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It is known that the states in an unextendible product basis �UPB� cannot be distinguished perfectly when the
parties are restricted to local operations and classical communication �LOCC�. Previous discussions of such
bases have left open the following question: What entanglement resources are necessary and/or sufficient for
this task to be possible with LOCC? In this paper, I present protocols which use entanglement more efficiently
than teleportation to distinguish certain classes of UPB’s. The ideas underlying my approach to this problem
offer rather general insight into why entanglement is useful for such tasks.
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I. INTRODUCTION

One of the most fascinating aspects of quantum physics is
the possibility that spatially separated systems may be “en-
tangled” with each other, exhibiting correlations that have no
counterpart, or explanation, in classical physics. This charac-
teristic of quantum states has long stimulated lively debate
amongst physicists and others about the implications of such
correlations for our understanding of the world around us.
Beyond such philosophical questions, however, entangle-
ment has in recent years been shown to be a valuable re-
source, allowing remote parties to communicate in ways that
were previously not thought possible. Examples include the
well-known protocols of teleportation �1� and dense coding
�2�, which have helped spawn rapid growth in the relatively
new field of quantum information. The discovery of the po-
tential power of quantum computers �3�, which may also rely
on entanglement, has been an additional motivating factor
stimulating this period of growth.

It is of fundamental interest to understand the extent to
which entanglement can expand the reach of what it is pos-
sible to accomplish. The most important questions in this
regard concern spatially separated parties performing quan-
tum operations on their local systems, and possibly commu-
nicating classical information to each other. We are thus led
to consider a restriction to local operations and classical
communication �LOCC�.

One widely studied question is the following: Suppose a
collection of quantum systems in some chosen state is dis-
tributed to the parties. The parties are not told the state their
combined system is in, but they know it has been chosen
from a specific set of mutually orthogonal states, that set
being known to each of them. Their task is to determine the
chosen state by using LOCC, a task we may refer to as local
state discrimination. Given a particular such set of states, we
may wish to know if it is possible for the parties to perfectly
distinguish the state; that is, given any one of the states in the
set and by using LOCC, can they with certainty determine
which state they were given? In the remainder of this paper,
when we refer to such distinguishability questions, they

should be understood to imply this notion of perfect distin-
guishability.

A fascinating result related to these questions was the dis-
covery by Bennett et al. �4� of a complete basis of product
�i.e., unentangled� states that cannot be distinguished by
LOCC. The system under consideration involved two parties,
with both parties’ systems having dimensionality 3 �more
concisely, 3 � 3�. The authors dubbed this phenomenon
“nonlocality without entanglement” �NLWE�, and various
simplifications of their proof have since appeared in the lit-
erature �5–7�. Their construction of complete bases was later
generalized �8� to the case of many parties with arbitrary
dimensions of their Hilbert spaces.

There also exist what might be termed “incomplete bases”
that exhibit this effect. Suppose one has a set of mutually
orthogonal product states satisfying the condition that no
product state lies in the orthogonal complement of the sub-
space spanned by these states. Then this set cannot be ex-
tended, in the sense that no additional product state can be
added to it while preserving the orthogonality of the set.
Such a set of product states is known as an “unextendible
product basis” �UPB� �8–12�. These sets are of considerable
interest within the quantum information community, not only
because they exhibit NLWE, but also because the �normal-
ized� projector onto that orthogonal complement is a mixed
state that exhibits the fascinating phenomenon known as
bound entanglement �13,14�.

Any set of states that cannot be distinguished by LOCC
alone can nonetheless always be distinguished by LOCC if
the parties share enough entanglement. That is, with enough
entanglement, LOCC can be used to teleport �1� the full mul-
tipartite state to a single party, and that party can then make
a measurement to determine which state they were given.
However, it is by now widely understood that entanglement
is a valuable resource, so it is important to ask if this task can
be accomplished more efficiently. This is the question we
address in the present paper.

Specifically, we will consider several examples of UPB’s
and devise LOCC protocols that, using entanglement as a
resource, distinguish these sets considerably more efficiently
than teleportation. Each of the UPB’s we consider is closely
related to a complete NLWE basis, and the latter can also be
distinguished by the same �or slightly altered� protocols. Per-
haps just as important is the method we use to devise these*cohensm@duq.edu
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protocols, which is described in detail below. The approach
involves the use of box diagrams to represent the set of states
to be distinguished. Such diagrams have been used in a re-
lated context before �4�, but as far as we are aware, they have
not been used to follow the dynamics of the systems being
represented, which is what we have done here. We have
found these diagrams to be extremely useful as a representa-
tion of the set of states in conjunction with entanglement. In
particular, we take the perspective that entanglement pro-
vides the parties with multiple images of the set of states to
be distinguished, and it is this perspective that has led us to
our protocols. We believe this perspective will prove useful
in other applications, as well.

The paper is organized as follows: In the following sec-
tion, we introduce the box diagrams and explain how they
may be used to represent quantum states and to follow the
effects of measurements and other operations. We also ex-
plain what is meant by the idea of “multiple images.” Section
III should serve as an introduction to the general ideas with
regard to how the protocols are constructed. In this section,
UPB’s on 3 � 3 systems are considered, including a proof
that all such UPB’s can be distinguished by LOCC with a
2 � 2 maximally entangled state �MES�. The following sec-
tion considers a UPB on a higher-dimensional Hilbert space,
specifically the GenTiles1 UPB �10,15� on a 6 � 6 system. In
an appendix, it is shown that every UPB in the GenTiles1
family is distinguishable with an m /2 � m /2 MES, where m
is the Hilbert space dimension for each party. Similarly, in
another appendix, the GenTiles2 family of UPB’s �10,15� on
m � n with n�m, is shown to be distinguishable with a
�m /2� � �m /2� MES, where �x� is defined to be the smallest
integer not less than x. In Sec. V, we show that every UPB in
the Niset and Cerf construction for many parties �8� is LOCC
distinguishable with a single 2 � 2 MES shared between any
two of them, regardless of how many parties or the dimen-
sions of their Hilbert spaces. Finally, in Sec. VI, we discuss
these results and then end with conclusions.

II. VISUALIZING QUANTUM INFORMATION
PROCESSING

In subsequent sections, we will give detailed protocols
which locally distinguish specific unextendible product
bases. In this section, we will motivate these protocols with
simple box diagrams, which have been used for other studies
in quantum information processing. As far as we are aware,
however, our use of these diagrams to follow the dynamics
of the systems involved is new. One of the crucial observa-
tions will be that a shared entangled state �on systems a and
b, for example� provides the parties with multiple “images”
of the state of an additional system, say B. As we will see,
the way these images are distributed through Hilbert space is
such that the parties, independently of each other, are able to
manipulate the individual images, and they can manipulate
each image differently from the other images. This idea is the
basis underlying our protocols for distinguishing UPB’s. We
have chosen to use the term “images” rather than copies,
because the latter would tend to imply the notion of clones,
which of course are impossible to create �16,17�. See below

for further clarification on these points. The following dis-
cussion begins at an elementary level to provide the reader
with ample opportunity to understand the general ideas.
These ideas have been presented elsewhere at an even more
elementary level, accessible to undergraduates and perhaps
others, in the context of “visualizing teleportation” �18�.

A. Quantum states

We begin with simple illustrations of how box diagrams
can be used to represent quantum states. As an example, an
arbitrary state ���B on a two-level �qubit� system B is

|Ψ〉B = α|0〉B + β|1〉B =
α

β

|0〉B
|1〉B

.
�1�

If a second qubit a is in the state �0�a, the diagram becomes

|Ψ〉B ⊗ |0〉a =
α

β

|0〉a |1〉a
|0〉B
|1〉B

,
�2�

where the empty squares on the right-hand side of this dia-
gram represent the fact that system a is in state �0�a and not
in �1�a.

If there are three systems involved, a three-dimensional
cube could be used to represent this situation. However, it
will serve our purposes to represent two of these systems,
when they are both held by Bob, along the vertical dimen-
sion of the diagram. If his second system b is also in the �0�b
state, then

|ΨB〉 ⊗ |00〉ab =

α

β

|0〉a |1〉a
|00〉bB

|01〉bB

|10〉bB

|11〉bB

. �3�

If instead the a,b systems are both �1�, this picture is

|Ψ〉B ⊗ |11〉ab =
α

β

|0〉a |1〉a
|00〉bB

|01〉bB

|10〉bB

|11〉bB

. �4�

If systems a ,b are in the “maximally entangled state” state
�B0�ab= �00�ab+ �11�ab the corresponding diagram is simply
the sum of the previous two; that is,
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|Ψ〉B ⊗ (|00〉ab + |11〉ab) =

α

β

α

β

|0〉a |1〉a
|00〉bB

|01〉bB

|10〉bB

|11〉bB

=
ΨB

ΨB

|0〉a |1〉a
|0〉b
|1〉b

.

�5�

Notice how there are now two images of the state ���B. Clearly, if the entangled state on a ,b was of higher Schmidt rank, say
r, then there would be r images of ���B. We note once again that these are not “clones,” since the “images” of the state ���
are all on the same system B. Let us next look at how to represent measurements by use of these diagrams.

B. Measurements on quantum systems

Suppose Bob and Alice share the three quantum systems in the state represented in Eq. �5�. Bob could make a measurement
in the standard basis on system b. If he obtains outcome �0�b, this would be represented as

〈0| ×
ΨB

ΨB

|0〉a |1〉a
|0〉b
|1〉b

= ΨB

|0〉a |1〉a
. �6�

If instead his outcome had been �1�b, we would have

〈1| ×
ΨB

ΨB

|0〉a |1〉a
|0〉b
|1〉b

= ΨB

|0〉a |1〉a
. �7�

Alternatively, he could do a measurement in the �± �b= �0�b± �1�b basis, and if his outcome is �+ �b, we have

(〈0| + 〈1|) ×
ΨB

ΨB

|0〉a |1〉a
|0〉b
|1〉b

= ΨBΨB

|0〉a |1〉a
= |Ψ〉B (|0〉a + |1〉a) ,

�8�

which is just a sum of the previous two equations �notice how the two images have collapsed into a single row as a result of
this rank-1 measurement outcome�. We see that in each of these cases, the state of system a is directly correlated to the
outcome of Bob’s measurement on system b, which is an obvious consequence of the fact these two systems started out in the
entangled state �B0�ab.

