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We analyze the connections between entanglement dynamics and classical trajectories in a semiclassical

regime for two systems: A pair of coupled oscillators and the Jaynes-Cummings model. We find that entangle-
ment production depends on classical invariant tori and such phenomenon is closely related to the power
spectra of classical trajectories. Classical power spectrum with a larger number of frequency components
corresponds to larger entanglement. We introduce a frequency entropy to describe the classical frequency
distribution. It is found that there is good correspondence between the classical frequency entropies and the

maximum von Neumann entropies.
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I. INTRODUCTION

Problems of quantum-classical correspondence have been
extensively investigated [1]. Recent studies have further
shown the relations between entanglement production and
the underlying classical dynamics for chaotic systems. In the
early works on spin-boson system [2] and coupled kicked
tops [3], it was suggested that entanglement production can
be a good indicator of the regular to chaotic transition for
classical chaotic systems. This claim has been affirmed in
many subsequent studies [4—6]. Also it has been revised in
some recent works [7-9]. An investigation on a pair of
coupled kicked tops showed that increased chaos corre-
sponds to a saturation of entanglement production rate in the
weakly coupled regime [7]. Another study on Rydberg mol-
ecules [8] found that the quantum-classical correspondence
in entanglement production is related to the inelastic scatter-
ing. Especially, a semiclassical approach shown by Jacquod
[9] concluded that the entanglement production in bipartite
system depends on both the degree of chaos and the coupling
strength.

The aim of this paper is to further explore the connections
between entanglement production and the underlying classi-
cal trajectories in a semiclassical regime for chaotic systems.
In Sec. II, we investigate the dependence of entanglement
production on the classical trajectories for the two coupled
oscillators. We find that the production of entanglement is
strongly related to the classical trajectories. The maximum
values and rates of entanglement production correspond sys-
tematically to the classical invariant tori. When the initial
state lies at the edge of regular islands for the regular case or
in the chaotic sea for the mixed case, the production of en-
tanglement is maximized.

Furthermore, the above correspondences between the pro-
duction of entanglement and the classical trajectories are
closely related to the classical power spectrum. The more
complicated classical power spectra correspond to the larger
maximum values and rates of entanglement production. We
thus define a frequency entropy to measure the frequency
distribution of classical power spectrum. It is shown that
there is a good correspondence between the frequency entro-
pies and the maximum von Neumann entropies for different
classical trajectories (especially for regular ones). Such cor-
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respondence is also found in the investigations on the
Jaynes-Cumming model presented in Sec. III. This is be-
cause a classical power spectrum reveals the structure of the
energy levels involved in the quantum evolution [10-12].
The latter is directly connected to the entanglement produc-
tion [13]. Thus the classical power spectrum and the classical
frequency entropy can indicate the behavior of entanglement
production.

II. ENTANGLEMENT PRODUCTION IN A BIPARTITE
MODEL

We now study the entanglement of a bipartite system with
a model of two coupled oscillators, which is often used to
analyze decoherence [14] or construct qubit models [15,16].
The Hamiltonian reads

2 2 1
H:g—’;+§—;+5mw2q%+§mw%+)\q%q%, (1)
where m and w are the mass and frequency of any of the two
oscillators. N\ is the coupling parameter. This system is pro-
posed by Pullen and Edmonds [17] and used in many works
to study the classical-quantum correspondence for chaotic
systems [18].

In this section, using the model (1), we investigate the
entanglement dynamics in both the regular and mixed cases
to achieve a detailed picture of the relations between the
entanglement production and the classical trajectories. In the
calculations, we adopt the natural units for the harmonic os-
cillator, i.e., fiw for energy, \A/maw for length and VAma for
momentum. Accordingly, A in the model (1) is measured in
units of m*w?/#. The quantum dynamics is governed by the
evolution operator U(z)=exp[—iHr/#]. The connection be-
tween quantum and classical domains is done by the prepa-
ration of the initial coherent state |/(0))=|a,) ® |a,), whose
center is precisely on a classical phase space point
(q1-P1392-p2) With a=(g;+ip)/N2(1=1,2) [19]. In the
natural units, the state |@;) is a minimum uncertainty packet
centered on a phase point with a width O(1) in both the
length and momentum directions. Besides, the entanglement
is quantified by von Neumann entropy Sy [20].
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FIG. 1. Poincaré section (g,=110 and p,>0) for the regular
case. The three regular islands are marked along the arrow line with
A, M, and D. B(C) denotes the upper (lower) half part of M. Unit
of g, is Vi/mw, and that of p, is Vimo.

