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Scaling properties of fidelity in the spin-1 anisotropic model
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By means of the density matrix renormalization group technique, the scaling relation of the fidelity suscep-
tibility proposed recently is verified for the spin-one XXZ spin chain with an on-site anisotropic term. More-
over, from the results of both the fidelity susceptibility and the entanglement entropy, the critical points and
some of the corresponding critical exponents are determined through a proper finite-size scaling analysis, and
these values agree with the findings in the literature. Thus our work provides a numerical support of the use of

the fidelity in detecting quantum phase transitions.
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Quantum phase transitions (QPTs) [1], driven by purely
quantum fluctuations, are characterized by the dramatic
changes in the ground state of a many-body system as the
controlling parameters in the system Hamiltonian are varied
across critical points. Due to latest advances in quantum-
information science [2], people attempt to characterize QPTs
from the perspective of quantum information. One of the
well-studied aspects is to explore the role of quantum en-
tanglement in identifying QPTs [3]. In particular, as a bipar-
tite entanglement measure, the entanglement entropy of a
block of length / for one-dimensional systems is shown to
exhibit qualitatively different scaling behaviors at and off
criticality [4—13]. The entanglement entropy saturates to a
finite bound as the length [ increases for noncritical (gapped)
systems [4—6], whose value can vary for different boundary
conditions [7]. However, the entanglement entropy increases
logarithmically for critical (gapless) systems [4,8—-13]. By
using conformal field theory, a universal scaling is expected
at a quantum critical point, and its expression depends again
on the boundary conditions. Thus the divergent character of
the entanglement entropy in the finite-size scaling can faith-
fully indicate the existence of the critical points for one-
dimensional systems.

In the last few years, the ground-state fidelity [14,15] (and
its second derivatives, the so-called “fidelity susceptibility”
[16]), another concept that emerged from quantum-
information science, has attracted much attention because of
their application to the analysis of QPTs [15-27]. As illus-
trated before in several concrete models, it seems that the
singularity in the fidelity susceptibility can be an effective
tool for detecting critical points. Quite recently general scal-
ing analyses of the fidelity susceptibility were proposed
[23,24]. As explicitly shown in Ref. [23], the fidelity suscep-
tibility S must be bounded above in the thermodynamical
limit for noncritical (gapped) systems containing only local
operators. However, for critical (gapless) systems of finite
size L, it fulfills scaling relations

S~L, Ay=2A,-2z-d, (1)

where d is the spatial dimension, z is the dynamic exponent,
and Ay is the scaling dimension of the transition-driving term
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in the Hamiltonian. This result implies that the QPTs at those
critical points with A, <0 can be detected by the power-law
divergent behaviors in S.

In this paper, the spin-one XXZ spin chain with a uniaxial
single-ion anisotropic term is investigated, and we focus our
attention on the verification of the predicted scaling behavior
of the fidelity susceptibility in Eq. (1). It is known that, while
the QPTs can in principle be unveiled by the knowledge of
the entanglement entropy and the ground-state fidelity, they
are usually difficult to be calculated due to the lack of knowl-
edge of the exact ground-state wave functions. Although nu-
merical exact diagonalization can always be employed to
evaluate the entanglement entropy and the fidelity for small
systems, this method may not be able to demonstrate the
scaling behaviors because of finite-size effects. Thus we need
to resort to the density matrix renormalization group
(DMRG) technique [28] for the calculations for systems of
large sizes. In the present work, both the entanglement en-
tropy and the fidelity susceptibility are evaluated by means
of the finite-system DMRG technique under open boundary
conditions for system sizes up to L=160. In our DMRG cal-
culations, up to 300 states per block are kept and five DMRG
sweeps are performed for the truncation error being about
107'°, We find that developing peaks do appear in both mea-
surements, which signal precursors of the QPTs. Applying a
proper finite-size scaling analysis, the proposed scaling rela-
tion in Eq. (1) is confirmed numerically. In addition, the
critical points in the thermodynamic limit and some of the
corresponding critical exponents are determined through a
proper finite-size scaling analysis, and these values agree
with the results in the literature. Moreover, the results com-
ing from both the entanglement entropy and the fidelity sus-
ceptibility are consistent each other. This implies that both
measurements are equally suited for revealing QPTs and pin-
ning down the critical points in the present case.

