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It is shown that if the loss of entanglement along a quantum channel is sufficiently small, then approximate
quantum error correction is possible, thereby generalizing what happens for coherent information. Explicit
bounds are obtained for the entanglement of formation and the distillable entanglement, and their validity
naturally extends to other bipartite entanglement measures in between. Robustness of derived criteria is ana-
lyzed and their tightness compared. Finally, as a by-product, we prove a bound quantifying how large the gap
between the entanglement of formation and distillable entanglement can be for any given finite dimensional
bipartite system, thus providing a sufficient condition for distillability in term of the entanglement of
formation.
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I. INTRODUCTION

The possibility of performing quantum error correction
obviously lies behind and justifies the vast efforts made up to
now in order to develop quantum computation techniques,
since it allows fault-tolerant computation �1� even when
quantum systems—in fact extremely sensitive to noise—are
considered as the basic carriers of information. Besides well-
known algebraic conditions for exact quantum error correc-
tion, which directly lead to algebraic quantum error correct-
ing codes �for a thorough presentation of quantum error
correction theory and a detailed account about the enormous
literature about it, see, e.g., Refs. �3,4��, an information-
theoretical approach to quantum error correction �5–7� can
shed some light on the dynamical processes which underlie
quantum noise, offering at the same time the opportunity to
better understand the conditions under which approximate
quantum error correction is feasible �8�. In the present paper,
we will be working within the latter scenario.

Approximate quantum error correction is not just a theo-
retical issue: in fact, in all practical implementations the ex-
perimenter can only rely upon some confidence level—exact
processes exist as abstract mathematical concepts only. Then,
conditions for approximate quantum error correction can
provide useful ways to test the reliability of a real apparatus.
In Ref. �8�, Schumacher and Westmoreland proved that an
adequate information-theoretical quantity to consider is the
coherent information: the loss of coherent information along
a quantum noisy channel is small if and only if the quantum
noisy channel can be approximately corrected. In a subse-
quent paper �9�, the same authors provided another criterion,
this time for exact quantum error correction: the loss of en-
tanglement �of formation� is null if and only if the channel
can be exactly corrected. They left open the question whether
the loss of entanglement provides not only a condition for
exact correction, but also a condition for approximate correc-
tion. In this paper we will show that this is actually the case,
extending our analysis to different entanglement measures,

thereby proving that many inequivalent ways to quantify en-
tanglement lead in fact to analogous conditions for approxi-
mate quantum error correction. We will moreover obtain, as
a by-product, an inequality directly relating the entanglement
of formation with the distillable entanglement present in a
general bipartite mixed quantum state. Such inequality
makes rigorous the intuition that the gap between the en-
tanglement of formation and distillable entanglement, which
is known to exist generically large for general mixed quan-
tum states �10�, cannot be completely arbitrary, in the sense
that, given a finite dimensional bipartite state, whenever the
entanglement of formation is “sufficiently close” to its maxi-
mum value, then also the distillable entanglement has to be
“correspondingly large.” �The concepts of “sufficiently
close” and “correspondingly large,” clearly depending on the
dimensions of the subsystems, will be quantitatively defined
below.�

The paper is organized as follows. In Sec. II we recall
some basic notions about quantum channels and their purifi-
cation into the unitary evolution of a larger closed system. In
Sec. III we present some known information-theoretical con-
ditions for exact as well as approximate quantum error cor-
rection. In Sec. IV we review a useful monogamy relation
satisfied by quantum and classical correlations in a tripartite
pure quantum state. Such a relation will be exploited in Sec.
V to show that to have a small loss of entanglement of for-
mation is equivalent to having small classical correlations
between the reference system and the environment. This
simple observation will lead us to the main result stated as
Theorem 1. Section VI extends the same analysis to other
entanglement measures. In particular, it is shown that for
certain entanglement measures it is possible to derive the
same result as for the entanglement of formation, but in a
simpler way, moreover greatly improving the tightness of the
bound. This second result, independent of the previous one,
is stated as Theorem 2. Section VII stresses two remarks by
comparing the two theorems obtained so far. The first remark
shows that they can be combined to explicitly obtain the
above-mentioned inequality, regarding the gap between en-
tanglement of formation and distillable entanglement for a
general bipartite mixed state. The second remark proposes a
possible connection between different bipartite entanglement*buscemi@qci.jst.go.jp; URL: http://www.qci.jst.go.jp/̃ buscemi
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measures, used here to derive different criteria for approxi-
mate quantum error correction, and correspondingly induced
topologies on the set of quantum channels. A brief summary
�Sec. VIII� concludes the paper.