A. Entanglement production in the regular case

The classical dynamics of model (1) exhibits a regular
phase space with A=0.0075 and total energy E=58 (in the
natural units). In the classical phase space, we choose 21
classical trajectories to explore the connections between en-
tanglement production and classical dynamics. The Poincaré
section of these trajectories is shown in Fig. 1. The three
regular islands are marked with A, M, and D. B (C) denotes
the upper (lower) half part of the island M. In each regular
island, there are seven tori.

From the tori in the island A, M, and D, we pick up the
centers of the initial coherent states (CICS) along an arrow
line. As shown in Fig. 1, the arrow line starts from the origin
in A, passes through the innermost torus in M, and then
reaches the minimum torus in D. Between the arrow line and
the tori in A, B, C, and D, there are 27 cross points. We pick
up these cross points along the arrow line and display their
coordinates in Table I in turn (p, are determined by energy
conservation and thus are not shown hereafter). The rows A,
B, C, and D display the coordinates of the cross points
sampled from the tori in A, B, C, and D, respectively. For

TABLE I. Coordinates of the CICS sampled from the tori in
Fig. 1.

Regions (¢1/10,p,/10) with fixed ¢,=\10 and p,>0

A (0,0), (0,0.121), (2/9,0.242), (4/9,0.36), (1,0),
(1,0.458), (1,0.801);

B (0.74,1.08), (0.9,1.31), (0.92,1.53), (0.96,1.74),
(0.98,1.84), (1,1.95), (1,2.173);

C (1,2.173), (0.9,2.4072), (0.8,2.5234),

(0.6266,2.631), (0.33,2.8016), (0.245,2.933),
(0.126,3.0748);

D (0.1,3.11), (0.07,3.14), (0.06,3.17), (0.04,3.187),
(0.02,3.21), (0.01,3.2,32), (0,3.25576)
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FIG. 2. von Neumann entropy Sy vs time 7=wt for different
initial states (see Table I). The CICS for the entropy curves in (a),
(b), (c), and (d) are localized on the tori in A, B, C, and D (see Fig.
1), respectively. Unit of 7is o™
comparison purpose, the nodal coordinates taken from the
innermost torus in M are shown in both the rows B and C
with (g;,p;)=(110,2.17310).

The cross points chosen above are used as the CICS in the
quantum evolution. With E=58, the distance between any
two adjacent cross points is approximately equal to 1 in the
units used in this section. As mentioned above, the scales of
the initial states in the same units are O(1) in both the length
and momentum directions. Thus, the distance between any
two adjacent CICS is approximately equal to the scales of
the initial states. This makes sure that we are treating a semi-
classical regime.

With the CICS chosen above, we calculate the von Neu-
mann entropies Sy(f) and show the results in Fig. 2. The
entropy curves in Fig. 2(a) [Fig. 2(c)] from bottom to top
correspond to the CICS in the row A (C) of Table I from first
to last, while those in Fig. 2(b) [Fig. 2(d)] from top to bottom
correspondent to the CICS in the row B (D) from first to last.
Accordingly, the entropy curves in Figs. 2(a)-2(d) corre-
spond to the tori in A, B, C, and D in Fig. 1, respectively.
Especially, as the tori in A, B, C, and D enlarge from the
innermost to the outermost, the entropy curves in the corre-
sponding subfigure of Fig. 2 increase from bottom to top.

To clarify the dependence of entanglement production on
classical trajectories, we further calculate the maximum val-
ues of the entropy curves in Fig. 2 and show the results (i.e.,
the maximum von Neumann entropies) in Fig. 3. The maxi-
mum entropies S,, in Fig. 3 are arranged in the same order as
their corresponding CICS are picked up from the tori along
the arrow line in Fig. 1 (i.e., the CICS of the kth S, in Fig.
3 correspond to the kth cross point picked up from the tori
along the arrow line in Fig. 1).