The Hamiltonian for spin-one XXZ spin chains of L sites
with an on-site anisotropic term is

L-1 L
H=2 (i85, + SIS0, + S35, + D2 (592, (2)
J=1 J=1

Jor J

where S7 (@=x,y,z) are the spin-one operators at the jth
lattice site. N and D parametrize the Ising-like and the
uniaxial single-ion anisotropies, respectively. The full phase
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diagram consists of six different phases [29,30] (see Refs.
[31-33] for recent numerical determinations). On the A >0
half-plane, there consists three phases known as the Haldane,
large-D, and Néel phases. All these phases show a nonzero
energy gap above the ground state. Between these phases,
various types of phase transitions take place. There is a
Gaussian transition between the Haldane and large-D phases
and an Ising transition between the Néel and Haldane phases.
These two transitions merge at a tricritical point A =3.20 and
D=2.90 [31,32], where the Haldane phase disappears and
the Néel-large-D transition becomes first order. Here we
consider only the Gaussian and Ising transitions at A=1. In
this case, it has been found that, as D is decreased from a
large value, one first meets a Gaussian transition from the
large-D to Haldane phases at the critical point D.=0.99, and
then an Ising transition from the Haldane to Néel phases at
.=-0.31[31,33].

For the convenience of the following discussions, some
details of the Ising and the Gaussian transitions are reviewed
[1]. Both transition lines are of second order with a dynamic
exponent z=1. Nevertheless, the former is described by con-
formal field theory (CFT) with a central charge ¢=1/2, while
the latter by a ¢=1 CFT [32]. Moreover, their singular be-
haviors with the universality class of the transition, i.e., criti-
cal exponents, can be different. For the Ising transition, the
correlation length critical exponent v=1 and the scaling di-
mension of the transition-driving term in the Hamiltonian
Ay=1 are known [1]. However, for the Gaussian transition
between the Haldane and the large-D phase, it is found that
the low-energy effective continuum theory can be described
by the sine-Gordon model [32,34]

1 —
Hyg =[P+ (2,07 - Seos(amkd),  (3)
a

where IT and @ are the conjugate bosonic phase fields, and a
is a short-distance cutoff of the order of the lattice spacing.
The coefficient uoc(D—-D,) in the vicinity of the critical
point D, for a given A, and thus becomes zero at the transi-
tion point. The value of the Luttinger-liquid parameter K
varies continuously between 1/2 and 2 along the critical line.
We note that all the scaling dimensions and the critical ex-
ponents are determined by a single parameter K. Conse-
quently, they change continuously along the critical line.
From sine-Gordon theory [35], it is found that the critical
exponent of the correlation length v=1/(2-K) and the scal-
ing dimension Ay=K for the transition-driving term
cos(V4mTKD).

In the following, our DMRG results are presented in order
[36]. The findings of the fidelity susceptibility S(D) and the
ground-state fidelity F(D,D+ ) are shown in Fig. 1. The
fidelity susceptibility, or the second derivative of the fidelity,
is calculated by [18,20]

Sy lim2[1 —~FAD,D+9)]

6—0 L52 ’ (4)

where the ground-state fidelity (or the modulus of the over-
lap) is given by [15,37]
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FIG. 1. (Color online) Fidelity susceptibility S(D) for the spin-1
XXZ spin chain in Eq. (2) as functions of D for various sizes L with
N=1. The inset shows the fidelity F(D,D+ &) as functions of D for
the corresponding sizes. Here we take 6=1073.

F(D.D + 6) = |(¥(D)|Wo(D + 6))| (5)

with |Wy(D)) and |W,(D+ 8)) being two normalized ground
states corresponding to neighboring Hamiltonian parameters.
In our calculations, 6=1072 is used. As shown in the inset of
Fig. 1, drops in the ground-state fidelity are observed, which
signal precursors of the Gaussian and the Ising transitions in
the model under consideration. The drops in F(D,D+ ) at
the right-hand side show the Gaussian transition, while those
on the left-hand side give the Ising one. Further evidence for
indicating QPTs is provided by the results of S(D). As seen
from Fig. 1, the maximum values S,,,, in the fidelity suscep-
tibility grow with increasing size, and thus indicate diver-
gence in the L— o limit (see also Fig. 4). From the scaling
analysis in Ref. [23], these divergent behaviors in S must
imply the appearance of the QPTs. Applying the finite-size
scaling, the critical points D, in the thermodynamic limit can
be determined from the locations D, (L) of the local
maxima in S(D) on a size-L system (see Fig. 3).