The way the images of �B appear in the diagram is crucial: that the two start out in different rows and in different columns
will be important in what is to come. If entanglement between systems a,b was absent, for example if they were in the
�unentangled� state �+ �b � �0�a, then this would be represented by

|Ψ〉B ⊗ |+〉b ⊗ |0〉a =

α

β

α

β

|0〉a |1〉a
|00〉bB

|01〉bB

|10〉bB

|11〉bB

=
ΨB

ΨB

|0〉a |1〉a
|0〉b
|1〉b

.

�9�
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We see that it is still possible to think of there being two
images. However, under these circumstances, Alice’s view of
the lower image of �B is “obstructed” by the presence of the
upper image; the two images effectively appear as one to her,
so that she is unable to act differently on one image as com-
pared to the other. That is, anything she does to the upper
image will also be done in precisely the same way to the
lower image, and vice versa. Indeed, by a simple change of
basis on Bob’s part, the diagram can be altered such that
there will only be one image, and obviously, this change of
basis cannot effect what Alice can and cannot do. More gen-
erally, if the two parties share a state of Schmidt rank r on
systems a ,b �r=1 for a product state; r�1 means the state is
entangled�, then they can always choose bases such that the
diagram will have r images appearing in diagonal blocks.
Furthermore, no matter their choice of bases, r is the mini-
mum number of images they can have.

We will see that it is Alice’s �and Bob’s� ability to “see”
the two images separately, and their resulting ability to ma-
nipulate the images differently, that is crucial to their success
in distinguishing unextendible product bases by means of our
protocols. The foregoing discussion should make clear that it
is the presence of entanglement between systems a,b that
provides the parties with this ability. With an entangled state
and appropriate choice of bases, the images will be arranged
along diagonal blocks, leaving both parties with the ability to
see all the images separately from the others. This is illus-
trated in Fig. 1. As an example of one outcome of a mea-
surement, Bob could perform the “controlled-projection” on
bB,

P = �
k=0

r−1

�k�b�k� � Pk, �10�

with Pk a set of projectors on the Hilbert space of system B.
If PkPl=�klPk and �kPk= IB, then this outcome preserves the
complete state ��� �indeed, the complete Hilbert space of
system B�, but it is preserved in pieces distributed across the
various images, and these pieces are still arranged along the
diagonal of the box diagram. We will use this type of opera-
tion often in what follows.

It is worth noting the difference between maximally and
partially entangled states from the perspective of these dia-
grams. All bipartite entangled states of Schmidt rank r may
be written as

���ab = �
k=0

r−1

�k�k�a�k�b, �11�

where �k�0 are the Schmidt coefficients. With this state,
each image of ��� appearing in Fig. 1 will be multiplied by
its corresponding �k. This means that the various images are
inequivalent, as they are scaled differently from each other,
unless all the �k are the same; that is, unless ��� is maxi-
mally entangled. When the �k are not all the same then, for
example, the controlled-projection of Eq. �10� will not pre-
serve the state unchanged, as the pieces preserved from the
different images will be multiplied by different scaling fac-
tors. We will return to this point below.

In the next sections, we turn to our protocols for locally
distinguishing unextendible product bases. As part of this
process, Bob will perform a joint operation on systems b ,B.
By way of illustration before we proceed to the actual pro-
tocols, suppose he performs a joint measurement in the Bell
basis on the state represented in Eq. �5�, obtaining outcome
�B0�bB. Then,

(〈00| + 〈11|)
bB

×

α

β

α

β

|0〉a |1〉a
|00〉bB

|01〉bB

|10〉bB

|11〉bB

= +

α

β

|0〉a |1〉a

= α β

|0〉a |1〉a
= Ψa

. �12�

We see that the state ���, originally on system B, is now on
system a. That is to say, the parties have successfully tele-
ported the state from Bob to Alice �18�. Notice how the �0�B
part of ���B is preserved from the upper image, while it is
the �1�B part that is preserved from the lower. This is an

example of what we mean by the ability to manipulate the
two images differently.

In the sequel, it will be important to keep in mind that the
parties cannot act on parts of rows or columns, but must act
either on whole columns or whole rows. In particular, when

Ψ

Ψ

Ψ

Ψ

Ψ

. . .

...

· · ·

a
0 1 2 · · · r−2 r−1

b

0

1

2

...

r−2

r−1

FIG. 1. Multiple images of the state ��� produced by Alice and
Bob sharing an entangled state of Schmidt rank r on systems a ,b.
Note that ��� may itself be entangled on systems A ,B.
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Alice measures, she cannot divide a column into pieces, but
must preserve whole columns, either individually, as a col-
lection of columns, or as superpositions of them. Similarly,
Bob preserves whole rows.

III. UNEXTENDIBLE PRODUCT BASES ON 3‹3

In this section, we consider some of the simplest UPB’s,
those on bipartite systems where each party’s Hilbert space is
three dimensional. We will first look at the Tiles UPB �10�,
which is intimately related to the nine product states discov-
ered by Bennett et al., with which they first demonstrated the
phenomenon of nonlocality without entanglement �4�. This
example will serve as a useful introduction to the problem of
using entanglement to distinguish UPB’s with LOCC, as it
will illustrate the main ideas that have proven useful in other
cases, to be discussed in the following sections. In part B of
this section, we will show that every UPB on 3 � 3 can be
distinguished by LOCC using a 2 � 2 maximally entangled
state.

A. A simple example: Distinguishing the Tiles UPB

Here, we will show how the Tiles UPB can be distin-
guished if the parties share an auxiliary 2 � 2 system in a
maximally entangled state. The Tiles UPB is a set of five
states on a 3 � 3 bipartite system. Omitting unimportant nor-
malizations, these states are

��1� = �0 − 1�A�0�B,

��2� = �2�A�0 − 1�B

��3� = �1 − 2�A�2�B,

��4� = �0�A�1 − 2�B,

�F� = �0 + 1 + 2�A�0 + 1 + 2�B, �13�

where, for example, �0−1� should be understood to mean
�0�− �1�. This set of states has a box-diagram representation
with the simple form shown in Fig. 2. The state �F�, known
as the stopper state, is not shown, as it would cover the
whole diagram. It is well known that these five states cannot

be perfectly distinguished by LOCC �4� �for a very simple
proof, see Appendix B of Ref. �7��. Intuitively, this can be
understood from the diagram by noting that in order to iso-
late any one of the tiles, another one of the tiles will neces-
sarily be cut in half. For example, if Alice first projects onto
�0�A, Bob can then isolate tile 4, but Alice’s projection will
have preserved only half of tile 1. The result of this is that
the corresponding state ���1� in this case� is no longer or-
thogonal to the stopper, so the parties will necessarily fail to
distinguish for at least some cases. We see that it is the struc-
ture of the tiles relative to one another which prevents the set
of states from being deterministically distinguished—tiles 1
and 3 are nonorthogonal on Alice’s side, forming a chain of
horizontal tiles stretching completely across Alice’s space
and preventing her from making any measurement without
destroying the orthogonality of the states in these tiles. Of
course, Bob can easily pull this “horizontal” chain apart by a
measurement in his standard basis. However, since tiles 2
and 4 similarly form a chain of vertical tiles, they prevent
him from measuring on his system. In turn, although Alice
can pull the “vertical” chain apart, she is prevented from
doing so by the presence of the horizontal chain. Thus, the
two chains are in some sense linked to each other—one can
say that each “ties” the other one together—and it is this
linking that prevents the parties from distinguishing the
UPB. The point is that, if the parties could find a way to
unlink the two chains, then they could accomplish this feat.

One way the two chains could be unlinked would be if
they could simply slide the bottom row �labeled 2 in Fig. 2�
over to the right. Of course, to do so would require some-
thing more than LOCC, but let us consider what this would
accomplish. The diagram would then be as depicted in Fig.
3. We see that the chain of horizontal tiles has been broken
apart �tile 1 is now orthogonal to tile 3 on Alice’s side�, and
it is clear that Alice can do a measurement that either isolates
or excludes tile 2, breaking apart the vertical chain.

We will soon see that, starting from the situation of Fig. 3,
it is easy for the parties to distinguish the set. Before we
proceed, however, we should consider whether they can ac-
tually slide the row over to create this situation in the first
place. The answer is yes, but only with additional resources.
First, Alice will need a bigger Hilbert space, which could be
obtained by her bringing in an ancillary qubit, system a.
Then, the three columns on the left of Fig. 3 �the two-by-
three block� will correspond to the �0�a state of this ancilla,
the other three columns to the �1�a state. Now we notice that
in sliding the row over, the states ��4� and �F� have become
entangled between systems a and B. For example, ��4� has
now become �0�A��0�a �1�B− �1�a �2�B�, which has an entangle-
ment of 1 ebit. Since it previously had zero entanglement,

0

1

2

B

0 1 2
A

1
2

3
4

FIG. 2. The Tiles UPB. The labels on the rows �columns� cor-
respond to Bob’s �Alice’s� standard basis; that is, k→ �k�.

0

1

2

1
2

3

4

4

FIG. 3. The Tiles UPB with the bottom row slid over to the
side.
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and since entanglement cannot be increased by LOCC �on
average�, we see that in order for the parties to implement
this protocol by LOCC, they will need to start out with 1 ebit
as an additional resource, conveniently supplied in the form
of a two-qubit maximally entangled state.

Recalling the diagrammatic presentation of the previous
section, “sliding the row over” is precisely what was effec-
tively done in the teleportation protocol �see the center figure
in Eq. �12��. Therefore, we already know how to do this.
First of all, two qubits in the entangled state �B0�ab, shared by
Alice and Bob, create two images of their overall Hilbert
space, as shown in Fig. 4.

Suppose that, starting from the situation depicted in this
figure, Bob performs a two-outcome measurement, each out-
come corresponding to rank-3 projectors

B1 = �00�bB�00� + �01�bB�01� + �12�bB�12� ,

B2 = �10�bB�10� + �11�bB�11� + �02�bB�02� . �14�

Then, the picture of Fig. 3 is obtained with outcome B1 �the
middle three rows in Fig. 4 are annihilated leaving only the
first two rows and the last one�, whereas B2 creates a picture
that differs from this only by permutation of rows and col-
umns �the latter can therefore be handled using the exact
same method as described below for B1�.