II. TRIPARTITE PURIFICATION OF CHANNELS

Let us consider an input quantum system Q whose state is
described by the density matrix �Q defined on the �finite
dimensional� input Hilbert space HQ. A channel, mapping
states on HQ �that is, the set of nonnegative, trace-one op-
erators on HQ, briefly denoted as S�HQ�� to states on HQ�,
can be represented as a completely positive trace-preserving
�CP-TP� linear map E :S�HQ�→S�HQ��. We will use the

notation �Q�
ªE��Q�. It is a well-known fact that channels

can be written in their so-called Kraus form �11�, that is

E��Q� = �
m

Em�QEm
† , ∀ �Q,

where the Kraus operators Em satisfy the normalization con-
dition �mEm

† Em=1Q.
Besides the above-mentioned abstract definition, we can

give a different description of channels, by exploiting a pow-
erful representation theorem, a direct consequence of Stine-
spring theorem �12�, which states that all channels can be
realized by means of a suitable unitary interaction UQE of the
input system Q with an ancilla E �initialized in a fixed pure
state �0E��HE�, followed by a trace over the ancillary de-
grees of freedom, in formula

E��Q� = TrE��U
QE��Q

� �0��0�E��UQE�†� .

�We put a prime also on E because in general the output
ancilla system could be different from the input one.� Such a
purification of the channel can always be realized, without
loss of generality, with dim HE��dim HQ�dim HQ� and it
is unique up to local isometries on HE�. Since in the follow-
ing we will consider entropic quantities, such an isometric
freedom is completely innocuous.

It is now convenient to introduce a third reference system
R, which purifies �Q as

�RQ
ª ������RQ such that TrR��RQ� = �Q.

As before, this purification also is unique up to local isome-
tries on HR, so that S��Q�=S��R�, where �R=TrQ��RQ� and
S���ª−Tr�� log2 �� is the von Neumann entropy of the
state �. We can always choose, without loss of generality, the
reference to be isomorphic to the input, so that dim HR

=dim HQ. The reference system R goes untouched through
the interaction UQE, in such a way that the global state after
the system-environment interaction is pure and given by

��R�Q�E�� ª �1R
� UQE���RQ� � �0E� . �1�

�As before, we put a prime on R, even if it does not change,
just to recall that we are considering the reference system
after the unitary interaction.� Since we closed the whole sys-
tem, we will be able to play with entropic quantities exploit-
ing useful identities such as

IR�:Q���R�Q�� + IR�:E���R�E�� = 2S��R�� = 2S��Q� , �2�

where IA:B��AB�ªS��A�+S��B�−S��AB� is the quantum mu-
tual information �13,14� between A and B when the global
state is �AB, and �R�Q�, etc. are the reduced states calculated
from the global tripartite pure state ��R�Q�E�� in Eq. �1�.

III. KNOWN CONDITIONS FOR CHANNEL
CORRECTION

How well does a channel E preserve quantum informa-
tion? That is, how well does it preserve the entanglement that
an unknown input state shares with other systems? A way to
give a quantitative answer to this question is to introduce the
entanglement fidelity, that is a nonnegative quantity, depend-
ing on the channel E �we now suppose that the output space
coincides with the input one� and on the input state �Q, de-
fined as �15�

F��Q,E� ª ��RQ��id � E���RQ���RQ� ,

where �RQ is a purification of �Q as before. It can be proved
that F��Q ,E� does not depend on the particular purification
�RQ of �Q, and it is an intrinsic property of the channel,
given the input state. If F��Q ,E� is close to unity, then the
channel E acts almost similar to the identity channel id on the
support of �Q, that is, every state in the support of �Q is
faithfully transmitted by E, along with its eventual entangle-
ment with other quantum systems.