As mentioned before, the divergent character of the en-
tanglement entropy can also show the existence of the QPTs.
Thus the entanglement entropy is evaluated for comparison.
Here we consider the entanglement entropy, or the von Neu-
mann entropy of the reduced density matrix pg(D) of the
right-hand block of L/2 contiguous spins

&E(D) == Tr[ pr(D)log, pr(D)]. (6)

Our DMRG results are shown in Fig. 2. It is found that, far
away from the critical points, £(D) has no size dependence,
as expected for the gapped phases. Nevertheless, two peaks
develop as size L increases. Again, these peaks indicate the
existence of the Gaussian and the Ising transitions, and the
corresponding critical points D, can be deduced from the
locations D,,,(L) of the local maxima in £(D) on a size-L
system, as discussed below.
According to the finite-size scaling theory [38], one has
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FIG. 2. (Color online) Entanglement entropy (D) for the spin-1
XXZ spin chain in Eq. (2) as functions of D for various sizes L with
A=1.

|Dmax(L) - Dc| & L_l/v’ (7)

where D,. is the critical point in the thermodynamic limit and
v is the critical exponent of the correlation length. Thus D,
can be determined by an extrapolation procedure. The results
for the Haldane—large-D and the Haldane-Néel transitions
are shown in Fig. 3. For the Gaussian transition between the
Haldane and the large-D phases, both extrapolations give
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FIG. 3. Finite-size scaling of D, versus L™, The full lines
are least square straight line fits for sizes with L=100. Top: the
Haldane—large-D transition, where v=1.42 (v=1.45) for those
Dpay’s corresponding to the local maxima in the curves of £ (S).
Bottom: the Haldane-Néel transition, where »=0.90 (v=1.05) for
those D, ’s corresponding to the local maxima in the curves of £
(S).
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FIG. 4. The log-log plot of S, for various sizes L. The full
lines are least square straight line fits for sizes with L=100.

D.=0.97 as shown in the top panel of Fig. 3. The critical
exponent of the correlation v=1.42 for the data of D, (L)
obtained from &, while v=1.45 for those from S. Because of
the relation v=1/(2—K), the Luttinger-liquid parameter
K=1.30 (K=1.31) for the data related to £ (S). We find that
the values obtained from the measurements of £ and S agree
each other, and they are consistent with the previous findings
[32,39], where D.=0.99 and K=1.328. For the Ising
transition between the Néel and the Haldane phases,
D_.=-0.31 for both extrapolations as shown in the bottom
panel of Fig. 3. The critical exponent of the correlation
v=0.90 for the data of D, obtained from &, while
v==1.05 for those from S. Again, the value of D, agrees with
the previous result (D,=-0.31) [33,39], and our findings of v
are consistent with the theoretical prediction (v=1) for the
Ising transition. From the above discussions, we find that
both the entanglement entropy and the fidelity susceptibility
are equally suited for revealing the critical behaviors in the
present case.

To verify the predicted critical scaling behavior of the
fidelity susceptibility in Eq. (1), the values S, (L) of the
local maxima for various sizes L are plotted in Fig. 4. It is
found that our data do fulfill the scaling relation in Eq. (1),
where A,=-0.33 (i.e., Ay=1.34) for the Gaussian transition
and Ap,=-0.89 (i.e., Ay=1.06) for the Ising one (d=1 and
z=1 are assumed here). The value of Ay for the Ising tran-
sition agrees with the predicted one Ay=1. Since A,=K for
the Gaussian transition, the Luttinger liquid parameter K de-
termined by the present finite-size scaling agrees with the
previous findings [32] and those determined by the critical
exponent ¥ coming from the scaling in Fig. 3. Thus the fact
that a single parameter K controls all the critical exponents
for the Gaussian transition is confirmed by our numerical
results.

In summary, the general scaling analysis of the fidelity
susceptibility proposed in Ref. [23] is verified by the present
DMRG calculations for the model of Eq. (2). The critical
points of the Gaussian and the Ising transitions, as well as
some of their critical exponents, are determined from the
perspective of quantum information. We note that, as seen
from Figs. 3 and 4, data for systems of smaller sizes can
deviate from the fitting lines obtained from the data for those
of larger sizes (say, L=100). Therefore, to avoid the finite-
size effects and to unveil the correct scaling behaviors at the
critical points, calculations for systems of large enough sizes
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are necessary. From our DMRG calculation for systems of
large sizes, we conclude that the fidelity susceptibility and
the entanglement entropy can have similar predictive power
for revealing QPTs.
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