a six-particle Greenberger-Horne-Zeilinger
state

The setup shown in Fig. 2 is an extension of the previous
arrangement which includes an additional nonlinear crystal
along with a Hadamard gate �a wave plate set to rotate the
polarization of a photon by 45°� placed in path 4. It is not
difficult then to convince oneself that in the absence of the
Hadamard gate, a sixfold coincidence detection projects this
system into a state that can be described by the six-photon
Greenberger-Horne-Zeilinger �GHZ� superposition given by
�1 /�2���H1H2H3H4H5H6�+ �V1V2V3V4V5V6��. In fact, any
n-photon GHZ state �n=2,4 ,6 , . . . � of the form �1 /�2�
	��H1H2 . . .Hn�+ �V1V2 . . .Vn�� can be selected using the
same type of extension along with an n-fold coincidence
detection.

The situation changes when a Hadamard gate H is placed
in path 4. The action of this gate on the states �H� and �V� is
such that

H�H� =
1
�2

��H� + �V�� , �4.1�

3 41 2

D1 D2 D3 D4

PBS

H,V H,V
PDC PDC

FIG. 1. �Color online� Four-photon polarization-entanglement source �48�.

1 2

D1

PBS

H,V

D2

H,V H,V

PBS

5 6

D5 D6D3 D4

4

HADAMARDPDC

3

PDC PDC

FIG. 2. �Color online� Six-photon polarization-entanglement source.
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H�V� =
1
�2

��H� − �V�� . �4.2�

The inclusion of this gate leads to even more possible states
that are compatible with a sixfold coincidence detection.
These new states are shown in Fig. 3 using the lines below
the experimental setup. The uppermost line corresponds to
the left crystal emitting a photon pair which is subsequently
detected at D1 and D3. In order for D2 to fire simultaneously
along with the others it must then detect the presence of a
photon emitted into path 3 that exited the PBS horizontally
polarized. The Hadamard gate in path 4 rotates the polariza-
tion of the photon passing through it so that the chances of it
being detected at either D4 or D5 are equally likely. This
Hadamard rotation splits the upper line into two equally
probable events that are compatible with a sixfold coinci-
dence detection. These possibilities can be seen by following
the two lines, one solid and one dashed, that split off from
the original.

The case where the left crystal emits a pair which is sub-
sequently detected at D1 and D2 is represented by the lower
set of lines �blue lines� in Fig. 3. All four of these possibili-
ties could trigger a sixfold detection, and since these photon
paths are indistinguishable such a detection postselects the
six-photon “cluster” state

�C6� = 1
2 ��H1H2H3H4H5H6� + �H1H2H3V4V5V6�

+ �V1V2V3H4H5H6� − �V1V2V3V4V5V6�� �4.3�

realized in Ref. �47�. With these examples in mind we pro-
ceed with the preparation of a logical decoherence-free qubit
encoded in terms of the six-photon GHZ states given in Eq.
�3.5�.

C. Physical preparation of logical zero

In Fig. 4 we present a pictorial illustration of a setup
which can be used to prepare the decoherence-free logical
zero state given in Eq. �3.5�. The arrangement is similar to
that used in Ref. �47� in that its photon supply depends on
three down-conversion sources and in the use of polarization
beam splitters to direct orthogonally polarized photons down
separate paths. Also, successful state preparation again rests
on the simultaneous detection of six photons, a pair from
each of the three different crystals. The three crystals, PDC’s
1, 2, and 3, are each fed ultraviolet light by the same source
and emit photons in the Bell state given by Eq. �3.2�. For
convenience, let us refer to the photon emitted into the par-
ticular path i as photon i, so, for example, the photon emitted
by PDC2 into path 3 will be called photon 3, etc. Now,
occasionally these independent down-conversion processes
occur in the three crystals at the appropriate times needed for
six simultaneous detections. If all optical path lengths are
equal, a sixfold coincidence detection requires nearly simul-
taneous down conversion to take place in each of the three
crystals. Note that we may assume that all optical paths are
equal since if they were not, the path lengths can be adjusted
by placing mirrors in some or all of the paths and varying

d1, 
d2, . . . ,
d6.