To be precise, the result of bringing in the ancillary sys-
tems in state �B0�ab, and then operating with B1 on systems
bB, is that each of the initial states is transformed as

��1� → �0 − 1�A � �0�B � �00�ab,

��2� → �2�A � �0 − 1�B � �00�ab,

��3� → �1 − 2�A � �2�B � �11�ab,

��4� → �01�AB � �00�ab − �02�AB � �11�ab,

�F� → �0 + 1 + 2�A � ��0 + 1�B � �00�ab + �2�B � �11�ab� .

�15�

As an explicit example, consider ��4�. We have,

B1���4�AB � �B0�ab� = ��00�bB�00� + �01�bB�01� + �12�bB�12��

� ��0�A�1 − 2�B � ��00�ab + �11�ab��

= �01�bB � �00�aA − �12�bB�10�aA

= �01�AB � �00�ab − �02�AB � �11�ab.

�16�

This is represented in Fig. 5 by the tile 4, which is broken up
into two pieces, one associated with �00�ab and the other with
�11�ab. Similarly, the part of �F� that lies in this tile is also
broken up in the same way. Indeed, this entire figure corre-
sponds precisely to what results from B1 acting on the origi-
nal states, the resulting states having been listed above on the
right in Eq. �15� �note that Fig. 5 is equivalent to Fig. 3
except that the two pieces that have been slid across each
other are now shown one above the other, the horizontal
separation implied by the labels �00�ab and �11�ab—the pur-
pose of this is to save space, which will be particularly help-
ful in subsequent sections�.

Let us now describe how the parties can proceed from
here to distinguish the states. Alice makes a four-outcome
projective measurement, and we begin by considering the
first outcome, A1= �0�a�0 � � �2�A�2�. Due to the �0�a�0� part of
this projector, the bottom row of Fig. 5 �that associated with
�11�ab� is annihilated, while the �2�A�2� part annihilates the
left two columns ��0�A and �1�A� of this figure. Thus, this
outcome preserves tile 2 and nothing else, so the state is
either ��2� or �F�. These two states have now become

��2� → �2�A � �0 − 1�B � �00�ab,

�F� → �2�A � �0 + 1�B � �00�ab, �17�

which can be seen either directly from what we just de-
scribed as having happened to Fig. 5, or by considering the
action of A1 on the states on the right of Eq. �15�. At this
point, the ancillas a ,b can be discarded, and Bob can easily

1
2

3
4

1
2

3
4

aA
00 01 02 10 11 12

bB

00

01

02

10

11

12

FIG. 4. The Tiles UPB when Alice and Bob share a 2 � 2
MES.

0

1

1
2

4

0 1 2

|00〉ab

2 34

|11〉ab

FIG. 5. Another representation of the Tiles UPB with the bottom
row slid over to the side. The numbers along the side represent the
state �in the standard basis� of system B; those along the top are for
system A.
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distinguish between these two remaining states by projectors
onto �0±1�B.

Alice’s second outcome is A2= �1�a�1 � � �1−2�A�1−2�.
The �1�a�1� part annihilates the top two rows of Fig. 5, and
the �1−2�A�1−2� part annihilates both ��4� �which only has
support on �0�A� and �F� �whose support on the subspace
spanned by 	�1�A , �2�A
 is in the form �1+2�A�. The only re-
maining possibility is ��3�, which has thus been successfully
identified. Using exactly the same argument, one sees that
the third outcome, A3= �1�a�1 � � �1+2�A�1+2� identifies �F�.

Alice’s last outcome is a rank-3 projector onto the remain-
ing part of Alice’s Hilbert space

A4 = �0�a�0� � ��0�A�0� + �1�A�1�� + �1�a�1� � �0�A�0� .
�18�

This annihilates ��2� and ��3�, leaves ��1� and ��4� un-
changed from what they had become in Eq. �15�, and now

�F� → �0 + 1�A � �0 + 1�B � �00�ab + �0�A � �2�B � �11�ab.

�19�

These remaining states are represented in Fig. 6.
Bob now follows with a two-outcome measurement, the

first outcome being a projector onto �00�bB and the second
projecting onto everything else. The first outcome isolates
tile 1, so the state is either ��1� or �F�, where these states
have become

��1� → �0 − 1�A � �0�B � �00�ab,

�F� → �0 + 1�A � �0�B � �00�ab. �20�

Once again they can discard the ancillas, and Alice can dis-
tinguish with projectors onto �0±1�A. If, on the other hand,
Bob obtained “everything else,” the only remaining states are
now

��4� → �0�A � ��1�B � �00�ab − �2�B � �11�ab� ,

�F� → �0 + 1�A � �1�B � �00�ab + �0�A � �2�B � �11�ab.

�21�

The fact that these two states are entangled makes it not quite
so simple to distinguish between them. Though we know
from Ref. �6� that any two states can be distinguished by
LOCC, let us finish what we have started. One party will
now need to make an entangled measurement; suppose it is
Bob, who can project onto �01�bB± �12�bB, with all other out-
comes �however, he wishes to design the rest of his projec-
tive measurement� having vanishing probability of occurring.
These two outcomes leave the states as

��4� → �0�A � ��01�bB ± �12�bB� � ��0 � 1�a� ,

�F� → ��0 + 1�A � �0�a ± �0�A � �1�a� � ��01�bB ± �12�bB� .

�22�

These are orthogonal on Alice’s side, who can measure in the
standard basis of system A, identifying �F� with outcome
�1�A. If, on the other hand, she gets outcome �0�A, she can
complete the protocol by a measurement on her ancilla in the
�0±1�a basis. Thus, by viewing entanglement as providing
two images of the original Hilbert space that can be acted on
differently by each of the parties, we have succeeded in de-
signing a protocol that perfectly distinguishes the Tiles UPB
using LOCC with an additional resource of a two-qubit
maximally entangled state.

Is this amount of entanglement necessary to distinguish
the Tiles UPB? It is necessary for the above protocol, as the
following discussion shows. It is true that a partially en-
tangled state, ���ab=�0 �00�ab+�1 �11�ab, will also provide
the two images needed to slide the row over to the right.
However, in this case, we must pay attention to the scaling
factors, �0 and �1. If these Schmidt coefficients are unequal,
as is the case for a partially entangled state, then the two
images will be scaled differently, one being multiplied by �0,
the other by �1. This implies that the two halves of tile 4, the
tile that is divided into two parts by sliding the row over, will
be multiplied by different factors. That is,

��4� → �0�00�aA�01�bB − �1�10�aA�12�bB,

�F� → �0�00�aA�01�bB + �1�10�aA�12�bB + ¯ . �23�

These two states are only orthogonal if �0=�1 �the ellipses in
the latter represents terms that are each orthogonal to ��4��,
which means that 1 ebit is necessary for this protocol. We see
no simple way to argue that this must be the case for every
successful protocol, however. One might, for example, at-
tempt to show that at some stage in any protocol it must be
that 1 ebit is created, but we have not succeeded in doing so.
Hence, it remains an open question whether it is possible to
distinguish these states with less than one ebit of entangle-
ment. We suspect that the answer to this question is no.

B. All UPB’s on 3‹3

We will now prove a very general theorem, applying to
every UPB on 3 � 3. To do so, we will use two facts proven

0

1

1

4

0 1

|00〉ab

2 4

|11〉ab

FIG. 6. The result of projector A4 of Eq. �18� acting on the states
represented in Fig. 5.
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in �10�: every such UPB �1� has exactly five members and
�2� conforms to the orthogonality graph shown in Fig. 7. This
graph indicates which of the states in the UPB, represented
in the diagram by vertices, are orthogonal to each other on
Alice’s side �these states are connected by dashed lines�, and
which on Bob’s �solid lines�. Writing �� j�= �aj�A �bj�B �we
will assume that each of the kets appearing in this equation is
normalized�, then the orthogonality graph indicates, for ex-
ample, that �a2� is orthogonal to both �a1� and �a3�, while �b2�
is orthogonal to both �b0� and �b4�. We now state our theo-
rem.

Theorem 1. One ebit of entanglement is sufficient to dis-
tinguish any UPB on 3 � 3, using only LOCC.

Proof. The box diagram representing the most general
UPB on 3 � 3 is shown on the left-hand side of Fig. 8. The
reader will note the rather rudimentary nature of this repre-
sentation, as I have only indicated where ��0� resides. The
other states are not shown explicitly in order to keep the
discussion completely general. Introducing a 2 � 2 system in
the state �B0�ab produces two images of the overall Hilbert
space, from which the parties may “slide” one row to the
right, as was done previously. If Bob slides the third row, the
result is the situation represented on the right-hand side of
Fig. 8. Then, Alice can perform a two-outcome projective
measurement, with one outcome a projection onto �1a0�aA
�the state �1�a indicates this projection is onto the part of their
space that was slid to the right, represented as the bottom
row on the right-hand side of the figure� which immediately

identifies the state as ��0�. Her second outcome projects onto
the remaining space and excludes ��0�, after which Alice can
put the box back together by a measurement on her ancilla,
projecting onto �0+1�a or �0−1�a. If it is the latter, Bob can
do a phase operation to remove the extra minus sign �this is
actually unnecessary, but for the sake of discussion, it makes
clear that the remainder of the protocol will not depend on
which of these outcomes was obtained�. Bob can also follow
with the same measurement on his ancilla, projecting onto
either �0+1�b or �0−1�b, followed by another phase opera-
tion, after which both ancillas �a ,b� can be discarded, and to
simplify the notation we will omit the subscripts labeling the
kets. In any case they will be left with the box diagram on
the left of Fig. 8, except that ��0� is no longer present. That
is, they are now dealing with exactly the original set of states
in the original Hilbert space, but with one less state to dis-
tinguish, ��0� having been excluded.