Another quantity which tells how much a given channel
preserves coherence is given by the coherent information
Ic��Q ,E�, defined as �5,16�

Ic��Q,E� ª S��Q�� − S��R�Q�� � S��Q� ,

where, consistently with the notation introduced in the pre-
vious section, �Q�

ªE��Q� and �R�Q�
ª �id � E��RQ. The co-

herent information can be negative and it plays a fundamen-
tal role in quantifying the rate at which a channel can reliably
transmit quantum information �16–18�.

Between entanglement fidelity and coherent information
there exists a close relation �8� which states that, given an
input state �Q and a channel E :S�HQ�→S�HQ��, there ex-

ists a channel R :S�HQ��→S�HQ� such that

F��Q,R � E� � 1 − 	2�S��Q� − Ic��Q,E�� . �3�

In other words, if the coherent information is close to the
input entropy, then the channel can be approximately cor-
rected �19�. Most important, also the converse statement is
true, in the sense that a sort of quantum Fano inequality
holds �15,20�

S��Q� − Ic��Q,E� � h„1 − F��Q,R � E�… , �4�

for all channels R, where h�x� is an appropriate positive,
concave �and hence continuous�, monotonically increasing
function such that limx→0 h�x�=0. In particular, for x�1 /2,
we can take h�x�ª4x log2�d /x�, where dªdim HQ �15,20�.
In other words, if a channel R happens to approximately
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correct the channel E, then Ic��Q ,E� has to be correspond-
ingly close to the input entropy. Notice that Eqs. �3� and �4�
are nothing but entropic formulations of the fact that ap-
proximate correction is possible if and only if the joint
reference-ancilla output state �R�E� is close to being factor-
ized, that is, �R�E�
�R� � �E� �about this point, see also Ref.
�21��. In fact,

S��Q� − Ic��Q,E� = IR�:E���R�E�� = D��R�E���R� � �E�� ,

where D�� ���ªTr�� log2 �−� log2 �� is the quantum rela-
tive entropy and can be understood as a kind of distance
between states.

From Eqs. �3� and �4�, it is an immediate corollary that
perfect correction �on the support of �Q� is possible if and
only if �5�

Ic��Q,E� = S��Q� .

However, coherent information is not the only quantity
which enjoys such a property. By introducing the entangle-
ment of formation, defined for a bipartite mixed state �AB as
�22�

Ef��AB� ª min
�pi, ��i

AB�
i:�ipi�i
AB=�AB

�
i

piE��i
AB� ,

where the minimum is taken over all possible pure state en-
semble decomposition of �AB as �AB=�ipi�i

AB and E��AB�
ªS�TrB��AB�� is the entanglement of the pure bipartite state
�AB, in Ref. �9� it is proved that perfect correction �on the
support of �Q� is possible if and only if

Ef��R�Q�� = S��Q� .

The “only if” part is not surprising, since it is known that �for
an elementary proof, see Sec. IV below�

Ic��Q,E� � Ef��R�Q�� , �5�

and the above relation can hold strictly �in fact, coherent
information can easily be negative�. Hence we immediately
obtain the analogous of Eq. �4�,

S��Q� − Ef��R�Q�� � h„1 − F��Q,R � E�… , �6�

that is, the existence of an approximately correcting channel
R implies that the entanglement of formation of �R�Q� is
close to S��Q� �23�.

In Ref. �9� the question was left open whether the con-
verse statement is also true, namely if the entanglement of
formation of �R�Q� is a robust measure of the correctability of
a channel. Before answering �affirmatively� this question, we
have to go back to the unitary realization of channels and
give an alternative interpretation of the entanglement of for-
mation.