Assuming these adjustments have been made correctly,
and that no down-converted photons have been lost, there
will be nearly simultaneous recordings from D1, D2, D3,
and D6 due to the respective detections of photons 3, 1, 5,
and 6. This results because there are no other paths for them
to take �note the opaque block serving as a photon trap
placed between the PBSs adjacent to D2 and D3�. This com-
bined four photon system is thus detected in the polarization
state

1 2

D1

PBS

H,V

D2

H,V H,V

PBS

5 6

D5 D6D3 D4

4

H2 H3

HADAMARD

H1

H6H5

V6

V2V1 V3
H6

H4

V4 V5

H4

−V4 V5 V6

H5

PDC

3

PDC PDC

FIG. 3. �Color online� Photon states compatible with six simultaneous detections.
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��1,3,5,6� = �V1V3V5H6� . �4.4�

On the other hand, if photons 2 and 4 arrive at either D4 or
D5 and both of these detectors fire simultaneously it is im-
possible to know, based only on the knowledge of these two
detection events, which one of them arrived in the horizontal
state and which one arrived in the vertical state. This limited
knowledge implies that the state of photons 2 and 4 is

��2,4� =
1
�2

��V2H4� − �H2V4�� . �4.5�

In the event of six simultaneous detections one can infer that
the decoherence-free logical zero state �0L�
= ��V1V2V3H4V5H6�− �V1H2V3V4V5H6�� /�2 of Eq. �3.5� has
been successfully prepared �see the Appendix for more de-
tails�. With a few small modifications, the setup just de-
scribed can also be used for the preparation of the logical one
state in Eq. �3.5�. We present that arrangement next and dis-
cuss the events necessary for a sixfold coincidence detection.

D. Physical preparation of logical one

By moving the Hadamard, removing one of the X gates,
and replacing two of the polarized beam splitters with unpo-
larized �ordinary� beam splitters the setup shown in Fig. 4
can be modified to prepare a decoherence-free logical one

state. This arrangement is shown below in Fig. 5. On the left
side of this figure we see that if detectors D1, D2, and D3 all
fire at once the combined photon 1, 3, and 5 system was
detected in the state

��1,3,5� =
1
�2

��V1H3V5� + �H1V3V5�� . �4.6�

Consider the case where photons 1, 3, and 5 are detected in
the state �V1H3V5� corresponding to the first term in Eq.
�4.6�. In this case one may infer that photon 2 was emitted in
a horizontally polarized state and photon 4 in a vertical state
since there are no polarization rotating devices in which pho-
tons 1 and 3 encounter. This being the case, after a common
rotation by separate X gates, photons 2 and 4 exit the first
PBS via different output paths. Now photon 4, being hori-
zontally polarized, exits through the top path where it is de-
tected at D4. Photon 2, being vertically polarized, exits the
PBS via the right side and then passes through a Hadamard
gate rotating its state in accordance with Eq. �4.2�. After
passing through the next PBS photon 2 continues on its way
propagating toward detectors D5 and D6. If it happens to
trigger D5 photon 6 will then be detected at D6 in a hori-
zontal state in the event of six simultaneous detections. The
six-photon state corresponding to this set of events is given
by

