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A general method of the Foldy-Wouthyusen �FW� transformation for relativistic particles of arbitrary spin in
strong external fields has been developed. The use of the found transformation operator is not restricted by any
definite commutation relations between even and odd operators. The final FW Hamiltonian can be expanded
into a power series in the Planck constant which characterizes the order of magnitude of quantum corrections.
Exact expressions for low-order terms in the Planck constant can be derived. Finding these expressions allows
one to perform a simple transition to the semiclassical approximation which defines a classical limit of the
relativistic quantum mechanics. As an example, interactions of spin-1/2 and scalar particles with a strong
electromagnetic field have been considered. Quantum and semiclassical equations of motion of particles and
their spins have been deduced. Full agreement between quantum and classical theories has been established.
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I. INTRODUCTION

The Foldy-Wouthuysen �FW� representation �1� occupies
a special place in quantum theory. Properties of this repre-
sentation are unique. The Hamiltonian and all operators are
block diagonal �diagonal in two spinors�. Relations between
the operators in the FW representation are similar to those
between the respective classical quantities. For relativistic
particles in external fields, operators have the same form as
in nonrelativistic quantum theory. For example, the position
operator is r and the momentum one is p=−i��. These prop-
erties considerably simplify the transition to the semiclassi-
cal description. As a result, the FW representation provides
the best possibility of obtaining a meaningful classical limit
of the relativistic quantum mechanics. The basic advantages
of the FW representation are described in Refs. �1–3�.

Interactions of relativistic particles with strong external
fields can be considered on three levels: �i� classical physics,
�ii� relativistic quantum mechanics, and �iii� quantum field
theory. The investigation of such interactions on every level
is necessary. The use of the FW representation allows one to
describe strong-field effects on level �ii� and to find a unam-
biguous connection between classical physics and relativistic
quantum mechanics. To solve the problem, one should carry
out an appropriate FW transformation �transformation to the
FW representation�. The deduced Hamiltonian should be ex-
act up to first-order terms in the Planck constant �. This
precision is necessary for the establishment of an exact con-
nection between the classical physics and the relativistic
quantum mechanics. Known methods of exact FW transfor-
mation either can be used only for some definite classes of
initial Hamiltonians in the Dirac representation �3,4� or need
cumbersome derivations �5�.

In the present work, a general method of the FW transfor-
mation for relativistic particles in strong external fields is
proposed. This method gives exact expressions for low-order
terms in �. The proposed method is based on the develop-

ments performed in Ref. �3� and can be utilized for particles
of arbitrary spin. Any definite commutation relations be-
tween even and odd operators in the initial Hamiltonian are
not needed. An expansion of the FW Hamiltonian into a
power series in the Planck constant is used. Since just this
constant defines the order of magnitude of quantum correc-
tions, the transition to the semiclassical approximation be-
comes trivial. As an example, interaction of scalar and spin-
1/2 particles with a strong electromagnetic field is
considered. We use the designations �. . . , . . .� and �. . . , . . .� for
commutators and anticommutators, respectively.

II. FOLDY-WOUTHYUSEN TRANSFORMATION
FOR PARTICLES IN EXTERNAL FIELDS

In this section, we review previously developed methods
of the FW transformation for particles in external fields. The
relativistic quantum mechanics is based on the Klein-Gordon
equation for scalar particles, the Dirac equation for spin-1/2
particles, and corresponding relativistic wave equations for
particles with higher spins �see, e.g., Ref. �6��. The quantum
field theory is not based on these fundamental equations of
the relativistic quantum mechanics �see Ref. �7��. Relativistic
wave equations for particles with any spin can be presented
in the Hamilton form. In this case, the Hamilton operator

acts on the bispinor wave function �= ��� �:
i�

��

�t
= H� . �1�

A particular case of Eq. �1� is the Dirac equation.
We can introduce the unit matrix I and the Pauli matrices

those components act on the spinors

I = �1 0

0 1
�, �1 = �0 1

1 0
�, �2 = �0 − i

i 0
� ,

�3 	 � = �1 0

0 − 1
� .
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The Hamiltonian can be split into operators commuting and
noncommuting with the operator �:

H = �M + E + O, �M = M�, �E = E�, �O = − O� ,

�2�

where the operators M and E are even and the operator O is
odd. We suppose that the operator E is multiplied by the unit
matrix I which is everywhere omitted.

Explicit form of the Hamilton operators for particles with
arbitrary half-integer spin has been obtained in Ref. �8�.
Similar equations have been derived for spin-0 �9� and spin-1
�10,11� particles. To study semiclassical limits of these equa-
tions, one should perform appropriate FW transformations.

The wave function of a spin-1/2 particle can be trans-
formed to a new representation with the unitary operator U:

�� = U� .

The Hamilton operator in the new representation takes the
form �1,3,12�

H� = UHU−1 − i�U
�U−1

�t
�3�

or

H� = U�H − i�
�

�t
�U−1 + i�

�

�t
.

