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Sudden death of entanglement at finite temperature
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We consider the decay of quantum entanglement quantified by the concurrence of a pair of two-level
systems, each of which is interacting with a reservoir at finite temperature 7. For a broad class of initially
entangled states, we demonstrate that the system always becomes disentangled in a finite time, i.e., “entangle-
ment sudden death” occurs. This class includes all states which previously had been found to have long-lived
entanglement in zero-temperature reservoirs. Our general result is illustrated by an example.
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I. INTRODUCTION

In the past few years there has been considerable interest
in the properties of entangled quantum systems. Spurred on
by the emergence of compelling applications in quantum in-
formation processing, useful methods by which the entangle-
ment of quantum systems can be established and character-
ized have emerged. Perhaps the most impactful to date has
been the simple procedure derived by Wootters [1] for quan-
tifying entanglement for an arbitrary mixed state of a pair of
two-level systems. This has provided a very useful tool for
measurement of experimental quantum states [2] and is to-
day commonly used in assessing the capabilities of emerging
quantum technologies. Building on Wootters” work, recently
Yu and Eberly [3] investigated the time evolution of en-
tanglement (quantified using the concurrence) of a bipartite
qubit system undergoing various modes of decoherence. Re-
markably, they found that, even when there is no interaction
(either directly or through a correlated environment), there
are certain states whose entanglement decays exponentially
with time, while for other closely related states, the entangle-
ment vanishes completely in a finite time. This “entangle-
ment sudden death” (ESD) is an intriguing discovery. Nor is
this effect limited to the case of two-qubit systems: prior to
Yu and Eberly’s work, Didsi [4] demonstrated, using Wern-
er’s criteria for separability [5], that ESD occurs in two-state
quantum systems. Further investigations of different systems
have been made by various groups [7-16]. Extending Yu and
Eberly’s model by considering correlated reservoirs and in-
teractions [6,8,11,13,15,16], it was shown that entanglement
may be created by spontaneous emission (something which
has been known for some time [21] in a different context).
The ESD has also been predicted for more complicated sys-
tems using other entanglement measures [18-20], and an at-
tempt to give a geometric interpretation for the phenomenon
of ESD has also been made [22]. Very recently, experimental
studies have also been carried out to demonstrate ESD, using
carefully engineered interactions between systems and envi-
ronments: Sudden death has been observed both in photons
[17], the method being proposed in [23], and in atomic en-
sembles [24].

The entropy of systems undergoing irreversible dynamics
increases; further, as was established some time ago, there is
a limit on the amount of entanglement that can be present in
a mixed system [25]: the more mixed a state is, the less
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entangled it can be, and when the entropy reaches a certain
level, entanglement will necessarily disappear. However,
these heuristic arguments do not tell us the time taken for
entanglement to disappear, which cannot be answered with-
out careful study of the dynamics.

One might think that, from the quantum technological
point of view, states that exhibit exponential decay of en-
tanglement, and therefore retain some vestige of this all-
important correlation for long periods, are of significance.
Although the vanishingly small entanglement present in the
exponential tail will be of little practical importance, never-
theless it is of interest to identify precisely in what circum-
stances ESD will occur.

In this paper, we consider qubits in finite-temperature res-
ervoirs: instead of the energy of the qubits being lost via
spontaneous decay to the environment, now additionally the
reservoirs can cause excitation of the qubits. For a broad
class of mixed quantum states, which includes all of the
states studied by Yu and Eberly and others in connection
with this problem, we demonstrate that all states undergo
sudden death of entanglement at finite temperature.

II. TWO-QUBIT MODEL SYSTEM

As in [3], we study a system of two qubits initially en-
tangled and interacting with uncorrelated reservoirs. How-
ever, unlike [3], in which the system is studied at tempera-
ture 7=0, we include the effects of heat in our system (Fig.
1). Here the dynamics of the density matrix p describing the
two qubits is given by

ap 1 _a.