d3

d5

V5V1

V1

V3
V3

d4

d2

d6

d1

H2,H4 V2,−V4

beam−splitter
polarization

mirror

�
� photon trap/
opaque block

�
�

PUMP

4

6

3

1 2

5

D4D3D2

D1

D5

D6

Type−II

Type−II

Type−II
HADAMARD

H6

X

X

X

PDC1

PDC2

PDC3

FIG. 4. �Color online� Schematic of a setup that can be used for the preparation of a decoherence-free logical zero state. Boxes adjacent
to detectors D1, D2, . . . ,D6 indicate possible photon states being detected in the event of six simultaneous detections. The X gates �X
	�x is a wave plate set to rotate the polarization by 90°� transform �H� into �V� and vice versa. The Hadamard gate transforms states
according to Eqs. �4.1� and �4.2�.
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��1,2,3,4,5,6
�1� � = − �V1V2H3H4V5H6� , �4.7�

which is indeed one of the terms forming a logical one. If
photon 2 is instead detected at D6 in a horizontal state, a
sixfold coincidence detection requires photon 6 to be de-
tected at D5 in a vertical state yielding the second possibility

��1,2,3,4,5,6
�2� � = �V1H2H3H4V5V6� . �4.8�

Again, this state can be seen to be one of the terms forming
logical one. Note that these are the only two states that can
trigger six simultaneous detections when photons 1, 3, and 5
are described by �V1H3V5�. However, if photons 1, 3, and 5
are in the state forming the second term in Eq. �4.6�, namely
�H1V3V5�, two more possibilities arise. The same type of ar-
gument shows that these states are given by

��1,2,3,4,5,6
�3� � = − �H1H2V3V4V5H6� , �4.9�

and

��1,2,3,4,5,6
�4� � = �H1H2V3H4V5V6� . �4.10�

These are the only four states that are compatible with a
sixfold coincidence detection. The setup just described can
therefore be used to prepare the four-term coherent superpo-
sition representing the decoherence-free logical one state.

E. Preparation of a maximally entangled two-qutrit state

As discussed in �37�, a maximally entangled state of two
qutrits can take one of two forms, one given by Eq. �2.7�,
and one by

��m� =
1
�3

��00� + �11� + �22�� . �4.11�

The difference in the barred and unbarred states, as a practi-
cal matter, is the way in which each transforms. The state
given in Eq. �2.7� is decoherence-free while ��m� is not. This
is due to the difference in transformation properties. The
transformation matrices will not be repeated here, but were
given in Ref. �41� in a particular parametrization.

In terms of the definitions above for �0�, �1�, and �2�, a
maximally entangled state takes the form

��max� =
1
�3

��V1V2V3V4� + �V1H2V3H4� + �H1H2H3H4�� .

�4.12�

This particular state may be postselected based on a fourfold
coincidence detection using the optical arrangement shown
in Fig. 6. Photons emitted into paths 2 and 4 are both proba-
bilistically transmitted through identical gates, shown in
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opaque block

�
�

PUMP

4

6

3

beam−splitter
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Fig. 7, before being detected by either c or d. Since photon
pairs are emitted in accordance with Eq. �3.2� the only three
possible states that can produce four simultaneous detections
at a, b, c, and d are those forming the superposition of Eq.
�4.12�. The transmission coefficients of the gates �Fig. 7� on
the right for states �H� and �V� ensure that the probabilities of
each term forming this superposition are equal �see the Ap-
pendix for more details�.

For this state to be decoherence-free, we would require, as
mentioned in Sec. II B, each qutrit to transform differently,
and in some sense they must transform in an opposite fash-
ion. Clearly if they transform in the same way, the state ��m�

in Eq. �4.11� is changed. Take for example the transformation

�j� → exp�− i� j��j� ,

where � j is different for each j�=0,1 ,2�, for example � j

=�j /10. In this case the new state is different from the origi-
nal even after an overall phase is extracted and even though
each has been transformed in the same way. This is not a
collective decoherence-free state. On the other hand, con-
sider the simultaneous transformation