The FW transformation has been justified in the best way.
In the classical work by Foldy and Wouthuysen �1�, the exact
transformation for free relativistic particles and the approxi-
mate transformation for nonrelativistic particles in electro-
magnetic fields have been carried out. There exist several
other nonrelativistic transformation methods which give the
same results �see Ref. �3�, and references therein�. A few
methods can be applied for relativistic particles in external
fields. However, the transformation methods explained in
Refs. �13,14� require cumbersome calculations.

The block-diagonalization of two-body Hamiltonians for
a system of two spin-1/2 particles and a system of spin-0 and
spin-1/2 particles can be performed by the methods found by
Chraplyvy �15� and Tanaka et al. �16�, respectively. Some
methods allow one to reach the FW representation without
the use of unitary transformations. The so-called elimination
method �17� makes it possible to exclude the lower spinor
from relativistic wave equations. Variants of this method use-
ful for relativistic particles have been elaborated in Refs.
�18,19�. Another method which essentially differs from the
FW and elimination methods has been presented in Ref. �20�.
This method defines a diagonalization procedure based on a
formal expansion in powers of the Planck constant � and can
be used for a large class of Hamiltonians directly inducing
Berry phase corrections �20�. An important feature of this
method is a possibility to take into account strong-field ef-
fects.

Any method different from the FW one should also be
justified. The validity of the elimination method is proved
only by the coincidence of results obtained by this method
and the FW one �21�. Impressive agreement between results
presented in Ref. �20� and corresponding results obtained by

the FW method is reached for first-order terms in �. These
terms define momentum and spin dynamics that can be well
described in the framework of classical physics. To prove the
validity of the method, one should show such an agreement
for terms derived from second-order commutators �e.g., for
the Darwin term �1��. Therefore, we desist from a definitive
estimate of the method developed in Ref. �20�.

We suppose the consistence with the genuine FW trans-
formation to be necessary for any diagonalization method.
For example, the Eriksen-Korlsrud method �22� does not
transform the wave function to the FW representation even
for free particles �23�. The use of this method in Refs.
�24,25� instead of the FW one could cause a misunderstand-
ing of the nature of spin-gravity coupling �see the discussion
in Refs. �23,26��.

In the general case, the exact FW transformation has been
found by Eriksen �5�. The validity of the Eriksen transforma-
tion has also been argued by de Vries and Jonker �21�. The
Eriksen transformation operator has the form �5�

U =
1

2
�1 + ���
1 +

1

4
��� + �� − 2��−1/2

, � =
H

�H2�1/2 ,

�4�

where H is the Hamiltonian in the Dirac representation. This
operator brings the Dirac wave function and the Dirac
Hamiltonian to the FW representation in one step. However,
it is difficult to use the Eriksen method for obtaining an
explicit form of the relativistic FW Hamiltonian because the
general final formula is very cumbersome and contains roots
of Dirac matrix operators. Therefore, the Eriksen method
was not used for relativistic particles in external fields.

To perform the FW transformation in the strong external
fields, we develop the much simpler method elaborated in
Ref. �3� for relativistic spin-1/2 particles. In this work, the
initial Dirac Hamiltonian is given by

H = �m + E + O , �5�

where m is the particle mass. In Eqs. �5�–�11�, the system of
units �=c=1 is used.

When �E ,O�=0, the FW transformation is exact �3�. This
transformation is fulfilled with the operator

U =
	 + m + �O
�2	�	 + m�

, 	 = �m2 + O2 �6�

and the transformed Hamiltonian takes the form

HFW = �	 + E . �7�

The same transformation is valid for Hamiltonian �2� when
not only does the operator E commutates with O but also the
operator M:

�M,O� = 0. �8�

In this case, Eq. �7� remains valid but the operator 	 takes the
form

	 = �M2 + O2.
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In the general case, the FW Hamiltonian has been ob-
tained as a power series in external field potentials and their
derivatives �3�. As a result of the first stage of transformation
performed with operator �6�, the following Hamiltonian can
be found:

H� = �	 + E� + O�, �E� = E��, �O� = − O�� . �9�

The odd operator O� is now comparatively small:

	 = �m2 + O2,

E� = i
�

�t
+

	 + m
�2	�	 + m�

�E − i
�

�t
� 	 + m
�2	�	 + m�

−
�O

�2	�	 + m�
�E − i

�

�t
� �O
�2	�	 + m�

,

O� =
�O

�2	�	 + m�
�E − i

�

�t
� 	 + m
�2	�	 + m�

−
	 + m

�2	�	 + m�
�E − i

�

�t
� �O
�2	�	 + m�

. �10�

The second stage of transformation leads to the approxi-
mate equation for the FW Hamiltonian

HFW = �	 + E� +
1

4
�
O�2,

1

	
� . �11�

To reach a better precision, additional transformations can be
used �3�.

This method has been applied for deriving the Hamil-
tonian and the quantum mechanical equations of momentum
and spin motion for Dirac particles interacting with elec-
troweak �3� and gravitational �23,27� fields. The semiclassi-
cal limit of these equations has been obtained �3,23,27�. To
determine the exact classical limit of the relativistic quantum
mechanics of arbitrary-spin particles in strong external fields,
we need to generalize the method.