In Fig. 3, the maximum von Neumann entropies S, vary
significantly with the corresponding classical invariant tori.
For instance, as the tori in the island A enlarge from the
innermost to the outermost, the corresponding S,,’s in Fig. 3
increase from the first square to the seventh square. Then, as
the tori in B shrink from the outermost to the innermost, the
values of S, in Fig. 3 decrease from the first diamond to the
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FIG. 3. Maximum von Neumann entropy S;, vs corresponding
classical trajectory. The squares, diamonds and triangles denotes the
Sy’s corresponding to the tori in A, M, and D (see Fig. 1),
respectively.

valley between “B” and “C.” For the CICS localized on the
tori in C and D, the curve of S, also varies with the classical
tori in a similar way. Roughly speaking, the value of S,
increases (decreases) with the enlargement (shrink) of the
classical tori and is maximized when the corresponding torus
lies at the edge of the regular islands. Furthermore, since
different entropy curves in Fig. 2 reach the saturation pla-
teaus almost at the same time, a larger S,, indicates a faster
generation of entanglement. Thus, the rate of entanglement
production also roughly increases (decreases) with the en-
largement (shrink) of the classical tori.

Besides, in the investigations, we also note that there is
good correspondence between the oscillations of the entropy
Sy(2) and those of the underlying classical coupling potential
Aq%(t)q%(t) for some classical trajectories. The oscillations of
classical coupling potential reveal the frequency distribution
of classical trajectory. We thus perform frequency analyses
of the classical trajectories and further find interesting con-
nections between the entanglement production and the clas-
sical power spectrum.

Classical power spectrum is used to analyze the frequen-
cies of classical motion [21]. For a classical trajectory, the
classical motion is generally multiply periodic, admitting the
Fourier expansion [22]

x(1) = X Xpu(Dexplim - (wt + 6)], )

where x() stands for some dynamical variable such as posi-
tion coordinate q(z), and @ are the frequencies related to the
actions I. The integer set m(m;,m,) goes from —o to +° and
the coefficients X,,(I) are dependent on I. With the Fourier
expansion (2), the frequencies of a classical trajectory can be
obtained using a numerical integration [22]

2

. )

T
f dt x,(t)exp(— iw't)

1
(@)= —Tlim=
2 0

T T—»

where x,(t) denotes the ath component of x(z). Specifically,
for the ath component of q(f) (a=1,2), g,
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FIG. 4. Power spectra of (a) ¢; and (b) g, for the trajectories
whose tori lie in the island A (see Fig. 1). The seven pairs of spectra
from top to bottom correspond to the seven tori in A from the
innermost to the outermost. Unit of o’ is w.

=3 n0m@Mexplim- (wr+6,)] and the power spectrum be-
comes I (w')=2,| 04?80’ -m- w).

With the EBK method shown in Ref. [21], we calculate
the classical power spectra of ¢,(t)(a=1,2) for the 21 clas-
sical trajectories chosen above (the evolution time 7=wt
=2!7). Figures 4 and 5 display the results for the trajectories
whose tori lie in A and B (see Fig. 1), respectively. The
results for the tori in D (C) are similar to those for the tori in
A (B) and thus are not shown here. For comparison purpose,
the strength axis in the power spectrum is plotted in logarith-
mic scale (i.e., In[/(w’)] hereafter).

The seven pairs of power spectra in Fig. 4 from top to
bottom correspond to the seven entropy curves in Fig. 2(a)
from bottom to top, while those in Fig. 5 from top to bottom
correspond to the seven Sy() curves in Fig. 2(b) from top to
bottom. It is clear that more complicated power spectra cor-
respond to higher maximum values and faster rates of en-
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FIG. 5. As in Fig. 4 but for the trajectories whose tori lie in the
island M (see Fig. 1). The seven pairs of spectra from top to bottom
correspond to the seven tori in B or C from the innermost to the
outermost. Unit of ' is w.
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FIG. 6. Density spectrum {p,,} vs corresponding eigenenergy
E,. The spectra in the column (a) [(b)] from top to bottom corre-
spond to the CICS in the row A (B) of Table I from first to last. Unit
of E, is fiw.

tanglement production. Such correspondence is also found in
the investigations related to the tori in C and D in Fig. 1.