�j� → exp�− i� j��j� ,

for the basis states of the first and

�j� → exp�+ i� j��j� ,

for the basis states of the second qutrit. In this case ��m� is
unchanged from the original. In general, the first qutrit must
transform according to the conjugate transformation of the
second qutrit. This is the sense in which the representations
need to be “opposite” of each other. The most general such
transformations are given by D�0,1� and D�1,0� in Ref. �41�.
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b c
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FIG. 6. �Color online� Optical arrangement that may be used for the preparation of a maximally entangled two-qutrit state.
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FIG. 7. �Color online� Gate used in the preparation of a maxi-
mally entangled two-qutrit state. For ���in��= �H� the gate outputs
the state ���out��= 1

2 ��H�+ �V�+�2 �vacuum��. For ���in��= �V� the
corresponding output is ���out��= 1
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Many decoherence-free, or noiseless subsystems which
have been described theoretically, and which have been pro-
duced in the laboratory, have been those which are immune
to collective errors. This can be explained, in part, by the
simple structure of such states as explained in Ref. �37�.
However, here we have provided a particular example of a
state which is decoherence-free under the simultaneous, but
not collective transformation of two states.

V. CONCLUSION

We have presented a proposal for the physical preparation
of a single decoherence-free qubit embedded in the product
space of three physical qutrits. Two similar setups have been
described to complete this task; one for the preparation of the
logical zero state, and the other for the preparation of the
logical one state. They are similar up to the inclusion �or
exclusion� of an X gate, the location of a Hadamard gate, and
the replacement of two polarized �unpolarized� beam split-
ters with two unpolarized �polarized� beam splitters. Distin-
guishing between logical zero and logical one after being
prepared in this way could prove to be a formidable task
since the basic constituents of these postselected states arriv-
ing at a particular detector �assumed here to be a quantum
nondemolition device� all carry the same polarization and are
by necessity indistinguishable. Decoding these states and
implementing the derived logical gates compatible with a
three-qutrit NS undergoing collective noise �54,55� are sub-
jects for future research.

We have also presented an experimental arrangement for
the production of a maximally entangled state of two qutrits,
which when transformed properly, exhibits decoherence-free
effects. This will enable the determination of the experimen-
tal difference between inequivalent representations of qutrit
states. Furthermore this experiment provides an example of a
state which would remain unchanged under the simulta-
neous, but not identical, transformations of its constituents.

A possible downside to our proposed experiments is that
they produce the desired states only in the case of fourfold
�for the singlet� and sixfold �for the logical states� coinci-
dence detections, which might be quite infrequent. The au-
thors in Ref. �47� have realized such sixfold coincidence de-
tections but the rate at which they occurred remains unclear.
If this hurdle is not too high the proposed proof-of-principal
experiment could be extended for practical use by using
quantum nondemolition �QND� measurements at each of the
six outputs. In Ref. �56� a proposal for such QND devices
was given that uses only beam splitters and photodetectors
along with auxiliary photons. Another concern is due to the
fact that a n-pair emission in a single crystal is nearly as
probable as n down conversions taking place in separate
crystals �57–59�. If we restrict our attention for the moment
to the case of only three simultaneous down-conversion pro-
cesses occurring, we see that the arrangement used to prepare
the logical zero state only yields sixfold detections in the
event of single-pair emissions in each of the crystals. On the
other hand, the arrangement used to prepare the logical one
state can produce a sixfold detection when a double pair is
produced in one of the crystals while no pairs are produced

in another. This apparent problem vanishes if we recognize
the fact that the numbers attached to specific photons serve
merely as labels indicating which particular spatial mode
into which a particular photon was emitted. If two down
conversions happen to take place in PDC1, for example,
while no photons are converted in PDC2, the arrangement
can still postselect the appropriate superposition based on six
detections as long as we label photons properly. This same
reasoning applies to the arrangement used to prepare the
maximally entangled state in the case of double emissions in
one of the two crystals and none in the other. If we extend
our analysis to situations where more than three down con-
versions take place simultaneously we cannot address the
problem by simple label considerations since then there
might be more than six photons arriving at the detectors. If
the detectors were number resolving this would not be an
issue since we could postselect states based on the arrival
and detection of six and only six photons at the appropriate
detectors. Although the probability of witnessing higher
numbers of photon pairs created simultaneously dramatically
decreases with increasing pairs, these problems could be
eliminated in the future if improvements in entangled photon
sources such as those presented in Ref. �60� are made.