Next consider what will happen when Alice does a mea-
surement with projectors 	�a2��a2 � , IA− �a2��a2 � 
. Since
	�a1� , �a3�
 are orthogonal to �a2�, the first outcome of this
measurement excludes ��1� and ��3�, leaving only ��2� or
��4�. Note that the only thing Bob has done so far is to slide
the row to the right, which does not alter any of the states on
his side, implying that �b2� and �b4� remain orthogonal to
each other. Therefore, Bob can follow Alice’s projection onto
�a2� by a projective measurement to decide between ��2� and
��4�, after which they will be finished.

If Alice obtained her second outcome, ��2� is excluded,
leaving only ��1�, ��3�, and ��4�. Again using the point
noted in the previous paragraph that Bob has done essentially
nothing to his space, �b1� remains orthogonal to both �b3� and
�b4�. Therefore, he can now do a three-outcome measure-
ment, projecting onto �b1�, �b3�, or the single state orthogonal
to both of these. The first outcome identifies ��1�, as it is
orthogonal to the other two remaining states. The last out-
come identifies ��4�, since by construction this outcome is
orthogonal to both �b1� and �b3�. The remaining outcome ex-
cludes ��1�, leaving it up to Alice to decide between ��3�
and ��4�.

Alice will be able to distinguish in this last case if and
only if the states �a3� and �a4� have remained orthogonal to
each other. Effectively, the only thing Alice has done to this
point is the projection, IA− �a2��a2�. So the two states on Al-
ice’s space have been transformed as

�a3� → �a3�� = �IA − �a2��a2���a3� = �a3� − �a2��a2�a3� = �a3� ,

�a4� → �a4�� = �IA − �a2��a2���a4� = �a4� − �a2��a2�a4� ,

�24�

given that �a3� is orthogonal to �a2�. Since �a3� is also or-
thogonal to �a4�, it is clear that �a4� �a3��=0. Hence, Alice can
distinguish between the last two states, and we have proved
that a 2 � 2 MES is sufficient to distinguish any UPB on
3 � 3. �

An important observation arising from this proof is that
once a single state is removed, then the entangled resource is
no longer needed and may be discarded. We may expect that
this will not generally be the case in higher dimensions, as is

0

1

23

4

FIG. 7. The orthogonality graph of every UPB on 3 � 3. Each
node of the graph represents one of the states in the UPB ��� j� is
labeled as j�, and the lines connecting two nodes indicate on which
party the two nodes are orthogonal to each other: dashed lines in-
dicate orthogonality on system A; solid lines, on system B.

|a0〉A

0

|a0〉A

|00〉ab

|11〉ab

0

FIG. 8. The most general UPB on 3 � 3, and what happens after
the bottom row has been slid to the right.
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implied by the discussion in the following section. Let us
now turn to these more complicated UPB’s.

IV. BIPARTITE UPB’s IN HIGHER DIMENSIONS

In this section, we consider a generalization of the Tiles
UPB to higher-dimensional systems, referred to as GenTiles1
�10,15�. We will first consider a specific example, that for a
6 � 6 system, illustrated in Fig. 9. The generalization to ar-
bitrary m � m systems, with m even, is apparent from the
figure—each horizontal tile extends over half of Alice’s Hil-
bert space, while each vertical tile covers half of Bob’s. Each
tile, of length m /2, is filled with m /2−1 states, each of
which covers the whole tile. In addition, as with the Tiles
UPB there is a stopper which covers the whole diagram and
is, of course, orthogonal to all the other product states. De-
tailed expressions for these states will not be important for
the following discussion. In Appendix A we prove the fol-
lowing.

Theorem 2. An m /2 � m /2 MES is sufficient to perfectly
distinguish the GenTiles1 UPB on m � m, for any even m
�4, using only LOCC �the GenTiles1 UPB exists only for
even m�4�.

Here, we will demonstrate this on a 6 � 6 system. If we
consider the tiling pattern of our 6 � 6 example, we see a
chain of links, similar to what was observed for the Tiles
UPB. There is a closed chain of horizontal tiles �1 to 6�, as
well as one of vertical tiles �7 to 12�, and these two chains
conspire to prevent either party from making a measurement
without destroying the orthogonality of the states, in pre-
cisely the same way as was seen previously for the Tiles
UPB.

We can use the ideas discussed in the previous sections to
demonstrate how this UPB can be distinguished with an
MES of rank equal to m /2=3. Such an MES allows Bob to
slide each successive pair of rows to the right so that each
pair of rows is orthogonal on Alice’s side to every other pair
of rows. This is depicted in Fig. 10 �recall that the labels
�kk�ab, k=0,1 ,2, indicate that each pair of rows is orthogonal
to the other pairs not only on Bob’s side, but now also on
Alice’s�.

From here, Alice can perform a three-outcome projective
measurement which keeps only complete tiles for each out-
come, dividing the set of tiles into three sets as 	1,2 ,7 ,10
,

	3,4 ,9 ,12
, and 	5,6 ,8 ,11
. As an illustration, the first of
these sets is obtained from the outcome

A0 = �0�a�0� � ��
k=0

3

�k�A�k�� + �1�a�1� � �0�A�0� + �2�a�2�

� �3�A�3� , �25�

and will leave the set of states looking like that depicted in
Fig. 11 �the other outcomes have essentially the same form,
and can be treated in the same way as this one�. Bob can now
do a two-outcome measurement preserving whole rows and
separating the pair of tiles 	1,10
 from the pair 	2,7
; the
first case is illustrated in Fig. 12, and the other is essentially
identical to this. Then, Alice can do a measurement that ei-
ther distinguishes between all the states in the remaining
horizontal tile, or leaves the vertical tile for Bob to distin-
guish. In order to assist Bob in distinguishing the vertical
tile, Alice can “put this tile back together” by a projective
measurement on system a. For example, if it is tile 10, she
can project onto �0+2�a, �0−2�a, or �1�a. Once tile 10 has
been isolated, the latter outcome has vanishing probability,
and the other two outcomes each put this tile back into a
single vertical column, after which Bob can distinguish.
Thus, we have shown that for the 6 � 6 GenTiles1 UPB, a
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FIG. 9. The GenTiles1 UPB on a 6 � 6 system.
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FIG. 10. GenTiles1 UPB after sliding each pair of rows out from
under the pair above it.
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FIG. 11. The GenTiles1 UPB after Alice’s measurement.
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3 � 3 MES is sufficient. The approach we have used is quite
general and can be applied successfully to this UPB in any
dimension, as is shown in Appendix A.

As the “1” at the end of GenTiles1 indicates, there is
another UPB that generalizes Tiles, known as GenTiles2. In
Appendix B, we prove a theorem for this family of UPB’s,
which exists on m � n for any even m�3, n�3, and n�m.
The theorem is as follows.

Theorem 3. An �m /2� � �m /2� MES is sufficient to per-
fectly distinguish the GenTiles2 UPB on m � n with n�m,
for any dimensions m ,n in which it exists �excluding the
case m=3�.

To this point, we have only considered UPB’s on bipartite
systems. Recently, Niset and Cerf provided a construction of
multipartite UPB’s for �almost� any number of parties and
dimensions of their Hilbert spaces �8�. In the next section, I
show that every UPB obtained from their construction is
LOCC-distinguishable with a single 2 � 2 MES shared by
any pair of parties.

V. UPB’s WITH MORE THAN TWO PARTIES

In this section, I consider a family of multipartite UPB’s
constructed by Niset and Cerf �8�. Their construction is quite
general, producing multipartite UPB’s for N parties, where
the nth party’s system has arbitrary dimension dn apart from
the restriction that dn�N−1 �8�. We have found that this
family of UPB’s is quite weakly indistinguishable in the
sense that only a relatively small amount of entanglement is
needed to distinguish them. Specifically, we will prove the
following theorem.

Theorem 4. For an arbitrary number N of parties having
systems of any dimensions dn�N−1, the corresponding
UPB of Niset and Cerf can be distinguished by LOCC with
the aid of an ancillary 2 � 2 MES shared between any two
parties.

We will first prove this theorem for the specific case of
N=4 parties, each having a dn=3-dimensional system, by
constructing a protocol that distinguishes this UPB. The ap-
proach we use for this example is then shown to generalize
to cover all cases.

Let us first review the Niset-Cerf construction, using this
N=4 and dn=3 example. The states in the Niset-Cerf UPBs
are products where each local state is chosen from one of
two orthogonal bases: �1� the standard basis states �SB�
�0� , �1� , . . . , �dn−1� or �2� the states in the Fourier basis �FB�,
obtained by a discrete Fourier transform �DFT� acting on a
state in SB, where the DFT is denoted below as Hd for a

system of dimension d. Though we will not need the explicit
expressions of the states, which are given in Ref. �8�, it may
be helpful to describe the quantum circuit that was used in
the construction. The circuit of Fig. 13 illustrates the case of
N=4 and dn=3 for each n, with a rather obvious extension to
the general case.

This circuit involves �multiply�-controlled DFT gates, and
should be understood as follows: an open circle is “on” if
that party’s state is �0�; gray-hatched circle, if �1�; and black
circle, if �2�. If all parties’ controls are “on,” then that gate
performs the DFT, otherwise it does nothing. It was shown
that if each state of a product basis involving only SB local
states is input to this circuit, the collection of output states is
a complete orthogonal basis that exhibits the phenomenon of
NLWE �4�. They also showed that a subset of these states,
when supplemented by a stopper state �F�, is a UPB. The
subset is obtained by keeping only those output states for
which a DFT was performed on one of the systems �note that
for any given SB input state, it is never the case that more
than one system is acted on by a DFT �8��, but also omitting
the states for which that DFT was performed on �0�. The
stopper is then taken as a product in which each local state is
Hd �0�. The box diagram representation of these states then
includes tiles, the nth tile corresponding to one party and
representing the dn−1 states for which the DFT acted on that
party’s system. The stopper state covers the complete dia-
gram including in the tiles, much like in the bipartite ex-
amples discussed above, and is the only state that lies outside
the various tiles.