IV. CLASSICAL, QUANTUM, AND TOTAL
CORRELATIONS

The entanglement of formation Ef��AB� is a well-behaved
measure of the quantum correlations existing between two

quantum systems A and B described by the joint state �AB.
On the other hand, the quantum mutual information IA:B��AB�
measures the total correlations, quantum as well as classical,
that a bipartite quantum system exhibits �24�. Notice that
both entanglement of formation and quantum mutual infor-
mation are by construction symmetric under the exchange of
A and B.

On the contrary, the quantity measuring the amount of
classical correlations in a bipartite quantum state loses such
a symmetry, and a logical direction of classical correlations
seems to naturally emerge. Such a quantity, proposed in Ref.
�25�, is defined as

CB→A��AB� ª max
�Pi

B
i

�S��A� − �
i

piS�TrB��AB�1A
� Pi

B��
pi

�� ,

where the maximum is taken over all possible positive-
operator-valued measures �POVMs� �Pi

B
i �that is, Pi
B	0 for

all i, and �iPi
B=1B� on the subsystem B and piªTr��BPi

B�.
Such a measure is asymmetric, since in general CB→A��AB�
�CA→B��AB�, and it is closely related to the assisted classi-
cal capacity of quantum channels �26�.

In Ref. �27� it is proved that for a tripartite pure state
��ABC� the relation CB→A��AB�+Ef��AC�=S��A� holds, where
�AB etc. are the reduced states of ��ABC�. In the case of a
channel, given the global state ��R�Q�E�� in Eq. �1�, we cor-
respondingly have

CE�→R���R�E�� + Ef��R�Q�� = S��Q� . �7�

We are now able to easily prove Eq. �5�. In fact, since
Ic��Q ,E�=S��Q�− IR�:E���R�E��, and from Eq. �7�, thanks to
the monotonicity of quantum relative entropy under the ac-
tion of channels, namely D�� ����D(E��� �E���),
∀ �� ,� ,E�, we have that

CE�→R���R�E�� � IR�:E���R�E�� , �8�

which in turn directly implies

Ic��Q,E� � Ef��R�Q�� .

V. ENTANGLEMENT OF FORMATION AND
APPROXIMATE CHANNEL CORRECTION

In this section we will present the main result, that is, the
loss of entanglement of formation is small if and only if the
channel can be approximately corrected. We saw before that
approximate correction is possible if and only if the joint
reference-ancilla output state �R�E� is almost factorized �8�.
We would then like to say that the loss of entanglement of
formation is small if and only if �R�E� is almost factorized.

The “if” part has already been written in the form of Eq.
�8�. In fact, if �R�E�
�R� � �E�, then S��R� � �E��
S��R�E��
thanks to Fannes’ continuity property, which implies that
IR�:E���R�E��
0, and, in turn, that CE�→R���R�E��
0, or,

equivalently, that Ef��R�Q��
S��Q� �see Eq. �7��.
To prove the “only if” part is a little trickier. We exploit

the existence, proved in Ref. �28� for every �finite� dimen-
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sion of the Hilbert space, of �rank-one� informationally com-
plete measurements, that are POVMs whose elements form a
basis for the operator space. In other words, there always
exists a POVM �Pi
i such that Tr�XPi�=0 for all i if and only
if X=0. Notice that this is the generalization of the usual
concept of quantum state tomography. Informationally com-

plete POVMs have a �generally nonunique� dual set �P̃i
i

such that the following reconstruction formula holds

�
i

Tr�XPi�P̃i = X, ∀ X . �9�

Notice that the dual operators P̃i are generally nonpositive,
but can always be chosen Hermitian �29�. We are now in
position to write the following chain of inequalities ��X�1
ªTr�X� denotes the trace norm�:

��R�E� − �R� � �E��1
2 = ��

i

pi��i
R� � P̃i

E� − �R� � P̃i
E���

1

2

� �
i

pi���i
R� − �R�� � P̃i

E��1
2

� K�
i

pi��i
R� − �R��1

2

� 2K�
i

piD��i
R���R��

� 2KCE�→R���R�E��

= 2K�S��Q� − Ef��R�Q��� . �10�

Let us explain one by one all the passages in the above
equation.