Path indistinguishability is also essential for the prepara-
tion of quantum superpositions. When a single pump photon
decays into a pair of daughters they emerge highly correlated
in frequency due to the conservation of energy, and their
“spontaneous” emission clearly signifies a highly temporal
correlation as well. These correlations, along with others,
could in principal be exploited to determine which photon
pair arrived at which detectors. In order to account for these
possible exploitations the authors in Ref. �48� suggested
placing narrow-band filters, centered at half of the pump fre-
quency, in the photon paths. This would not only minimize
the frequency differences of detected photons, but also re-
duce the temporal correlations since there is an uncertainty in
the time in which it takes to pass through one of them. If the
uncertainty in the amount of time in which it takes to pass
through a filter was high enough to establish an intrinsic
uncertainty in the arrival times of photons belonging to a pair
yet still remained compatible with the resolution time of a
detector so that six nearly simultaneous detections could oc-
cur, the condition of path indistinguishability could be real-
istically met.

We believe these proposed experiments are able to be
performed using readily available technologies and will al-
low the exploration of new types of qutrit states—
decoherence-free subspaces and noiseless subsystems com-
prised of qutrit states.

Note added in proof. Recently, several authors have pre-
sented related experiments which help show the feasibility of
our proposed experiments �61,62�.
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APPENDIX: DETAILED CALCULATIONS OF MODE
TRANSFORMATIONS

The states postselected by coincidence detections at the
appropriate outputs of the optical arrangements shown in this
paper may be calculated in terms of the transformations of
the down-converted modes. If we let p̂H,i

† , and p̂V,i
† respec-

tively represent the creation operators for the horizontal and
vertical polarization modes of the ith photon �i
=1,2 ,3 ,4 ,5 ,6� then a successful down-conversion in PDC1

may be described by the operator Ô1,2
† , where Ô1,2

† is given
by

Ô1,2
† = �p̂H,1

† p̂V,2
† + p̂V,1

† p̂H,2
† �/�2. �A1�

Similarly, a successful down conversion in PDC2 �PDC3�
can be described by the creation operators Ô3,4

† �Ô5,6
† �, where

Ô3,4
† �Ô5,6

† � are given by

Ô3,4
† = �p̂H,3

† p̂V,4
† + p̂V,3

† p̂H,4
† �/�2 �A2�

and

Ô5,6
† = �p̂H,5

† p̂V,6
† + p̂V,5

† p̂H,6
† �/�2. �A3�

The creation operator corresponding to the event of two in-
dependent down-conversion processes occurring simulta-
neously �one in PDC1 and another in PDC2� is thus given by

Ô1,2
† Ô3,4

† = �p̂H,1
† p̂V,2

† + p̂V,1
† p̂H,2

† ��p̂H,3
† p̂V,4

† + p̂V,3
† p̂H,4

† �/2

= �p̂H,1
† p̂V,2

† p̂H,3
† p̂V,4

† + p̂H,1
† p̂V,2

† p̂V,3
† p̂H,4

†

+ p̂V,1
† p̂H,2

† p̂H,3
† p̂V,4

† + p̂V,1
† p̂H,2

† p̂V,3
† p̂H,4

† �/2, �A4�

while the corresponding operator for three down-conversions
occurring �one in PDC1, one in PDC2, and one in PDC3� is
given by