In the spectra in Figs. 4 and 5, there are sharp lines at the
frequencies w’. Each line corresponds to a transition from
one energy level to another. Its strength is related to a physi-
cal process, which involves the motion of the two particles
[22]. Thus, classical power spectrum indicates the energy
levels involved in the corresponding quantum evolution. The
latter can be revealed by quantum density spectrum.

Quantum density spectrum is expressed as p,,
=(n|p(t)|n) [13], where p(t) is the quantum density at time ¢
and |n) are the eigenvectors of the Hamiltonian with E, as
the corresponding eigenvalues. According to Ghose et al.
[13], a larger set of {p,,,} correspond to a faster generation of
entanglement in the regular to chaotic transition. Figures 6(a)
and 6(b) display the quantum density spectra for the CICS
localized on the tori in A and B, respectively. The seven
spectra in Fig. 6(a) from top to bottom correspond to the
seven pairs of classical power spectra in Fig. 4 from top to
bottom. The same correspondence also holds between the
quantum density spectra in Fig. 6(b) and the classical power
spectra in Fig. 5. From the above comparisons, we can see
that more complicated classical power spectrum corresponds
to larger set of {p,,}. Since {p,,} is closely related to quan-
tum entropy [13], the correspondence between the classical
power spectrum and the quantum density spectrum indicates
the connections between the entanglement production and
the classical trajectories.

B. Entanglement production in the mixed case

With A=0.0075 and E=150.75 (in units of Aw), the clas-
sical dynamics of the Hamiltonian (1) exhibits a mixed phase
space. In the classical phase space, we choose 17 regular
classical trajectories and four chaotic ones, and show their
Poincaré section in Fig. 7. The three islands formed by the
regular trajectories are marked along the arrow line with A,
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FIG. 7. Poincaré section (q2=\e“g and p,>0) for the classical
trajectories chosen in the mixed case. The three islands are marked
along the arrow line with A, M, and D. B (C) denotes the upper
(lower) half part of M. Unit of g; is Vi/mo, and that of p, is
Vimo.

M, and D. B(C) denotes the lower (half) part of the island
M. In each regular island, there are six tori.

Between the arrow line and the tori in A, M, and D, there
are 23 cross points. These cross points are used as the CICS
in the quantum evolution. Along the direction of the arrow
line in Fig. 7, we pick up these cross points and present their
coordinates in turn in the lower four rows of Table II. Spe-
cifically, the rows A, B, C, and D show the CICS sampled
from the tori in A, B, C, and D (see Fig. 7), respectively. For
comparison purpose, the coordinates of the CICS sampled
from the innermost torus in M are shown in both the rows B
and C with (g ,p,):(v’ﬁ/4,3.8737\e’%). Besides, we
sample four CICS from the chaotic sea and display their
coordinates in the first row of Table II. Similar to the regular
case, with E=150.75 (in units of #w), the distance between
any two CICS in Table II is also approximately equal to or
larger than the length and momentum scales of the initial
states. In addition, the initial states corresponding to the cha-
otic CICS are fully contained in the chaotic sea.

We calculate the von Neumann entropies for the CICS in
Table II, and present the results in Fig. 8. The topmost en-

TABLE II. Coordinates of the chaotic CICS and those of the
regular CICS sampled from the tori in Fig. 7.

Regions (q1/ @E,pl/ \;ﬁ) with fixed g,= V5 and p>>0

(1/4,2.2427), (=2.3963,1.3352), (~2.0246,
~1.1064), (1/4,4.4846):

Chaotic sea

A (0,0),  (1/36,0.2041),  (1/4,0),  (1/4,0.7155),
(1/4,1.5050), (1/4,1.9102);

B (1/4,2.9143), (1/4,3.0582), (1/4,3.2621),
(1/4,3.4660), (1/4,3.6699), (1/4,3.8737);

C (1/4,3.8737), (1/4,4.0690), (1/4,4.2440),

(1/4,4.4026), (1/4,4.5466), (1/4,4.6402);