<= AP+ L[]+ Lalpl. (1)
where [H,p] is the unitary part of the evolution (which we
shall ignore as it has no effect on our study of decoherence).
The Liouvillian of the ith qubit is given by

n+ 1) . . . .
Lp]= %{[&’_,ﬁaﬂ (6 p T
171 R i i
+ 7{[UJ+,W_] +[a64p, 6 1}, (2)

where I' is the spontaneous decay rate of the qubits, (ﬂ
=(|1)0]);, and 6" =(|0)(1|);, where the index ie{1,2} de-
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FIG. 1. Disentanglement by spontaneous emission of a two-
qubit system in a heat bath. The reservoir is modeled by different
harmonic oscillator modes. Each qubit, here depicted by a two-level
atom, interacts with its reservoir. The only interaction between the
qubits that ever exists is the one that leads to their entanglement at
time #=0. Following this, however, the only interaction that remains
is that with the corresponding reservoir. This leads to decoherence,
which causes the qubits to disentangle. Here we include the effect
of heat by studying the system at 7# 0.

notes the qubits. The first term on the right-hand side of (2)
corresponds to the depopulation of the atoms due to stimu-
lated and spontaneous emissions, while the second term de-
scribes the reexcitations caused by the finite temperature;
and 7 is the mean occupation number of the reservoir (as-
sumed to be the same for both qubits).

We assume that our system is initially an “X state” de-
scribed by the following density matrix:

a®) 0 0 w()
. 0 b zn) O
()= : . 3)
0 Z(t) c() O
w() 0 0 d@
Such states are general enough to include states such as the
Werner states, the maximally entangled mixed states
(MEMSs) [25], the Bell states, and what we will refer to as
the pyp states, studied in [3] and which will be described
later.
Substituting (3) into (1), the master equation of our sys-
tem, we obtain the following first-order coupled differential
equations:

a(r) =T[=2(7+ Da(t) + ()7 + (1)),
b(#) =TT(7+ Da(t) - 2+ 1)b(1) + 2d(1)],
¢(0) =T+ Dalt) - 2+ Do) +ad(1)],
d(r) =T[(+ 1)b(t) + (2 + 1)e(r) - 2d(1)],

a(n) =T[- @i+ Dz()],

w(t) =T[- 2a+ 1)w(r)]. (4)

These may be solved to yield the following expressions:
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a(t) = {ﬁz + [2((10 - do)ﬁz + ((10 - do + l)ﬁ]X

o
2 +1)?
+[(2ay+2dy — Dit* + Bag + dy— 1)t + ag1X?},

b(r) = A+ 1) = [2(ag+ 2co + dy — 1)t

2 +1)?
+ (ao + 4C0 + 3d0 - 2)”_1 + (CO + dO - 1)]X
—[(2ag +2dy — 1)ii® + Bag + dy — )it + ag]X* 1,

{A(m+1) +[2(ag+ 2co + doy — 1)t

W= Gy

+ (Bay +4cy+ dy - 2)i)X - [(2ag + 2dy — 1)in®
+ (3(10 + d() - 1)ﬁ+ (lo]X2},

dt) = {(m+1)?= (7 + D[ 2(ag - dy)

2a+1)?
+(ag—dy+ )X +[(2ay +2dy— 1)1
+ (300 + do - 1)ﬁ+ ao]Xz},

w(t) = woX,
72(t) = 70X, (5)

where X=¢ T2 40=4(0), etc.

III. SOLUTION FOR THE SUDDEN DEATH TIME

Using Wootters” formula [1], the concurrence for a state
of the form given by (3) is

C =2 max{0,|z(t)] = Va(t)d (), |w(t)| = Nb(1)e(n)}.  (6)

This implies that the disentanglement time will be the largest
positive solutions of the following equations:

lz()| = Va(n)d(r) =0, |w(@®)]-b(r)c(t)=0.  (7)

We cannot solve Egs. (7) in closed form. Further, since they
are not polynomial functions of X, neither can we make any
straightforward deductions about the nature of their roots.
However, multiplying both equations in (7) by the positive
quantities |z()|+ ya()d(z) and |w(t)|+\b(t)c(1), respectively,
yields

lz(0)]” —a(®)d(®) =0,  |w(® = b(1)c() =0. (8)

Substituting from Egs. (8) gives two quartic equations in X,
which we will use in the proof of our main result.

The quantity X is the time-dependent parameter that we
use to monitor the evolution of entanglement in the system.
Notice that at t=0, X=1, and that at =%, X=0. Physically
meaningful values for X are, therefore, between 0 and 1.
Asymptotic decay of entanglement implies a solution at X
=0. However, if the entanglement of the system decays in a
finite time (ESD), the solution of (8) must lie in the range
0<Xx<l.
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FIG. 2. (Color online) Plot of F(x) vs X. This is the plot of the
first quartic equation in (8) for 7=0.8, a=0.1, d=0.05, and z=0.3.