This construction produces the UPB illustrated in Fig. 14.
The interpretation of this diagram as a four-dimensional box
�each party’s space corresponds to one of the dimensions� is
as follows: each 3 � 3 box �I will refer to these as the “small”
boxes, as opposed to the large 4D box represented by the
complete figure� corresponds to a fixed SB state on parties C
and D and the full Hilbert space of A and B. Therefore, the
nine such boxes shown represent the full four-partite system.
One may imagine this by taking each row of small boxes and
stacking them on top of each other vertically �out of the
page� to create a three-dimensional box. In turn, these 3D
boxes can be stacked along a fourth dimension to create a 4D
box.

Imagine that one party, say Alice, does a projection onto
one of her SB states, say �1�. This will pick out the second

1 10

10

FIG. 12. Next-to-last step in distinguishing the GenTiles1
UPB.

H3

H3

H3

H3

FIG. 13. The Niset-Cerf construction for four parties, each hav-
ing a three-dimensional system. An open circle is “on” if that par-
ty’s state is �0�; gray-hatched circle, if �1�; and black circle, if �2�. If
all parties’ controls are “on,” then that gate performs the DFT. Oth-
erwise, the gate does nothing.
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“column” of the 4D box, or in other words, the collection of
second columns taken from each of the individual small
boxes shown in the figure. Given this outcome, the full FC
tile will have been preserved across the three small boxes on
the left, so the states in that tile will maintain their mutual
orthogonality. However, this outcome will also cut the FA tile
from the right-hand set of small boxes, preserving only part
of it and precluding the possibility of successfully distin-
guishing the states in that tile. If, instead, she had measured
in the FB and her local part of the chosen state had been one
of her SB states, then she will have lost the ability to deter-
mine which local state she has. As a result, she will be un-
able to furnish the other parties with any useful information
about what basis they should use in their measurements, and
they will be left in the same bind Alice was in when she
started the protocol. By noting that an FB measurement by
Alice collapses each 3 � 3 box down to a 3 � 1 box that is a
linear combination of all three columns in that particular
box, then if another party does such a measurement, orthogo-
nality cannot be preserved �this can most easily be seen by
drawing the set of 3 � 1 boxes—then, following the second
party’s measurement, there will always be an overlap be-
tween different tiles, the states of which will then no longer
be orthogonal to each other�. The same clearly holds true if
the other party measures in the SB, which would destroy
orthogonality within that party’s tile. These ideas, along with
the equivalence of all the parties, give a qualitative under-
standing of why this UPB cannot be distinguished by LOCC.
We note that it is once again an issue of interlinking chains.
Each tile by itself can be viewed as a chain stretching across
that party’s entire Hilbert space, and all these chains interlink
each other in a way similar to the examples discussed in
previous sections, in that no party can perform a measure-
ment without breaking that chain which stretches across their
space. Breaking a chain destroys orthogonality, which is why
the states cannot be distinguished by LOCC.

The point is that given one of the states in this UPB, the
parties do not know whether their local part is from the SB,
or from the FB. Therefore, none of them can start a measure-
ment protocol, as they do not know what basis to use for
their measurement. That is, any basis they choose to measure
in, they will in some cases have chosen wrong, in which case
they will destroy the orthogonality of the states and be un-
able to determine which state they have.

However, if Alice’s tile were removed, then she could
make a measurement in the SB basis without creating any
difficulties, after which the other parties would be able to
distinguish all the remaining states. Though a 2 � 2 MES will
not quite allow this tile to be immediately removed, it does
allow it to be moved out of the way, as we will now see. The
approach is once again to introduce entanglement in order to
slide one row over. Note that “sliding a row” means a row of
the full 4D box; that is, for example, sliding the first row of
the 4D box means sliding the first row of each of the small
boxes in Fig. 14.

Suppose Alice and Bob share a 2 � 2 MES, �B0�ab
= �00�ab+ �11�ab. Then, referring to Fig. 14, Bob can measure
with two rank-3 projectors, one outcome being onto the sub-
space spanned by 	�01�bB , �02�bB , �10�bB
 �his other outcome
works similarly�. Effectively, this projection slides the top
row �of each small box� to the right while leaving all other
rows fixed. This moves the complete tile FA, and also moves
only a part of tile FB, as shown in Fig. 15.

At this point, Alice can make the measurement previously
discussed, but instead of projecting onto �1�A, she projects
onto �01�aA. This no longer has any effect on her tile, which
has been moved out of the way. If she gets �01�aA, the only
possible states are ones with Charlie’s �party C� local state in
the FB basis, including the stopper. This follows from the
structure of the controls for the DFT gates as shown in Fig.
13, and also can be seen from Figs. 14 and 15. Charlie can
then measure in the FB basis to determine which state it is.

If a second outcome of Alice’s measurement is a projec-
tion onto �00�aA, then the same procedure works, except that

FA

FC

FB

FC

FC

FD FD FD

A

0 1 2 0 1 2 0 1 2

B

2

1

0

2

1

0

2

1

0

|20〉CD |21〉CD |22〉CD

|10〉CD |11〉CD |12〉CD

|00〉CD |01〉CD |02〉CD

FIG. 14. The Niset-Cerf construction for four parties, each hav-
ing a three-dimensional system.
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FIG. 15. The Niset-Cerf UPB after Bob measures and slides the
top row of each small box to the right. Only the �01�CD and �12�CD

small boxes are shown, as these are the only ones that are altered in
an important way by this action. The labels across the top represent
standard basis states of systems a ,A �for example, 00 represents
�00�aA�.
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now it is Dahlia �D� who measures in the FB to finish the
protocol �since it is now the FD tile that has been fully pre-
served, all others having been excluded�. Finally, a third out-
come will project onto the rest of Alice’s a-A space. Then
both Charlie and Dahlia know that they either have a state
from their SB or their local part of the stopper. In either case,
one or the other can measure in the SB to determine which of
Alice or Bob has an FB state �one of them will�. Note that if
the chosen state is the stopper, Alice or Bob will still be able
to distinguish it, even after Charlie or Dahlia have measured
in the SB, since the stopper is orthogonal to all the other FB
states on every local system. Thus, the party that has the FB
state can measure in that basis, distinguishing the state and
finishing the protocol. For example, if Charlie obtains out-
come �1�C, then �again, this follows from the structure of the
controls in Fig. 13� Alice’s system must be in an FB state.

The procedure works for any number of parties and any
dimensions of their spaces. With a single 2 � 2 MES shared
by Alice and Bob �but by symmetry of the parties, which two
of them share the MES is actually unimportant�, Bob can
make a two-outcome measurement for each outcome of
which the �0�B row of the N-dimensional box diagram—the
one containing Alice’s complete tile—has been slid across
and separated from the rest of the diagram. Alice can again
perform a dA-outcome projective measurement with rank-1
projectors

Pk = �0�a�0 � �k�A�k�, 0 	 k 	 dA − 1 �but k � N − 1�
�26�

and one additional projector onto the remaining part of Al-
ice’s space

P� = Ia � IA − �
k�N−1

dA−1

Pk. �27�

Note that Bob’s tile has been divided by his initial
measurement—part lying in the �00�ab and part in the �11�ab,
spaces—which is why the projector onto �0,N−1�aA is in-
cluded in the last outcome: by itself, it preserves only the
part of Bob’s tile that was not slid over to the right, so the
states in his tile would no longer be orthogonal to each other.
Alice’s rank-1 outcomes tell her which party should measure
in the FB or, if she gets outcome P�, all parties other than
Bob and herself are free to measure in the SB. One of the
others measuring will determine which of Alice and Bob
should then measure in the FB. In all cases, the parties suc-
ceed in distinguishing the state.

We note that if instead of distinguishing this UPB, the
parties are charged with distinguishing the full NLWE basis
produced by the circuit of Fig. 13 �by inputting every state in
the SB of the multipartite system�, then by modifying the
above procedure, the parties will still succeed. This NLWE
basis is obtained from the UPB by �1� removing the stopper,
�2� adding a state with Hdn

�0� as the nth party’s local part,
and the other parties’ local states such that this would arise
from the circuit diagram of Fig. 13 �for example, input
�0�A �0�B �1�C �2�D to the circuit, which “completes” tile FA�,
and �3� then completing the basis with additional states that
are all products of local SB states. In this case there are many

more states to distinguish, which makes things only a bit
more difficult. Bob starts with the measurement that slides
the first row across, and Alice continues with the same mea-
surement she did previously, Eqs. �26� and �27�. Any one of
the rank-1 outcomes tells her the one, and only one, party
who may have an FB state �by design of her measurement, it
cannot be Bob or herself�. All parties other than that one can
then measure in their SB, after which they will know which
basis that last party should measure in to finish the protocol.
If, on the other hand, she gets the projection onto the remain-
der of the a-A space, only Bob or herself may have an FB
state. Then, all other parties can measure in their SB, and
their outcomes will determine which of Bob or Alice might
have an FB state. The other of this pair then measures in the
SB, after which the last party will know which basis to mea-
sure in, again completing the protocol. An important differ-
ence for this case as compared to distinguishing the UPB is
that here, more measurements are required as well as more
classical communication, the latter because more information
must be transmitted so that subsequent parties will know
what measurements they should make. This should not be
surprising, however, since the parties gain more information
by distinguishing the full basis, as opposed to the UPB. One
might reasonably expect that to acquire more information,
they will need to utilize more resources.

VI. DISCUSSION

A. Relationship to separable measurements

It turns out that the UPB’s discussed in this paper are all
distinguishable by separable measurements �SEP�. To see
this, first note that all 3 � 3 UPB’s have been shown in Ref.
�10� to be distinguishable by SEP. To show that the other
UPB’s considered here are distinguishable by SEP, we note
they are all completable to a full �orthogonal� product basis
when the stopper is removed. Then, the conclusion follows
from the following theorem, which strengthens theorem 2 of
Ref. �10�. It should be noted that the theorem of Ref. �10�
says that a UPB �any incomplete product basis, actually� is
distinguishable by SEP if it is completable �perhaps in an
extended Hilbert space; see Ref. �10�� when any single state
is removed. That is to say, it must be completable no matter
which state is removed in order for the conclusion to follow.

Theorem 5. A set of product states S is distinguishable by
SEP if it is completable after a given �fixed� state, say ��1�,
is removed.