Ô1,2
† Ô3,4

† Ô5,6
† = �p̂H,1

† p̂V,2
† + p̂V,1

† p̂H,2
† ��p̂H,3

† p̂V,4
† + p̂V,3

† p̂H,4
† ��p̂H,5

† p̂V,6
† + p̂V,5

† p̂H,6
† �/�8 = �p̂H,1

† p̂V,2
† p̂H,3

† p̂V,4
† p̂H,5

† p̂V,6
†

+ p̂H,1
† p̂V,2

† p̂H,3
† p̂V,4

† p̂V,5
† p̂H,6

† + p̂H,1
† p̂V,2

† p̂V,3
† p̂H,4

† p̂H,5
† p̂V,6

† + p̂H,1
† p̂V,2

† p̂V,3
† p̂H,4

† p̂V,5
† p̂H,6

† + p̂V,1
† p̂H,2

† p̂H,3
† p̂V,4

† p̂H,5
† p̂V,6

†

+ p̂V,1
† p̂H,2

† p̂H,3
† p̂V,4

† p̂V,5
† p̂H,6

† + p̂V,1
† p̂H,2

† p̂V,3
† p̂H,4

† p̂H,5
† p̂V,6

† + p̂V,1
† p̂H,2

† p̂V,3
† p̂H,4

† p̂V,5
† p̂H,6

† ��8. �A5�
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If we now label the optical modes at the detector outputs of

Fig. 4 by â†, b̂†, ĉ†, d̂†, ê†, and f̂† and label the other three

outputs by ĝ†, ĥ†, and î† the setup used to prepare the logical
zero state can be seen in Fig. 8 to transform the down-
converted modes according to the following relations:

p̂H,1
† → b̂V,1

† , p̂V,1
† → ĝV,1

† ,

p̂H,2
† → ĥV,2

† , p̂V,2
† → �d̂H,2

† + êV,2
† �/�2,

p̂H,3
† → ĝH,3

† , p̂V,3
† → âV,3

† ,

p̂H,4
† → �d̂H,4

† − êV,4
† �/�2, p̂V,4

† → ĥH,4
† ,

p̂H,5
† → îH,5

† , p̂V,5
† → ĉV,5

† ,

p̂H,6
† → f̂H,6

† , p̂V,6
† → d̂V,6

† . �A6�

Using these transformation relations the simultaneous down-
conversion operator in Eq. �A5� can then be calculated to
transform according to the equation below. If detectors are

placed at the outputs of the optical modes â†, b̂†, ĉ†, d̂†, ê†,

and f̂† and each register a detection simultaneously the state
postselected in this way is a superposition of the states cor-
responding to the terms in Eq. �A7� containing all six of
these modes. The two terms satisfying this requirement are

−b̂V,1
† d̂H,2

† âV,3
† êV,4

† ĉV,5
† f̂H,6

† and b̂V,1
† êV,2

† âV,3
† d̂H,4

† ĉV,5
† f̂H,6

† �both
scaled by the same coefficient� which yield the logical zero
state given by Eq. �3.5�:

Ô1,2
† Ô3,4

† Ô5,6
† → 
b̂V,1

† �d̂H,2
† + êV,2

† �� 1
�2

�ĝH,3
† ĥH,4

† îH,5
† d̂V,6

† + b̂V,1
† �d̂H,2

† + êV,2
† �� 1

�2
�ĝH,3

† ĥH,4
† ĉV,5

† f̂H,6
† + b̂V,1

† �d̂H,2
† + êV,2

† �� 1
�2

�âV,3
† �d̂H,4

†

− êV,4
† �� 1

�2
� îH,5

† d̂V,6
† + b̂V,1

† �d̂H,2
† + êV,2

† �� 1
�2

�âV,3
† �d̂H,4

† − êV,4
† �� 1

�2
�ĉV,5

† f̂H,6
† + ĝV,1

† ĥV,2
† ĝH,3

† ĥH,4
† îH,5

† d̂V,6
†

+ ĝV,1
† ĥV,2

† ĝH,3
† ĥH,4

† ĉV,5
† f̂H,6

† + ĝV,1
† ĥV,2

† âV,3
† �d̂H,4

† − êV,4
† �� 1

�2
� îH,5

† d̂V,6
† + ĝV,1

† ĥV,2
† âV,3

† �d̂H,4
† − êV,4

† �� 1
�2

�ĉV,5
† f̂H,6

† � 1
�8

� .