D (1/4, 5.1357), (1/4,5.2687), (1/4,5.3412),
(1/4,5.4184), (1/4,5.4643), (1/4,5.4795).
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FIG. 8. von Neumann entropy Sy vs time 7=wt for the CICS on
different classical trajectories (see Table II). The topmost curves in
(a) to (d) correspond to the four chaotic CICS. The others in (a), (b),
(¢), and (d) correspond to the CICS on the tori in A, B, C, and D,

respectively. Unit of 7is o,

tropy curves in Figs. 8(a) to 8(d) correspond to the four
chaotic CICS in Table II from first to last. The lower six
entropy curves in Fig. 8(a) [Fig. 8(c)] from bottom to top
correspond to the six CICS in the row A (B) of Table II from
first to last, while the lower six entropy curves in Fig. 8(b)
[Fig. 8(d)] from top to bottom correspond to the six CICS in
the row B (D) of Table II from first to last.

We further calculate the maximum values S;, of the en-
tropy curves in Fig. 8 and display the results in Fig. 9. The
four S;,’s marked with circles from first to last correspond to
the four chaotic CICS in Table II from first to last. The Sj,’s
marked with squares, diamonds, and triangles correspond to
the regular CICS localized on the tori in the island A, M, and
D, respectively. Similar to the regular case, the S;,’s obtained
with the regular CICS are arranged in Fig. 9 in the same
order as their corresponding CICS are sampled from the tori
along the arrow line in Fig. 7. For instance, the CICS of the
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6_
5_
4
o
3_
24
—-A
1. —-M
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0 3 6 12 15 18 21 24 27

9
Classic Orbit

FIG. 9. Maximum von Neumann entropy S, vs corresponding
classical trajectory. The circles correspond to the chaotic trajecto-
ries. The squares, diamonds and triangles correspond to the tori in
A, M, and D, respectively.
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FIG. 10. Power spectra of (a) g; and (b) ¢, for different classical
trajectories. The upper six pairs from top to bottom correspond to
the six tori in A (Fig. 7) from the innermost to the outermost. The
bottom pair corresponds to a chaotic trajectory. Unit of o’ is .

Sy’s numbered from one to six in Fig. 9 are sampled from
the six tori in A from the innermost to the outermost. In Fig.
9, the curve of S, varies with the classical tori and is maxi-
mized when the CICS lies in the chaotic sea. So do the
growth rates of the entropy curves as shown in Fig. 8.

We investigate the power spectra of all the above classical
trajectories with the EBK methods (the evolution time 7
=217y [21]. In Fig. 10, we exhibit the results for the six tori in
the island A and those for a chaotic trajectory with (g;,p;)
=(\«"E/ 4,2.2427410) (see Table II) as initial conditions. The
upper six pairs of spectra in Fig. 10 from top to bottom
correspond to the six tori in the island A from the innermost
to the outermost. Also they correspond, from top to bottom,
to the lower six entropy curves in Fig. 8(a) from bottom to
top. The bottom pair is the power spectra of the chaotic
trajectory and corresponds to the top entropy curve in Fig.
8(a). A comparison between Figs. 10 and 8(a) shows that
more complicated power spectra correspond to larger and
faster entanglement production. Such correspondence is also
found in the investigations on the relation between the en-
tanglement production and the classical power spectra for the
other classical trajectories. Especially, when the trajectory is
chaotic, the power spectrum is continuous and the corre-
sponding entanglement production is maximized.

In Fig. 8, there are relatively small differences in both the
maximum values and the growth rates between the four cha-
otic entropy curves. This is because the instabilities of the
chaotic trajectories are similar to each other, for the chaotic
power spectra are all continuous and the Lyapunov expo-
nents of the four chaotic trajectories are around 0.12+0.02.
This is in accord with the previous suggestion [3,9,23] that
the enhancement of entanglement production induced by
chaos depends on the Lyapunov exponent.

A comparison of Figs. 3 and 9 shows that the curve of Sy,
in Fig. 3 is similar to that in Fig. 9, though the classical
dynamics transits from the regular case to the mixed case.
Especially, the variation of S;, in Fig. 9 through the transition
to the chaotic trajectories is similar to that in Fig. 3 through

012312-5



SHI-HUI ZHANG AND QUAN-LIN JIE

T T T T T

Ll Hn”ywlll m Hh“u“.yl“ Hh“y:h .