Proof. The proof is quite simple. Remove ��1� and then
add a set of states S1

� to complete the basis. Design your SEP
to consist of all the rank-one �product� projectors onto the
states of this basis. This is a complete SEP measurement,
since each projector is a product operator �and hence, sepa-
rable� and their sum is the identity operator on the full �pos-
sibly extended� Hilbert space. It clearly distinguishes the
states of the completed basis. It also distinguishes S: First,
each outcome identifying a state not in S1

� when measuring
the full basis, will identify the same state when measuring S.
Next, note that if an outcome identifies a state in S1

� when
measuring the full basis, then it is, by construction, orthogo-
nal to all states in S, with the �possible� exception of ��1�.
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Hence, when measuring S, this outcome either �1� identifies
��1� or �2� is orthogonal to all states in S and will therefore
have vanishing probability of occurring. �

We have attempted, without success, to apply the ideas
described in this paper to devise protocols for efficiently
�i.e., using less entanglement then would be required for tele-
portation� distinguishing other UPB’s that are not known to
be distinguishable by SEP. The reason for our failure may
simply be that these other UPB’s do not exhibit the obvious
tile structure seen in the UPB’s discussed here, and this tile
structure clearly simplifies the task. �As for the general theo-
rem on 3 � 3 UPB’s, we note that it is possible to show that
one can always choose local bases such that any such UPB
will exhibit exactly the same tile structure seen for the Tiles
UPB. This then provides an additional proof that a 2 � 2
MES is sufficient to distinguish any of these UPB’s, as the
protocol for Tiles depends only on this tile structure, not on
other details of the states in the UPB.� Nonetheless, it re-
mains an interesting open question whether or not UPB’s that
are distinguishable by SEP behave in a qualitatively different
manner from other UPB’s, with regard to the question of
efficient use of entanglement to distinguish the set of states
by LOCC. Might it be possible to show, for example, that all
SEP operations can be implemented through LOCC by an
efficient use of entanglement? Obviously, this is true for a
broad subclass of SEP—that is, the subclass of LOCC itself.
But is there a close connection between non-LOCC SEP op-
erations and LOCC itself that can be drawn through this
question of efficient use of entanglement? And is there a
distinction that can be made between SEP and non-SEP op-
erations by considering the amount of entanglement that is
needed to implement them by LOCC?

B. UPB’s and full NLWE bases

Each of the UPB’s we’ve considered has an associated
full NLWE basis, which our protocols will also successfully
distinguish. We have already described at the end of the pre-
vious section, for the multipartite Niset-Cerf construction,
how to obtain the full NLWE basis from the UPB, and then
how to modify the UPB protocol so that the NLWE basis can
be distinguished. The other NLWE bases can be constructed
in a similar way: �1� remove the stopper, �2� add a state in
each tile that is a projection of the stopper onto the subspace
represented by that tile, and then �3� complete the basis with
additional states �if necessary� that are all products of local
SB states. For the bipartite GenTiles1 and GenTiles2, this
procedure fills the whole space with “completed” tiles �step 3
of adding SB states is not needed�. Therefore, the only dif-
ference between the UPB and the NLWE is that the stopper
has been replaced by several states, one in each tile. Next
notice that our protocols for distinguishing the UPB’s always
follow the basic procedure: first, isolate a single, full tile;
then second, one party distinguishes amongst the states in
that tile. For each tile, then, those outcomes that identified
the stopper in the case of the UPB, identified it following a
projector onto that particular tile. Thus, identifying the stop-
per in this way is no different from identifying, in the case of
the NLWE basis, the single state that was added to that tile to

replace the stopper, since that single state is just the projec-
tion of the stopper onto the tile. Hence, the exact same pro-
tocol that distinguished the UPB will also distinguish the
NLWE basis; there is no need for modification at all. The
same conclusion holds for Tiles, except that in this case one
also has to add the state �0�A �0�B after removing the stopper.
This SB state is easily accounted for, and the protocol for
this UPB also distinguishes the NLWE, with a slight modi-
fication only needed at the end of the protocol to account for
that extra �0�A �0�B state.

C. Significance of �m Õ2�‹ �m Õ2�
In each bipartite case we considered, it has turned out that

an �m /2� � �m /2� MES is sufficient to distinguish the states,
where m is the smallest dimension of the two parties’ Hilbert
spaces. Is there something significant about �m /2�? We do
not know the answer to this question for UPB’s, but if we
instead consider full NLWE bases, we can give a counterex-
ample showing that this amount of entanglement is not al-
ways necessary. This counterexample has a structure similar
to the Tiles UPB, more specifically its associated NLWE
basis, the nine states with which NLWE was first demon-
strated �4�. The resulting basis is on 6 � 6 and has the tile
structure shown in Fig. 16, where each long tile represents
four orthogonal states, each of which is a superposition hav-
ing nonzero coefficients for all the SB states lying along the
tile’s length �the specific choice of such superpositions is
unimportant�; the short tiles each represent a single state. It
can be shown, by an argument similar to that given in Ap-
pendix B of Ref. �7�, that this set of states cannot be distin-
guished by LOCC. Nonetheless, a 2 � 2 MES is sufficient to
distinguish them with LOCC. One just needs to slide the
bottom two rows to the right, which requires only two im-
ages of the original Hilbert space, produced by the 2 � 2
MES. Then a protocol similar �almost identical, actually� to
that used to distinguish Tiles will also distinguish this set of
states. Hence, �m /2� is not necessary. Even so, this does not
seem to imply a similar conclusion for UPB’s. Although it
may well be that this set can be transformed into a UPB �this
does not appear to be a trivial problem�, it is not at all obvi-
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FIG. 16. A complete NLWE basis on 6 � 6 that is distinguish-
able by LOCC with a 2 � 2 MES. Each long tile represents four
orthogonal states, each of which is a superposition, with nonzero
coefficients for all the SB states lying along the tile’s length. The
short tiles each represent a single state.
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ous that it will be possible to distinguish the resulting UPB
with a 2 � 2 MES.

D. Tensor powers of bipartite UPB’s

Suppose one has two bipartite UPB’s S1 and S2, given
by 	�� j

1�
 on m1 � n1 and 	�� j
2�
 on m2 � n2, respectively.

Then it has been shown �10� that the set of product states
	�� j

1� � �� j
2�
 �denoted by S1 � S2�, is a bipartite UPB on

m1m2 � n1n2. It is easy to argue that if S1 can be distin-
guished by LOCC with an r1 � r1 MES, and S2 with an
r2 � r2 MES, then S1 � S2 is distinguishable by LOCC with a
r1r2 � r1r2 MES. One can simply distinguish S1 with a rank-
r1 MES, and S2 with a rank-r2 MES, confirming this claim.

E. Necessary entanglement

We have provided protocols for using entanglement to
distinguish UPB’s by LOCC, providing a nontrivial suffi-
cient amount of entanglement. It would be of considerable
interest to know if the amount of entanglement we use is also
necessary, and if not, to know what amount is necessary. We
do not know the answer to these questions, but can make a
few relevant comments.

First, let us consider the question of using a partially en-
tangled state �PES�, rather than an MES. As discussed above,
the difference this creates is that the various images pro-
duced by the entanglement �r images for a rank-r entangled
state� are scaled differently from each other. In this case, our
“sliding” of rows and/or columns will tend to create nonor-
thogonality amongst the states within any tile that is broken
up between different images. This leaves one with the im-
pression that a PES will be difficult to use, and would prob-
ably require a good bit of creativity in devising a protocol.
We suspect, but have no further compelling argument, that an
MES will be necessary, at least for most cases, including
those we have considered here.

Can the UPB’s considered here be distinguished with an
MES of rank smaller than �m /2�? We suspect not, but once
again do not have a proof. Nonetheless, let us try to give a
plausibility argument, considering the case of GenTiles2 dis-
cussed in Appendix B. In our protocols for distinguishing
this, and other, UPB’s, the initial measurement preserves a
single, complete copy of the overall Hilbert space, broken up
across images. This has been done while keeping adjacent
columns together so that each even-numbered short tile can
be readily isolated from everything else; see Fig. 20. If one
does this in a protocol using an MES of rank smaller than
�m /2�, then at least one of the images will have to contribute
three columns �or more�. If these columns are chosen to be
adjacent ones, so as to aid in isolating individual tiles from
all others, then this will leave a set of states within a single
image that cannot be distinguished by LOCC. The reason is
that within any such trio of columns, there lies two closed,
interlinking chains of states—one composed of horizontal
tiles, and the other of vertical ones. We have seen that such
sets of states cannot be distinguished by LOCC, so one
would need additional entanglement to produce multiple im-
ages in order to break apart these chains.

If instead one preserves three columns from a single im-
age that are not all adjacent to one another, the result will be
that more short tiles will be broken apart across different
images, and we suspect this will only make it more difficult
to proceed from there. Alternatively, one could design a pro-
tocol that preserves more than one complete copy of the
overall Hilbert space at the first step, hoping to discover a
more effective approach than the one used here. Though this
might well prove successful, it is not at all obvious to us how
one might proceed.

VII. CONCLUSIONS

We have presented protocols that efficiently use entangle-
ment to distinguish various families of UPB’s by LOCC. To
each of these UPB’s corresponds a complete NLWE basis,
which can also be distinguished by the same, or slightly
modified, protocol. The design of these protocols arose from
a new perspective on using entangled states as a resource,
and this perspective has been described in detail in the text
through the use of box diagrams. The important idea is that
entanglement provides multiple images of Hilbert space, and
that the parties can, independently of one another, act on
these images in ways that differ from one image to the next.
This allows a “sliding” apart of Hilbert space such that ini-
tially nonorthogonal pairs of local states end up being or-
thogonal, aiding the process of distinguishing the set of
states. It should be noted that our protocols do not rely on
details of the individual states, but only on the general way
they are distributed through the space.

An interesting point �19� is that in all of our protocols, it
has been necessary that the parties be able to communicate
�classically� back-and-forth. Indeed, it appears as though
one-way CC will not be sufficient for the parties to distin-
guish these sets of states unless, of course, they share enough
entanglement to teleport everything to a single party. How-
ever appearances can be deceiving, especially when one is
dealing with quantum systems, so we simply note this as an
important open question deserving of further study.
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APPENDIX A: THE GENTILES1 UPB

In this appendix, we show that the GenTiles1 UPB in any
even dimension m�4 can be distinguished using the types of
protocols described in the main text. Specifically, we will
prove the theorem stated there.