�i� In the first line we applied identity �9� to the subsystem

E�, where �Pi
E�
i is an informationally complete POVM and

�P̃i
E�
i its dual frame, and defined piªTr��E�Pi

E�� and �i
R�

ªTrE���
R�E��1R� � Pi

E��� / pi.
�ii� In the second line we used the convexity of the func-

tion x�x2.

�iii� In the third line we defined Kªmaxi�P̃i
E��1

2, which is
finite because we are considering finite-dimensional Hilbert
spaces.

�iv� In the fourth line we used Pinsker inequality �30�, that
is, ��−��1

2�2D�� ���.
�v� In the fifth line we simply used the fact that

CE�→R���R�E�� is defined as a maximum over all possible
measurements on E�.

�vi� In the last line we used Eq. �7�.
Summarizing, we obtained that whenever CE�→R���R�E��

→0, or, equivalently, Ef��R�Q��→S��Q�, then ��R�E�−�R�

� �E��1
2→0 correspondingly, which in turn implies the exis-

tence of an approximately correcting channel R �8�. Notice
that, as a trivial corollary, we obtain that CB→A��AB�=0 if
and only if �AB=�A � �B.

In the sequence of inequalities in Eq. �10�, the most un-
pleasant feature is the size of the constant K. In fact, it is
clearly independent of the channel and the input state, how-
ever, we did not investigate how it depends on the dimen-

sions of the input and output Hilbert spaces HQ and HQ�. We
can give a rough upper bound on K by considering the �con-
tinuous outcome� informationally complete POVM
�Pg
g�SU�d� defined as

Pg ª
1

d
Ug
Ug

†,

where Ug is a unitary representation of the group SU�d�, and


 is a pure state. In Ref. �28� the canonical dual set �P̃g
g has
been explicitly calculated, and it holds that

�P̃g�1 = 2d − 1, ∀ g ,

where d is the dimension of the Hilbert space on which the
POVM �Pg
g is measured, in our case HE�. Since we saw
that its dimension can be upper bounded as dim HE�

�dim HQ�dim HQ�, we obtain the following:

��R�E� − �R� � �E��1
2 � 2�2dd� − 1�2�S��Q� − Ef��R�Q��� ,

�11�

where dªdim HQ and d�ªdim HQ�. Anyway, the only as-

sumption we need about the ancilla POVM �Pi
E�
i is that it is

informationally complete. We could hence use the one,
among informationally complete POVMs, whose dual set
minimizes K. How to choose such an “optimal” information-
ally complete measurement is left as a wide open question.

At the end we can state the following:
Theorem 1. Given an input state �Q, defined on the Hilbert

space HQ, and a channel E mapping states on HQ to states on
HQ�, let us define � fªS��Q�−Ef��R�Q��. Then, there exists a

channel R, from states on HQ� to states on HQ, such that

F��Q,R � E� � 1 − 	2�2dd� − 1�2� f , �12�

where dªdim HQ and d�ªdim HQ�.
Proof. With Eq. �11� at hand, the proof is straightforward.

It makes use of the well-known relation existing between
fidelity and trace distance, that is

F��,�� � 1 −
�� − ��1

2
,

and of the main result of Ref. �8�, thanks to which the exis-
tence of a channel R such that

F��Q,R � E� � F2��R�E�,�R� � �E��

is guaranteed. �

VI. OTHER ENTANGLEMENT MEASURES

Up to now, we considered the entanglement of formation
Ef as the entanglement measure quantifying quantum corre-
lations. Such a choice is motivated by the fact that it is
known �30� that Ef is an upper bound to the coherent infor-
mation itself as well as to many other genuine entanglement
measures E• �among these, for example, one finds the distill-
able entanglement �31�, the relative entropy of entanglement
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�32�, and the squashed entanglement �33�, just to cite three
of them�. The following corollary directly stems from Theo-
rem 1.

Corollary 1. If E•�Ef, the following inequality holds

F��Q,R � E� � 1 − 	2�2dd� − 1�2�•, �13�

where �•ªS��Q�−E•��R�Q��.
Proof. Trivial. �
Then, thanks to the above mentioned “extremality prop-

erty” enjoyed by the entanglement of formation among en-
tanglement measures, Corollary 1 can be applied to many
different situations, making the conclusions we drew from
Theorem 1 quite general.