1

RN R -
ttudlll ‘\Ji ”I\h]lﬂ‘dlnuh”\.H s

T T T T T T T

nn

=N
N
N
w
=
H
ma
S'a
=
o
-
~
=
o

FIG. 11. Density spectra {p,,,} vs corresponding eigenenergy E,,.
The upper six spectra from top to bottom correspond to the six
CICS in the row A of Table II from fist to last. The bottom one
correspond to the CICS localized in the chaotic sea with (q;.p))
=(110/4,2.2427y10). Unit of E,, is fiw.

the transition to the edges of the regular islands. This sug-
gests that entanglement production is an indicator not only of
the regular to chaotic transition but also of the transitions in
different regular classical trajectories.

To further investigate the quantum-classical correspon-
dence in entanglement production, we calculate the quantum
density spectra corresponding to the CICS shown in Table II.
In Fig. 11, we exhibit the results for the CICS shown in the
row A of Table II and_those for a chaotic CICS with
(ql,pl)z(\"10/4,2.2427V’T0). The seven density spectra in
Fig. 11 from top to bottom correspond to the seven entropy
curves in Fig. 8(a) from bottom to top. Also they correspond,
from top to bottom, to the classical power spectra in Fig. 10
from top to bottom. Similar to the regular case, a comparison
of Figs. 10 and 11 indicates that a larger set of frequency
components involved in the classical dymanics corresponds
to larger set of eigenstates involved in the quantum evolu-
tion.

C. Frequency entropy and quantum-classical correspondence

In the above investigations on the coupled oscillators, we
show that entanglement production depends systematically

PHYSICAL REVIEW A 77, 012312 (2008)

on classical invariant tori. When the initial state lies at the
edge of regular islands for the regular case or in the chaotic
sea for the mixed case, the entanglement production is maxi-
mized. As shown in the previous studies [3,9,23], the en-
hancement of entanglement production induced by chaos has
been investigated and explained by the methods related to
the Lyapunov exponents.

Here we further develop a practical method to describe
the dependence of entanglement production on classical tori
from the perspective of classical power spectra. We use
I}(w") to stand for the amplitude of the kth component in the
discrete power spectrum of g,(a=1,2). To describe the dis-
crete classical spectral distribution, we consider a new quan-
tity as

T ) =I{(w") | 2 I{e"). 4)
ak

We then define a frequency entropy Sy, as a measure of the
classical frequencies, i.e.,

Si== 2 J{(w)nJ(e"), ()
ak

which is used to distinguish different regular trajectories and
measure the stability of classical dynamics.

With the above method, we investigate the classical fre-
quency entropies of all the regular trajectories chosen in the
regular and mixed cases. The results are presented in Fig. 12.
The classical frequency entropies Sy, and the corresponding
maximum von Neumann entropies S,, are represented by
squares and circles, respectively. The S,,’s are shown in the
same way in Fig. 12(a) [Fig. 12(b)] as they are shown in Fig.
3 (Fig. 9). In Figs. 12(a) and 12(b), there is good correspon-
dence between the variations of Sy, and S, with the classical
trajectories. This clearly indicates the quantum-classical cor-
respondence in the production of entanglement.

For the continuous power spectrum of chaotic trajectories,
the summation over k in Egs. (4) and (5) is replaced by the
integral over the frequency ’. Using this method, we can
obtain the frequency entropies of classical chaotic trajecto-
ries. However, due to the continuity of chaotic power spec-
trum, the classical frequency entropies of chaotic trajectories
are not consistent with those of regular trajectories. Further
research will be needed to study the classical frequency en-
tropies of chaotic trajectories. It is conceivable, however, that
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in Fig. 9 the S),’s corresponding to the chaotic trajectories
are larger than those corresponding to the regular trajecto-
ries, for the chaotic power spectra are continuous and have
more frequency components.