�A7�

The setup shown in Fig. 9, used to prepare the logical one
state, transforms the down-converted modes according to the
following relations �ignoring the unimportant phase shifts in

modes ĝ† and ĥ†�, Eq. �A8�

p̂H,1
† → �ĝH,1

† + b̂H,1
† �

1
�2

, p̂V,1
† → �ĝV,1

† + âV,1
† �

1
�2

,

p̂H,2
† → ��2ĥV,2

† + f̂H,2
† − êV,2

† � 1
2 ,

p̂V,2
† → �ĥH,2

† + d̂H,2
† �

1
�2

, p̂H,3
† → �ĝH,3

† + b̂H,3
† �

1
�2

,

p̂V,3
† → �ĝV,3

† + âV,3
† �

1
�2

,

p̂H,4
† → ��2ĥV,4

† + f̂H,4
† − êV,4

† �
1

2
, p̂V,4

† → �ĥH,4
† + d̂H,4

† �
1
�2

,

p̂H,5
† → îH,5

† ,

p̂V,5
† → ĉV,5

† , p̂H,6
† → � f̂H,6

† + êV,6
† �

1
�2

, p̂V,6
† → d̂V,6

† .

�A8�

These relations are used below to calculate the transforma-
tion of Eq. �A5�. Again, the terms containing each of the

modes â†, b̂†, ĉ†, d̂†, ê†, and f̂† are compatible with a sixfold
coincidence detection. Expanding Eq. �A9� reveals the four

terms b̂H,1
† d̂H,2

† âV,3
† f̂H,4

† ĉV,5
† êV,6

† , −b̂H,1
† d̂H,2

† âV,3
† êV,4

† ĉV,5
† f̂H,6

† ,

âV,1
† f̂H,2

† b̂H,3
† d̂H,4

† ĉV,5
† êV,6

† , and −âV,1
† êV,2

† b̂H,3
† d̂H,4

† ĉV,5
† f̂H,6

† �all
scaled by the same coefficient� which meet this requirement.
These terms correspond to the logical one state of Eq. �3.5�:
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Ô1,2
† Ô3,4