On the other hand, the so-called hashing inequality �34�

Ic��Q,E� � Ed
R�→Q���R�Q�� ��Ed��R�Q��� , �14�

where Ed��AB� is the distillable entanglement and Ed
A→B��AB�

is the one-way distillable entanglement �i.e., we restrict the
classical communication to go from A to B only�, implies the
converse direction, namely, if Ed

A→B�E•, then the analogous
of Eq. �4�,

S��Q� − E•��R�Q�� � h„1 − F��Q,R � E�… , �15�

holds true. It is worth stressing here that while the condition
Ed

A→B�E• is very general, the condition E•�Ef is satisfied
by many among known entanglement measures but not by all
of them �a notable exception is, for example, the logarithmic
negativity �35��. Nevertheless, it is known that whatever ge-
neric entanglement measure satisfying a certain number of
conditions can be proved to lie between Ed

A→B and Ef �36�.
Hence inequivalent entanglement measures, provided they
behave “sufficiently well,” lead to equivalent conditions for
approximate quantum error correction, generalizing what
was already noted in Ref. �9� in the case of exact correction.

By further specializing the entanglement measure, we can
say more. If the entanglement measure is chosen to be “not
too large,” it is possible to refine the bound �13� as follows.
More explicitly, the following result, that we state as a sec-
ond theorem independent from Theorem 1, can be proved.

Theorem 2. Let E be a channel acting on states on the
input Hilbert space HQ. Let E•��AB� be an entanglement
measure such that

E•��AB� �
IA:B��AB�

2
, ∀ �AB �16�

holds, and define �•ªS��Q�−E•��R�Q��. Then, there exists a
channel R such that

F��Q,R � E� � 1 − 2	�• . �17�

Proof. The proof goes as follows:

1

2
��R�E� − �R� � �E��1

2 � D��R�E���R� � �E��

= 2S��Q� − IR�:Q���R�Q��

� 2S��Q� − 2E•��R�Q�� ,

where we used again Pinsker inequality and Eq. �2�. At this
point, by the same passages as in the proof of Theorem 1, we
obtain the statement. �

Relation �17� is clearly much tighter than the analogous
relation �13�, in that here we succeeded in eliminating the
dependence on the dimensions of the input and output Hil-
bert space. Notice that condition �16� is proved to hold for
the distillable entanglement and for the squashed entangle-
ment �33�. On the other hand, such a derivation cannot be
applied to the entanglement of formation, which can be
smaller or larger than the quantum mutual entropy �10�.

VII. RELATION BETWEEN ENTANGLEMENT OF
FORMATION AND DISTILLABLE ENTANGLEMENT

It is interesting to directly compare the three relations
�Eqs. �3�, �13�, and �17�� for approximate quantum error cor-
rection that we considered throughout the paper:

F��Q,R � E� � 1 − 	2�S��Q� − Ic��Q,E�� ,

F��Q,R � E� � 1 − 2	S��Q� − E•��R�Q�� ,

F��Q,R � E� � 1 − 	2�2dd� − 1�2�S��Q� − E•��R�Q��� ,

�18�

where dªdim HQ and d�ªdim HQ�. The first is proved in
Ref. �8�, the second holds if E•��AB�� IA:B��AB� /2, while the
third holds if E•��AB��Ef��AB�. The numerical factor in
front of the “loss figure” becomes larger as we move from
coherent-information loss toward entanglement-of-formation
loss. This feature is reminiscent of the fact that, in general,
the gap Ef 	Ed between entanglement of formation and dis-
tillable entanglement can be generically large �10�.