Theorem 2. An m /2 � m /2 MES is sufficient to perfectly
distinguish the GenTiles1 UPB on m � m, for any even m
�4, using only LOCC �the GenTiles1 UPB exists only for
even m�4�.

Proof. The cases of m /2 even and odd require slightly
different discussions, though the approach in both cases is
very similar to that given in the main part of this paper for
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m=6. The stated amount of entanglement produces m /2
equivalent images of the original Hilbert space. In the usual
way, Bob can do a projective measurement that picks out a
unique pair of rows from each image and slides each pair to
the right so that no part of an individual pair lies vertically
above any part of any other pair �each pair is then orthogonal
to every other pair on Alice’s side, as well as on Bob’s�.
Since each pair obviously consists of two rows, and
2�m /2=m, he has preserved the whole Hilbert space of
system B essentially unchanged, but has broken it up into
pieces with the help of system b. Alice will then begin the
process of separating out subsets of the tiles with her first
measurement. For the following discussion, it will be useful
to recall that all tiles have length m /2.

Bob’s initial measurement has m /2 outcomes, each of
which corresponds to the projectors

Bl = �
k=0

m/2−1

�	k + l
�b�	k + l
� � ��2k�B�2k� + �2k + 1�B�2k + 1�� ,

�A1�

with l running from 0 to m /2−1, and 	x
 means x
�mod m /2�. Each �	k+ l
�b�	k+ l
� identifies which image that
term acts on, and then the associated rank-2 projector on the
B space identifies the two rows from that image that are
preserved, all other rows being annihilated. We will discuss
only l=0, the other outcomes being handled in an essentially
identical way. For the case that m /2 is odd, which we focus
on first, outcome B0 leaves the situation depicted in Fig. 17.

Notice that the horizontal �H� tiles are preserved entirely
from a single image, while the vertical �V� tiles are split up
amongst several of the images. Many pieces of the V tiles

have subtiles of vertical length 2, that is, they stretch across
both rows preserved from that image. However, since m /2 is
odd, and each tile has full length equal to m /2, each of the V
tiles has a single piece �from one of the images� that has
vertical length of only 1. For example, tile V1 has a length-1
subtile in the uppermost pair of rows, preserved from the
�00�ab image, and then stretches downward, with several
length-2 subtiles lying in each of the subsequent images
down to the � m/2−1

2 , m/2−1
2 �ab image where the V1 tile ends. At

the other end of the H tiles in the �00�ab image �H1 and H2�
lies a length-1 piece of the Vm/2+1 block, which stretches
upward from there �with wrapping around from top of the
diagram to bottom�, having several length-2 pieces lying in
other images. It is not difficult to see that the four tiles H1,
H2, V1, and Vm/2+1, can be separated out from all the others,
preserving these four tiles in their entirety. Indeed, the pro-
jector A0 on Alice’s space does the trick, where

Ak = �k�a�k� � �
j=2k

�m/2+2k�

�j�A�j� + �
i=	k+1


	m/4−1/2+k


�i�a�i� � �2k�A�2k�

+ �
i=	m/4+1/2+k


	m/2+k−1


�i�a�i� � ��m/2 + 2k��A��m/2 + 2k��� ,

�A2�

and �x�x �mod m�. Specifically, and referring to Fig. 17,
the first line of this equation for k=0 preserves the first
m /2+1 columns of the �00�ab image, including the entire
tiles H1 and H2 as well as the length-1 pieces of tiles V1 and
Vm/2+1. Since entire tiles must be preserved in order to avoid
destroying orthogonality, we must also keep the remaining
parts of these two V tiles. These remaining pieces are all of
length-2, so Alice can easily do this without the undesired
effect of including pieces of other tiles: the second sum in
Eq. �A2� preserves the rest of V1, while the third sum pre-
serves the rest of Vm/2+1. Furthermore, in the same way, A1
preserves H3, H4,V2, and Vm/2+3 in their entirety, and in gen-
eral Ak preserves H2k+1, H2k+2, V2k+1, and V�m/2+2k+1� �the
mod m in the index on the latter V should be ignored if that
index is equal to m�. Hence Alice’s �complete� measurement
represented by the Ak �with k=0, . . . ,m /2−1� divides the
tiles into mutually exclusive sets, each set containing four
tiles.

These four-tile sets are all distributed across the images in
essentially the same way, so the remainder of the protocol is
also essentially the same no matter which outcome Ak Alice
obtained in her measurement. Let us then show how to pro-
ceed with A0. So far, we have assumed that outcome B0 by
Bob was followed with outcome A0 by Alice. The situation is
still depicted by Fig. 17 if one imagines that all tiles have
been erased except for the four that have been preserved H1,
H2, V1, and Vm/2+1. If Bob now repeats the measurement
shown in Eq. �A1�, he will again obtain outcome B0 with
certainty, without altering anything by doing so. Let him in-
stead refine this measurement by leaving all other Bl un-
changed, but splitting B0 into two separate outcomes, as
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FIG. 17. GenTiles1 following Bob’s first measurement with out-
come B0.
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B01 = �0�b�0� � �0�B�0� + �
k=m/4+1/2

m/2−1

�k�b�k� � ��2k�B�2k�

+ �2k + 1�B�2k + 1��

B02 = �0�b�0� � �1�B�1� + �
k=1

m/4−1/2

�k�b�k� � ��2k�B�2k�

+ �2k + 1�B�2k + 1�� . �A3�

He will obtain one of these two outcomes �all other out-
comes now have vanishing probability�; the first one pre-
serves all of tiles H1 and Vm/2+1 while the second preserves
all of tiles H2 and V1. Whichever of these outcomes he ob-
tains, Alice can follow with a measurement �a refinement of
A0� that isolates either the remaining H tile or the remaining
V tile. If, for example, Bob obtained B02, Alice does

A01 = �0�a�0� � �
j=1

m/2

�j�A�j� ,

A02 = �
k=0

m/4−1/2

�k�a�k� � �0�A�0� , �A4�

these being the only outcomes occurring with nonzero prob-
ability, the first one isolating tile H2 and the second one
isolating V1. In any case, the states in the remaining H tile
can be directly distinguished by Alice, while for the V tile,
Alice will need to put this tile back together by a measure-
ment in the Fourier basis on system a. Then, Bob can distin-
guish amongst the states in that tile. This completes the pro-
tocol for the case m /2 odd.

In the foregoing, Alice designed her outcome A0 as fol-
lows: it should preserve tile H1, in which case she must
preserve all of this tile. To do so, she also preserves a length-
1 piece of V1 and almost all of H2, so she must preserve all
of these tiles, as well �recall that her measurements preserve
entire columns, which looking back at Fig. 17, have vertical
length of 2�. Preserving all of H2 means that a length-1 piece
of Vm/2+1 is preserved, so this tile must also be preserved in
its entirety. It turns out, as shown above, that these four tiles
can all be completely preserved without keeping any part of
any other tile. Alice’s other outcomes work the same way,
which is why the protocol is able to succeed.

Now consider what is different when m /2 is even instead
of odd. Bob’s first measurement is unchanged, preserving
two rows from each of the m /2 images provided by the
m /2 � m /2 MES. The first pair of rows, from the �00�ab im-
age, still contains within it H1 and H2, along with length-1
pieces of V1 and Vm/2+1. Alice can design A0 by intending for
it to preserve H1, in which case this outcome must preserve
all of this tile, along with H2, V1, and Vm/2+1. So far, all is as
it was for m /2 odd. But preserving the rest of one of these
vertical tiles will no longer mean only keeping an additional
set of length-2 subtiles, which along with the single length-1
subtile already noted, would make the total length odd.
Rather, since m /2 is now even and is the length of each of
the tiles, there must be a second length-1 subtile for each of

these vertical tiles. Since the additional piece of V1 �to focus
on a specific V tile� is length-1, there will be an H tile lying
below it within the same image, which in this case will be
the �m /4,m /4�ab image, shown in Fig. 18 �this should re-
place the � m/2−1

2 , m/2−1
2 �ab image in Fig. 17 because now

m /4−1 /2 is not an integer�. This means that in order for
Alice’s outcome to include that second length-1 piece of V1,
it must also preserve this H tile, which is seen from Fig. 18
to be Hm/2+2. To preserve all of this latter tile, we see that tile
Hm/2+1 must also be preserved, which implies that tile Vm/2+1
must be preserved. Here, the chain of implications, preserv-
ing one tile implying that another need be preserved, closes
on itself because we already knew that Vm/2+1 had to be pre-
served. Therefore, the design of A0 is complete, and it pre-
serves only six tiles: H1, H2, Hm/2+1, Hm/2+2, V1, and Vm/2+1.

Further thought along these lines shows that the
�incomplete—to be completed below� measurement with op-
erators

A2k = �k�a�k� � � �
j=2k

�m/2+2k�

�j�A�j�� + �m/4 + k�a�m/4 + k�

� � �
j=�m/2+2k�

�m+2k�

�j�A�j�� + � �
i=k+1

m/4+k−1

�i�a�i�� � �2k�A�2k�

+ � �
i=	m/4+k+1


	m/2+k−1


�i�a�i�� � ��m/2 + 2k��A��m/2 + 2k�� ,

�A5�

with k=0, . . . ,m /4−1, will preserve tiles H2k+1, H2k+2,
Hm/2+2k+1, Hm/2+2k+2, V2k+1, and Vm/2+2k+1. The first two sums
preserve all these H tiles and the length-1 pieces of these V
tiles, while the next two sums preserve all the remaining
length-2 pieces of the V tiles.