† Ô5,6
† → 
�ĝH,1

† + b̂H,1
† �� 1

�2
��ĥH,2

† + d̂H,2
† �� 1

�2
��ĝH,3

† + b̂H,3
† �� 1

�2
� + �ĥH,4

† + d̂H,4
† �� 1

�2
� îH,5

† d̂V,6
† + �ĝH,1

† + b̂H,1
† �� 1

�2
�

	�ĥH,2
† + d̂H,2

† �� 1
�2

��ĝH,3
† + b̂H,3

† �� 1
�2

� + �ĥH,4
† + d̂H,4

† �� 1
�2

�ĉV,5
† � f̂H,6

† + êV,6
† �� 1

�2
� + �ĝH,1

† + b̂H,1
† �� 1

�2
��ĥH,2

†

+ d̂H,2
† �� 1

�2
��ĝV,3

† + âV,3
† �� 1

�2
� + ��2ĥV,4

† + f̂H,4
† − êV,4

† ��1

2
� îH,5

† d̂V,6
† + �ĝH,1

† + b̂H,1
† �� 1

�2
��ĥH,2

† + d̂H,2
† �� 1

�2
�

	�ĝV,3
† + âV,3

† �� 1
�2

� + ��2ĥV,4
† + f̂H,4

† − êV,4
† ��1

2
�ĉV,5

† � f̂H,6
† + êV,6

† �� 1
�2

� + �ĝV,1
† + âV,1

† �� 1
�2

���2ĥV,2
† + f̂H,2

†

− êV,2
† ��1

2
� + �ĝH,3

† + b̂H,3
† �� 1

�2
��ĥH,4

† + d̂H,4
† �� 1

�2
� îH,5

† d̂V,6
† + �ĝV,1

† + âV,1
† �� 1

�2
���2ĥV,2

† + f̂H,2
† − êV,2

† ��1

2
�

+ �ĝH,3
† + b̂H,3

† �� 1
�2

��ĥH,4
† + d̂H,4

† �� 1
�2

�ĉV,5
† � f̂H,6

† + êV,6
† �� 1

�2
� + �ĝV,1

† + âV,1
† �� 1

�2
���2ĥV,2

† + f̂H,2
† − êV,2

† ��1

2
�

+ �ĝV,3
† + âV,3

† �� 1
�2

���2ĥV,4
† + f̂H,4

† − êV,4
† ��1

2
� îH,5

† d̂V,6
† + �ĝV,1

† + âV,1
† �� 1

�2
���2ĥV,2

† + f̂H,2
† − êV,2

† ��1

2
� + �ĝV,3

†

+ âV,3
† �� 1

�2
���2ĥV,4

† + f̂H,4
† − êV,4

† ��1

2
�ĉV,5

† � f̂H,6
† + êV,6

† �� 1
�2

�� 1
�8

� . �A9�
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FIG. 9. �Color online� Optical arrangement that may be used for the preparation of a decoherence-free logical one state.
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In Fig. 6 we see that the mode transformations corresponding
to the maximally entangled state arrangement are given by

p̂H,1
† → b̂H,1

† , p̂V,1
† → âV,1

† , p̂H,2
† → � f̂V,2

† + d̂V,2
† + f̂H,2

†

+ ĉH,2
† �/2,

p̂V,2
† → � f̂H,2

† + ĉH,2
† + �2êV,2

† �/2, p̂H,3
† → âH,3

† , p̂V,3
† → b̂V,3

† ,

p̂H,4
† → �ĥV,4

† + ĉV,4
† + ĥH,4

† + d̂H,4
† �/2, �A10�

p̂V,4
† → �ĥH,4

† + d̂H,4
† + �2ĝV,4

† �/2.

Using these transformation relations the simultaneous down-
conversion operator in Eq. �A4� can then be calculated to
transform according to Eq. �A11� below.

If detectors are placed at the outputs of the optical modes
â†, b̂†, ĉ†, and d̂† and each register a detection simulta-
neously the state postselected in this way is a superposition
of the states corresponding to the terms in Eq. �A11� contain-
ing all four of these modes. The three terms satisfying this
requirement are b̂H,1

† ĉH,2
† âH,3

† d̂H,4
† , âV,1

† d̂V,2
† b̂V,3

† ĉV,4
† , and

âV,1
† ĉH,2

† b̂V,3
† d̂H,4

† �all scaled by the same coefficient� which
yield the state given by Eq. �4.12�.

Ô1,2
† Ô3,4

† → �� 1
4�b̂H,1

† � f̂H,2
† + ĉH,2

† + �2êV,2
† �âH,3

† �ĥH,4
† + d̂H,4

† + �2ĝV,4
† � + � 1

4��b̂H,1
† � f̂H,2

† + ĉH,2
† + �2êV,2

† �b̂V,3
†

	�ĥV,4
† + ĉV,4

† + ĥH,4
† + d̂H,4

† �� + � 1
4�âV,1

† � f̂V,2
† + d̂V,2

† + f̂H,2
† + ĉH,2

† �âH,3
† �ĥH,4

† + d̂H,4
† + �2ĝV,4

† �

+ � 1
4�âV,1

† � f̂V,2
† + d̂V,2

† + f̂H,2
† + ĉH,2

† �b̂V,3
† �ĥV,4

† + ĉV,4
† + ĥH,4

† + d̂H,4
† ��� 1
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