Concerning this point, it is interesting to notice that our
approach can be somehow useful to understand to which
extent such a gap can be authentically arbitrary. In fact, en-
tanglement of formation and distillable entanglement coin-
cide on pure states, and both of them are known to be as-
ymptotically continuous in the mixed neighborhood of every
pure state �36�. It is then reasonable that, sufficiently close to
pure states, entanglement of formation and distillable en-
tanglement become equivalent entanglement measures �in
the sense that they can be reciprocally bounded�, and the gap
between them cannot be completely arbitrary. In fact we can
say something more in the form of the following:

Corollary 2. For an arbitrary bipartite mixed state �AB,
with S��A��S��B�, let us define the coherent information

Ic
A→B��AB� ª S��B� − S��AB�

and the entanglement of formation deficit

� f��AB� ª S��A� − Ef��AB� .

Then, the following inequality holds

S��A� − Ic
A→B��AB� � h„	2�2dAdB − 1�2� f��AB�… , �19�

where h�x� is a function as in Eq. �4�, and dA�B�
ªdim HA�B�.
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Proof. First of all, let us notice that whatever bipartite
mixed state �AB can be written as �idA � EB���AB�, for some
channel EB and some pure �AB such that TrB��AB�=�A. This
simple observation is in order to make sure that all equations,
previously obtained for bipartite states �R�Q�= �idR � EQ�
���RQ�, can be in particular interpreted as equations valid
for all bipartite mixed states �AB as well, simply paying at-
tention to the directionality intrinsic in the definition of co-
herent information. Then, putting together Eqs. �4� and �12�,
we obtain the statement �19�. �

The large numerical factor multiplying � f in Eq. �19�
makes possible the above-mentioned generic gap exhibited
by high-dimensional systems, that is, entanglement of forma-
tion can be close to the maximum value, while distillable
entanglement is almost null. Equation �19� then says “how
large,” for fixed finite dimensions dA and dB, the gap can
actually be; in fact we can affirm that if the entanglement of
formation is “sufficiently close” to its maximum value, then
also the coherent information and, thanks to the hashing in-
equality �14�, the one-way distillable entanglement have to
be “correspondingly large.” Notice moreover that there may
be room for a further improvement of Eq. �19�, since we
obtained it as coming from a probably oversimplified estima-
tion. To tighten the evaluation of the constant K in Eq. �10�
could then be useful in understanding the relationships be-
tween entanglement of formation and distillable entangle-
ment as well, besides being an interesting mathematical
problem by itself.

Before concluding, we would like to stress one more re-
mark. It is clear from Eq. �18� how we are actually dealing

with three different topologies on the set of quantum chan-
nels induced by different measures of bipartite entanglement
�37�. Also this connection definitely deserves further investi-
gation.

VIII. CONCLUSIONS

In summary, we generalized the information-theoretical
analysis of approximate quantum error correction based on
coherent information given in Ref. �8� by showing that ap-
proximate quantum error correction is possible if and only if
the loss of entanglement along the quantum channel is small.
We considered explicitly different entanglement measures, in
particular the entanglement of formation and the distillable
entanglement, showing how equivalent conclusions come
from inequivalent entanglement measures. We moreover
showed that the approach used here can be applied also to
understand the interconnections existing between entangle-
ment of formation and distillable entanglement, even though
they are known to behave quite independently, in particular
in high-dimensional quantum systems.

ACKNOWLEDGMENTS

The author acknowledges the Japan Science and Technol-
ogy Agency for support through the ERATO-SORST Quan-
tum Computation and Information Project. The author also
thanks Masahito Hayashi and Lorenzo Maccone for useful
comments and suggestions.

�1� The literature about the subject is huge and rapidly growing.
For a reasonably recent and compact review of seminal papers
see Ref. �2�.

�2� D. Gottesman, in Encyclopedia of Mathematical Physics, ed-
ited by J.-P. Françoise, G. L. Naber, and S. T. Tsou �Elsevier,
Oxford, 2006�, Vol. 4, pp. 196–201.

�3� M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information �Cambridge University Press, Cam-
bridge, 2000�, pp. 425–499.

�4� J. Kempe, in Quantum Decoherence, Poincaré Seminar 2005,
Progress in Mathematical Physics Series �Birkhaeuser Verlag,
Berlin, 2006�, pp. 85–123.