Given one of these outcomes, Bob can divide the set of 6
tiles into two, each having one V tile and two H tiles. For
example if Alice obtained A0, Bob can preserve tiles H1,
Hm/2+2, and Vm/2+1 in one outcome, and H2, Hm/2+1, and V1 in
the other, by a measurement �again a refinement of his initial
B0� including

B01 = �0�b�0� � �0�B�0� + �m/4�b�m/4� � �m/2 + 1�B�m/2 + 1�

+ � �
k=m/4+1

m/2−1

�k�b�k�� � ��2k�B�2k� + �2k + 1�B�2k + 1�� ,

m
2

m
2+1

Hm
2
+1

Hm
2
+2

· · ·
V1

V2 V3 Vm
2

Vm
2
+1

· · ·
Hm

2
+2

0 1 2 · · · m
2 −1 m

2
m
2 +1 m

2 +2 · · · m−2 m−1

|m/4, m/4〉ab

FIG. 18. GenTiles1 following Bob’s first measurement with out-
come B0 when m /2 is even. We only show image �m /4,m /4�ab,
as it is the only change needed to Fig. 17, replacing image
� m/2−1

2 , m/2−1
2 �ab there.
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B02 = �0�b�0� � �1�B�1� + �m/4�b�m/4� � �m/2�B�m/2�

+ � �
k=1

m/4−1

�k�b�k�� � ��2k�B�2k� + �2k + 1�B�2k + 1��

�A6�

�these are the only outcomes with non-zero probability�. The
first line of B01 �B02� preserves the first �second� row of
image �00�ab and the second �first� row of image
�m /4,m /4�ab, which contain the two horizontal tiles H1 and
Hm/2+2 �H2 and Hm/2+1�, and the length-1 pieces of the verti-
cal tile Vm/2+1 �V1�. The second line of these two outcomes
preserves all the length-2 pieces of the appropriate vertical
tile. Following either of these outcomes, Alice will be able to
isolate individual tiles by a measurement that has only those
three outcomes �one for each tile� having nonzero probabil-
ity. This can be seen by noticing that the remaining vertical
tile is orthogonal to both remaining horizontal tiles on sys-
tem A, and the two horizontal tiles lie in different images,
meaning they are orthogonal to each other on system a. Once
an individual tile has been isolated, the parties can readily
distinguish amongst the states in that tile.

We just need to complete Alice’s measurement begun in
Eq. �A5�. Considering Fig. 17, we see that the top of tile V2
is a length-2 subtile in the �11�ab image, which means that all
V2 subtiles lying below this will also be of length 2. The last
subtile of V2 is that appearing in Fig. 18. This means there
are no length-1 pieces of V2, all pieces having length 2. The
same conclusion will apply to all even-numbered vertical
tiles V2k. Therefore, these tiles can be individually isolated if
Alice includes in her measurement of Eq. �A5� additional
projectors of the form

A2k+1 = � �
j=k

m/4+k−1

�j�a�j�� � �2k + 1�A�2k + 1� , �A7�

and here k runs from 0 to m /2−1. Outcome A1 isolates tile
V2, and generally, Ak isolates tile V2k. In a way similar to
what was described above for the odd-m /2 case, the states in
these isolated tiles can be distinguished by Bob after Alice
first puts the tile back together with a measurement in the
Fourier basis of system a. This completes the proof of theo-
rem 2. �

APPENDIX B: THE GENTILES2 UPB

In this appendix, we provide an LOCC protocol for dis-
tinguishing another generalization of the Tiles UPB, this one
referred to as GenTiles2. The construction for this UPB is
valid for any m � n system such that m�3, n�3 and
n�m. As illustrated in Fig. 19 for the 6 � n case, the hori-
zontal tiles are all two dimensional, and the vertical tiles are
�n−2� dimensional �in the figure, we may imagine that the
bottom, hatched rows have an arbitrary vertical extension
downward—that is, of length n−6�. For the present pur-
poses, we will not need the detailed expressions of the indi-
vidual states, but we give them here for clarity:

�Sj� =
1
�2

��j�A − �j + 1�A� � �j�B,

�Ljk� = �j�A �
1

�n − 2
��

i=0

m−3


ik�i + j + 1 mod m�B

+ �
i=m−2

n−3


ik�i + 2�B� ,

�F� =
1

�mn
�
i=0

m−1

�
j=0

n−1

�i�A�j�B, �B1�

with 
=exp�2�i / �n−2��, 0	 j	m−1, and 1	k	n−3 �S
refers to the short tiles, L to the long ones, and F is the
stopper�.

Though differing as to the detailed tiling, GenTiles2 dis-
plays a pattern similar to that of Tiles. One can view the tiles
as two closed chains, one made of the horizontal tiles and the
other of the vertical ones. These two chains link each other in
the sense that the presence of one prevents the breaking apart
of the other without destroying orthogonality. We will now
prove the following theorem, also stated in the main text.

Theorem 3. An �m /2� � �m /2� MES is sufficient to per-
fectly distinguish the GenTiles2 UPB on m � n with n�m,
for any dimensions m, n in which it exists �excluding the
case m=3�.

Proof. The method is similar to the approach we have
used previously and works for any m and n �excluding
m=3; see below�. Here Alice goes first, doing a projective,
entangled �between systems A and a� measurement that picks
out one pair of adjacent columns from each of the �m /2�
images of the original Hilbert space, such that each column
is preserved once and only once �from a single image� in any
given outcome. If m is odd, then the last column will be
preserved without a partner in each of these outcomes, but
otherwise all columns are preserved as adjacent pairs. The
result is as though each adjacent pair of columns has been
slid vertically downward so that they no longer have a hori-
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4
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6

7
8

9
10

11

8
9

10
11

FIG. 19. GenTiles2 for a 6 � n system. The cross-hatching in the
bottom section is meant to indicate that the vertical tiles can have
arbitrary lengths �Bob’s space is of dimension n, which can, but
need not, be larger than 6�.
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zontal overlap with any part of the other pairs of columns;
that is, each pair of columns is orthogonal to every other pair
not only on Alice’s side, but now also on Bob’s �see Fig. 20�.

Bob can now do a measurement that either �1� isolates a
single one of the even-numbered short tiles 	0,2 ,4 , . . . 

�since each of these tiles lie alone in their own rows�, after
which Alice can distinguish between the corresponding Sj
and the stopper F or �2� preserves everything else �other than
these even-numbered short tiles�. When m is even, the latter
outcome removes all the even-numbered tiles, so every link
of the chain of horizontal tiles has been broken. Then it is a
simple task for Alice to do an m /2-outcome measurement,
each outcome being a rank-2 projector that preserves, in its
entirety, one of the odd-numbered short tiles, along with the
associated vertical tiles �those lying in the same columns�.
These outcomes “shift” the pairing of the columns—whereas
before, columns 0 and 1, 2, and 3, . . . ,m−2 and m−1, were
paired; now it will be columns 1 and 2, 3, and 4, . . . ,m−1
and 0. Each of Alice’s outcomes leaves three tiles �one hori-
zontal tile, and two vertical ones�—for example, tiles 1, 7,
and 8 are preserved together �or tiles 	3,9 ,10
, or 	5,6 ,11
�
in Fig. 20. Recalling that the even short tiles have been
removed—specifically, in Fig. 20, tiles 0, 2, and 4 are no
longer present—Bob can follow any of these outcomes of
Alice’s with a 2-outcome projective measurement of his
own, where one outcome isolates the remaining �odd-
numbered� short tile and the other projects onto everything
else. If it is the short tile, then Alice can distinguish between
the two possible states Sj and F, whereas if it is everything
else, she can isolate one or the other of the remaining vertical
tiles. Once these vertical tiles are isolated, Bob can distin-
guish amongst the states in that tile. For m even, then, this
description includes all the columns, and therefore provides a
complete protocol for distinguishing the states.

Things are slightly more complicated when m is odd,
since a single even-numbered short tile �that with index

m−1� remains after case �2� of Bob’s first measurement
�“preserves everything else”�. For example, in the 7 � n case
of Fig. 21, tiles 6 and 8 have parts that remain in the same
row �see columns 0 and 1�, implying that tile 6 could not
have been separated from the rest by Bob’s measurement
�since Bob’s measurements always preserve whole rows�. In
the general case of odd m, then, even-numbered short tile
m−1 remains and one of the links of the horizontal chain of
tiles �that between the last two short tiles, m−2 and m−1� is
yet to be broken. That is, the last column is still linked to the
one before it by tile m−2, and to the first column by tile
m−1. Therefore, Alice’s measurement must include one out-
come that is a rank-3 projector, preserving the first column
along with the last two �all other outcomes are as for the
even m case, and proceed accordingly�. For example, in Fig.
21, this outcome would preserve columns 0, 5, and 6 �linked
by short tiles 5 and 6�. Notice, however, that no two of these
columns were initially paired with each other in Alice’s first
“sliding” measurement. Hence, they have all been slid verti-
cally apart from each other so that they have no horizontal
overlap �that is, they are orthogonal on Bob’s side�, and it is
clear that even for this outcome, Bob can separate the two
short tiles from each other and from the vertical tiles, after
which Alice can either distinguish within the remaining short
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FIG. 20. GenTiles2 for a 6 � n system after Alice’s measure-
ment, indicating the vertical sliding of pairs of columns relative to
each other.
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FIG. 21. GenTiles2 for a 7 � n system after Bob’s measurement
has removed all but one of the even-numbered short tiles.
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FIG. 22. GenTiles2 on 3 � 3 after Alice and Bob have both done
initial measurements.
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tile or isolate the vertical tiles from one another. If it is the
latter, then Bob can distinguish amongst the states in the
remaining vertical tile.

This discussion of the odd m case indicates that for
m=3, there will be a problem. Even though the 0 tile �and
also the one vertical tile in the last—in this case, third—
column� can be removed by Bob after Alice uses the en-
tanglement to slide the last column down away from the
other two, there will remain a link between the other two
horizontal tiles, which in this case together span the com-
plete set of Alice’s columns. The situation at this stage will

be as depicted in Fig. 22. We see that the horizontal tiles 1
and 2, while broken across the two images, still link each
other. Because of this, and since the parties must preserve
each tile in its entirety, it would appear as though there is
little progress they can make from this point. Thus, appar-
ently, our protocol fails to distinguish the 3 � n case of Gen-
Tiles2, which it appears will require a 3 � 3 MES to be dis-
tinguished, enough entanglement to allow Alice to teleport
her state to Bob. In all other �m�3� cases, however, we have
shown that with an �m /2� � �m /2� MES, the GenTiles2 UPB
can be distinguished by LOCC. �
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