Both equations in (8) are polynomial equations in X and
continuous. At X=0, these equations take the following
value:

-+ 2+ 1)

2+ 1)* ©)

Notice that since 7 is a positive quantity, (9) is negative. On
the other hand, if we evaluate (8) for X=1, which corre-
sponds to =0, we obtain |zo|>~ayd, and |wo|>=bc, for the
first and second equations, respectively. If we assume that
our systems are initially entangled, at least one of these
quantities has to be positive, which is the case here. The fact
that the quartic equations are continuous and have a negative
value at X=0 and a positive one at X=1 implies that they
have at least one root in our interval of interest 0 <X <1 (see
Fig. 2 for an example illustrating this point).

For finite 77, and therefore for finite 7, the constant term
(9) is always finite and nonzero for 7>0. Hence, there is no
X=0 solution—i.e., no asymptotic decay. Thus Eq. (8) has at
least one solution in the range 0 <X <1, implying that the
entanglement falls to zero in a finite time.

IV. EXAMPLE

As an example, let us consider a special case when w(r)
=0. In this case, the only quartic equation that has to be
satisfied for C=0 is the first one in (8). This equation can be
easily solved with appropriate reparametrization. The four
solutions for X are given by

X=(r+s) = \m’
X=(r-s) = \’/m’ (10)

where

B \/ AT+ 1)
=N ion+ Dlag(i+ 1) + dit] - (i + 1)}
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B 1+ (ag—dy)(2n+1)
T M+ Dagi+ 1) + dgit] - A+ 1)}

@+ DA —ag - do)* +4(2 - aydy)
T MO+ Dag(+ 1) + doit] - i+ 1)}

Further, following (3), let us consider states of the form

o 0 O
oqloo1 1
Pre=3lo 11 o (1)
000 I-a

In [3], Yu and Eberly have shown that for 0= as%, the
entanglement of this state is long lived at zero temperature.
Here, we will illustrate that as soon as 77 becomes finite, the
range vanishes and there is no long-lived entanglement for
any value of a.

For pyp, the physical solutions—i.e., those between 0 and
I—are only for X=(r—s)*\/(r—s)>+¢* in (10). Here, we

have the following expressions for ¢, r, and s:

3n(n+1)

1= \/2aﬁ—ﬁ2+a—2ﬁ’

1] 1+2an+a-n

2| 2an-?+ a-27

FIG. 3. vs X

(Color online) Plot of C (concurrence)
(=e 7@ty s . C=0 corresponds to no entanglement. X=1 cor-
responds to r=0, while X=1 corresponds to r=%. Notice that as
soon as 7 becomes finite, for all values of @, C becomes zero at
X <0, i.e., entanglement decays in a finite time. As 7 becomes
larger, all states disentangle at approximately X=0.5.
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1) Qa+ 1D \2+d?—a
s== ) (12)

2| 2an-"P+a-2i

The first solution (with the plus sign) is valid for a>n(in
+2)/2n+1, while the second solution is valid for a<n(n
+2)/2n+1. Examples are plotted in Fig. 3.

As a specific physical example (described in Fig. 2),
which is experimentally accessible with current technology,
consider trapped ion qubits interacting with a thermal reser-
voir of phonons [26]. With a temperature of 60 uK, we find
that, for a 1-MHz trap, 7=0.8. Then the disentanglement
time is T ,=—In X,/ (2n+1)['=0.2/T", T" being the control-
lable coupling parameter between the bath and the ions;
with, for example, =10 s !, we find a disentanglement
time of 200 us.

V. CONCLUSION

In conclusion, in this paper we presented a proof that in
two-qubit systems interacting with uncorrelated reservoirs
and described by X states, ESD always occurs at any finite
temperature. Although X states are quite general states, they
are not the most general ones. Thus, the next question to ask
is, do all states exhibit ESD? In other words, for a state
described by a density matrix, without any zero elements, is
entanglement still lost in a finite time? This question is not
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straightforward. One has to find the equation for concurrence
in that case, determine its order, study the properties of its
coefficients, and from there maybe be able to comment on
the nature of the roots and, therefore, be able to predict what
will happen in the actual physical system. Alternatively, one
could adopt the approach of considering the general dynam-
ics from the perspective of the finite domain of separability
surrounding the thermal equilibrium state [27]. In this case,
one must find a means for establishing that the evolution to
the entanglement-separable boundary occurs in finite time: in
the mathematical language of this paper, this is equivalent to
proving that the concurrence is a single-valued function of
the argument X at X=1. One important conclusion can nev-
ertheless be drawn from our results: in any finite-temperature
reservoir, all states that have been shown to be long lived in
a zero-temperature bath will undergo sudden death. Thus to
draw the distinction between sudden-death and exponentially
long-lived entanglement seems to be redundant: in all realis-
tic circumstances, all entanglement disappears in a finite
time.
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