As mentioned above, the enhancement of entanglement
induced by chaos has been discussed and explained by the
methods related to the Lyapunov exponent. Here, to further
understand the connections between the production of en-
tanglement and the power spectrum of regular classical tra-
jectories, we can get some clews from a general method of
quantum-classical correspondence presented by Brumer et
al. based on the Liouville mechanics [10-12]. Following this
method, the time evolution of a classical property x(7) can be
expressed as [10,12]

x(1) =t p(1)x] = 2 X, o expl— iNt], (6)
N a

where x(7) denotes some dynamical variable [e.g., position
coordinate q(z)] and p(z) is the classical density function.
The coefficient X, , depends on the initial conditions. The
parameter \ is the classical correspondence of A\y,=(En
—E,)/h [12], where E,(E,,) is the eigenvalue of the Hamil-
tonian with |n)(jm)) as the corresponding eigenstate. The
label « is the degeneracy related to \ [12].

For regular motion, A=k- @(I’) [12], where each member
of the integer set k goes from — to +o and w(I’) is the
frequency dependent on the action I'. By comparing Eq. (6)
with Eq. (2), one can see that the set of frequencies {w’
=m- w} in Eq. (2) are equivalent to {A=k-w(I')} in Eq. (6)
(each member of the integer set m also goes from — to +0).
Since A=k-@(I') corresponds to A\yy=(En—E,)/% in the
quantum counterpart, the frequency lines at @’ =m- w in the
classical power spectrum reveal the structure of the energy
levels involved in the quantum evolution. More complicated
classical power spectrum indicates larger set of eigenstates
extending over broader and denser quantum density spec-
trum (the latter can enhance the entanglement production
[13]). Such connection is also revealed in the comparisons
between the classical power spectra and the quantum density
spectra shown in the first two parts of this section. Similar to
the Lyapunov exponent, the classical power spectrum and the
classical frequency entropy suggest a simple method to indi-
cate the dependence of entanglement on classical dynamics.

III. ENTANGLEMENT PRODUCTION OF THE
JAYNES-CUMMINGS MODEL

To confirm the connection between the entanglement and
the classical frequency entropy, we perform similar investi-
gations on the Jaynes-Cummings model. The Hamiltonian
reads [2]

G G’
H=thwa'a+el,+—=(aJ,+d'J)+ —=(a'J, +al),
V2J \2J

()

where the first term corresponds to the free single-mode field
with frequency w, the second term corresponds to the N

PHYSICAL REVIEW A 77, 012312 (2008)

1 o, Z 1
4+

-8 -4 0 4 8

FIG. 13. Poincaré section (g,=0, p,>0) for the Jaynes-
Cummings model with E=40, J/2=14.5, G=0.25, and G'=0. ¢,
and p; are given in the natural units.

=2J two-level atoms with energy separation fie, and the
other terms are the interaction between the field and the at-
oms. Here, we set w=e=1 and use the natural units, i.e., #
=c=1.

The connection between the classical and quantum do-
mains is done by the choice of the initial states. Given a
point (q;,p;:¢2,p>) in the classical phase space, the corre-
sponding quantum initial state is [(0))=|w)® |v). [w)(jv))
are the atomic (field)-coherent states given by |w)=(1

+ww)e"+|J,-J) and |v>=e‘W”me”“T|0> with  w=(p,
+ig,)/ 4]~ (pi+q7) and v=(p,+igy) /2 [24]
The classical version of the Hamiltonian (7) is obtained

by a procedure as H(v,v" ;w,w")={(wv|H|wv). It can be
rewritten in terms of the phase-space variables as [25]

® &
H(q1,p1:92.p2) = E(Clg"'p%) + E(CI%"'P%_ 2J)

(g1 +p})
1 - ———(G,p1pr+ G_q190),

4J
(8)

where G,=G=G'.

Using the model (7), we investigate the connections be-
tween the von Neumann entropies and the frequency entro-
pies for different classical trajectories in both regular and
mixed cases. In the calculations, the evolution time for cal-
culating S, is approximately equal to 350; and that for cal-
culating S, is approximately equal to 5X 10° (in the natural
units).

The Poincaré section in Fig. 13 exhibits a regular phase
space of the model (8) with E=40. As shown in Fig. 13, we
pick up 15 CICS along the arrow line from different tori and
present their coordinates (g;,p,) in turn as follows: (0.1,
-5.005), (0.1,-4.6046), (0.1,-4.2042), (0.1,-3.8038),
(0.1,-3.4034), (0.1,-2.6026), (0.1,-1.8018), and (0.1,

012312-7
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FIG. 14. Maximum von Neumann entropy S, (solid) and clas-

sical frequency entropy Sg, (dotted) vs corresponding torus
(see Fig. 13).