�5� B. Schumacher and M. A. Nielsen, Phys. Rev. A 54, 2629
�1996�.

�6� T. Ogawa, e-print arXiv:quant-ph/0505167v2.
�7� M. A. Nielsen and D. Poulin, e-print arXiv:quant-ph/

0506069v1.
�8� B. Schumacher and M. D. Westmoreland, Quantum Inf. Pro-

cess. 1, 5 �2002�.
�9� B. Schumacher and M. D. Westmoreland, J. Math. Phys. 43,

4279 �2002�.
�10� P. Hayden, D. W. Leung, and A. Winter, Commun. Math. Phys.

265, 95 �2006�.
�11� K. Kraus, States, Effects, and Operations: Fundamental No-

tions in Quantum Theory, Lecture Notes in Physics No. 190

�Springer-Verlag, Berlin, 1983�.
�12� W. F. Stinespring, Proc. Am. Math. Soc. 6, 211 �1955�.
�13� R. L. Stratonovich, Probl. Inf. Transm. 2, 35 �1965�.
�14� C. Adami and N. J. Cerf, Phys. Rev. A 56, 3470 �1997�.
�15� B. Schumacher, Phys. Rev. A 54, 2614 �1996�.
�16� S. Lloyd, Phys. Rev. A 55, 1613 �1997�.
�17� P. W. Shor, Lecture Notes, MSRI Workshop on Quantum Com-

putation, San Francisco, 2002 �unpublished�, available
online at http://www.msri.org/publications/ln/msri/2002/
quantumcrypto/shor/1

�18� I. Devetak, IEEE Trans. Inf. Theory 51, 44 �2005�.
�19� In Ref. �8� the following inequality is discussed

F��Q,R � E� � 1 − 2	�S��Q� − Ic��Q,E�� ,

which is indeed a little looser than Eq. �3�. It is however clear,
already from the arguments used there, that Eq. �3� actually
holds true.

�20� H. Barnum, M. A. Nielsen, and B. Schumacher, Phys. Rev. A
57, 4153 �1998�.

�21� P. Hayden, M. Horodecki, J. Yard, and A. Winter, e-print
arXiv:quant-ph/0702005v1.

�22� C. H. Bennett, D. P. Di Vincenzo, J. A. Smolin, and W. K.
Wootters, Phys. Rev. A 54, 3824 �1996�.

FRANCESCO BUSCEMI PHYSICAL REVIEW A 77, 012309 �2008�

012309-6



�23� In fact, Ef��AB��min�S��A� ,S��B�
, ∀�AB, holds, so that the
left-hand side of Eq. �6� is positive.

�24� B. Groisman, S. Popescu, and A. Winter, Phys. Rev. A 72,
032317 �2005�.

�25� L. Henderson and V. Vedral, J. Phys. A 34, 6899 �2001�.
�26� P. Hayden and C. King, Quantum Inf. Comput. 5, 156 �2005�.
�27� M. Koashi and A. Winter, Phys. Rev. A 69, 022309 �2004�.
�28� G. M. D’Ariano, P. Perinotti, and M. F. Sacchi, J. Opt. B:

Quantum Semiclassical Opt. 6, S487 �2004�.
�29� G. M. D’Ariano and P. Perinotti, Phys. Rev. Lett. 98, 020403

�2007�.
�30� M. Hayashi, Quantum Information: An Introduction �Springer-

Verlag, Berlin, 2006�.
�31� C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schuma-

cher, Phys. Rev. A 53, 2046 �1996�.
�32� V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys.

Rev. Lett. 78, 2275 �1997�.
�33� M. Christandl and A. Winter, J. Math. Phys. 45, 829 �2004�.
�34� I. Devetak and A. Winter, Proc. R. Soc. London, Ser. A 461,

207 �2004�.
�35� G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 �2002�.
�36� M. Christandl, e-print arXiv:quant-ph/0604183v1.
�37� M. Hayashi �private communication�.

ENTANGLEMENT MEASURES AND APPROXIMATE… PHYSICAL REVIEW A 77, 012309 �2008�

012309-7