—0.6006), from tori in the lower island; (0.1,1.8018),
(0.1,2.6026), (0.1,3.1534), (0.1,3.5538), (0.1,4.9542),
(0.1,4.3546), and (0.1,5.005), from the tori in the upper is-
land. For all the CICS in this section, ¢,=0, p,>0 and the
values of p, are determined by energy conservation.

Figure 14 shows the maximum von Neumann entropies
Sy (solid line) for the above 15 CICS and their correspond-
ing classical frequency entropies Sg, (dotted line). In Fig. 14,
the S},’s numbered from one to 15 correspond to the above
15 CICS from first to last. As shown in Fig. 14, the curves of
Sy and Sy, vary significantly with the underlying classical
trajectories. Furthermore, their variations with the classical
tori are synchronous.

Figure 15 shows the Poincaré section of the classical
Hamiltonian (8) in a mixed case. We sample the CICS from
different classical trajectories along the arrow line and show
their coordinates (g;,p;) in turn as follows: (0.1,-5.86),
(0.1,-5.0792), (0.1,-4.27), and (0.1,-3.4521), from the tori
in the island A; (2.21,-2.2924) and (2.424,-3.078), from

FIG. 15. Poincaré section (¢,=0 and p,>0) for the Jaynes-
Cummings model with E=35, J/2=12.5, G=0.4, and G'=0.25.
The three islands are marked along the arrow line with A, B, and C.
Units are as in Fig. 13.
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—e-Chaotic
44=A
—4-B
—-~+C

4.2-

4.0

3.8

2 4 9 8 10 12 14 16
Classical Oribt
FIG. 16. Maximum von Neumann entropy S,, vs corresponding
classical trajectory. The circles correspond to the chaotic trajecto-

ries. The squares, diamonds, and triangles correspond to the tori in
A, B, and C, respectively.

the chaotic sea; (4.21,-2.19), (4.9,-1.46), (4.9,-0.8),
(4.7471,-0.4992), and (4.7295,0.13558), from the tori in
the island B; (2.2302,-0.66822), from the chaotic sea;
(1.71259, 2.6883), (1.0029, 3.2417), (0.1, 3.5096), and (0.1,
3.9), from the tori in the island C.

We calculate the maximum von Neumann entropies Sy,
for the above 16 CICS and show the results in Fig. 16. Here,
the S),’s from first to last correspond to the above 16 CICS
from first to last. The curve of S, in Fig. 16 exhibits the
variation of the maximum entanglement with the underlying
classical trajectories. Among these classical trajectories,
there are 13 regular ones, whose tori lie in the island A, B,
and C (see Fig. 15). Figure 17 displays the classical fre-
quency entropies for these regular classical trajectories. In
Fig. 17, the squares and circles stand for the classical fre-
quency entropies and their corresponding maximum von
Neumann entropies, respectively. From Fig. 17, one also can
see that there is good correspondence between the maximum
von Neumann entropies and the classical frequency entro-
pies.

1.8
11.5
112 &

10.9

10.6
0 2 4 6 8 10 12 14
Classical Oribt

FIG. 17. Maximum von Neumann entropy S, (solid) and clas-
sical frequency entropy Sy (dotted) for the regular trajectories vs
corresponding tori shown in Fig. 15.
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IV. CONCLUSION

In this paper, using the model of coupled oscillators and
the Jaynes-Cummings system, we show that the entangle-
ment production of bipartite system changes systematically
with classical invariant tori in both the regular and mixed
cases. Furthermore, the dependence of entanglement on the
underlying classical trajectories is closely related to the clas-
sical power spectrum. The larger the number of classical fre-
quency components is, the larger the corresponding entangle-

PHYSICAL REVIEW A 77, 012312 (2008)

ment is. Such phenomena reveal the quantum-classical
correspondence in the entanglement production from the per-
spective of classical trajectories. This sheds light on the fur-
ther understanding of the quantum-classical correspondence
in the entanglement production of chaotic systems.
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