General properties of the Hamiltonian depend on the par-
ticle spin. The Hamiltonian is Hermitian �H=H†� for spin-
1/2 particles and pseudo-Hermitian for spin-0 and spin-1
ones �more precisely, �-pseudo-Hermitian, see Ref. �28�, and
references therein�. In the latter case, it possesses the prop-
erty ��−1=��

H† = �H�

which is equivalent to

H‡ 	 �H†� = H .

The normalization of wave functions is given by

� �†�dV =� ���� + ����dV = 1

for spin-1/2 particles and

� �‡�dV 	� �†��dV =� ���� − ����dV = 1

for spin-0 and spin-1 particles. We suppose M=M†, E=E†,
O=O† when H=H† and M=M‡, E=E‡, O=O‡ when H
=H‡. These conditions can be satisfied in any case.

Since the FW Hamiltonian is block diagonal and a lower
spinor describes negative-energy states, this spinor should be
equal to zero. The FW transformation should be performed
with the unitary operator U†=U−1 for spin-1/2 particles and
with the pseudounitary operator U‡	�U†�=U−1 for spin-0
and spin-1 particles.

III. FOLDY-WOUTHYUSEN TRANSFORMATION
IN STRONG EXTERNAL FIELDS

We propose the method of the FW transformation for rela-
tivistic particles in strong external fields which can be used
for particles of arbitrary spin. The FW Hamiltonian can be
expanded into a power series in the Planck constant which
defines the order of magnitude of quantum corrections. The
obtained expressions for low-order terms in � are exact. The
proposed FW transformation makes the transition to the
semiclassical approximation to be trivial. The power expan-
sion can be available only if

pl � � , �12�

where p is the momentum of the particle and l is the char-
acteristic size of the nonuniformity region of the external
field. This relation is equivalent to

� � l , �13�

where � is the de Broglie wavelength. Equations �12� and
�13� result from the fact that the Planck constant appears in
the final Hamiltonian due to commutators between the op-
erators M, E, and O.

The expansion of the FW Hamiltonian into the power
series in the Planck constant is formally similar to the previ-
ously obtained expansion �3� into a power series in the ex-
ternal field potentials and their derivatives. However, the
equations derived in Ref. �3� do not define the semiclassical
limit of the Dirac equation for particles in strong external
fields, while these equations exhaustively describe the weak-
field expansion. The proposed method can also be used in the
weak-field expansion even when relations �12� and �13� are
not valid.

When the power series in the Planck constant is deduced,
zero power terms define the quantum analog of the classical
Hamiltonian. On this level, classical and quantum expres-
sions should be very similar because the classical theory
gives the right limit of the quantum theory. Terms propor-
tional to powers of � may describe quantum corrections. As
a rule, interactions described by these terms also exist in the
classical theory. However, classical expressions may differ
from the corresponding quantum ones because the quantum
corrections to the classical theory may appear.

We generalize the method developed in Ref. �3� in order
to take into account a possible noncommutativity of the op-
erators M and O. The natural generalization of transforma-
tion operator �6� used in Ref. �3� is
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U =
�	 + �M − O

���	 + �M − O�2
�, U−1 = �

�	 + �M − O
���	 + �M − O�2

,

	 = �M2 + O2. �14�

where U†=U−1 when H=H† and U‡=U−1 when H=H‡.
This form of the transformation operator allows to perform
the FW transformation in the general case. The special case
M=mc2 has been considered in Ref. �3� and commutation
relation �8� has been used in Refs. �23,29�.

We consider the general case when external fields are
nonstationary. The exact formula for the transformed Hamil-
tonian has the form

H� = �	 + E +
1

2T
„†T,�T,��	 + F��‡ + �†O,�O,M�‡

− †O,�O,F�‡ − †�	 + M�,��	 + M�,F�‡

− †�	 + M�,�M,O�‡ − ��O,��	 + M�,F��

+ ���	 + M�,�O,F��…
1

T
, �15�

where F=E− i� �
�t and T=���	+�M−O�2.

Hamiltonian �15� still contains odd terms proportional to
the first and higher powers of the Planck constant. This
Hamiltonian can be presented in the form

H� = �	 + E� + O�, �E� = E��, �O� = − O�� , �16�

where 	=�M2+O2. The even and odd parts of Hamiltonian
�16� are defined by the well-known relations

E� =
1

2
�H� + �H��� − �	, O� =

1

2
�H� − �H��� .

Additional transformations performed according to Ref. �3�
bring H� to the block-diagonal form. The approximate for-
mula for the final FW Hamiltonian is

HFW = �	 + E� +
1

4
�
O�2,

1

	
� . �17�

This formula is similar to the corresponding one obtained in
Ref. �3�. The additional transformations allow one to obtain
more precise expression for the FW Hamiltonian.

Equations �15�–�17� solve the problem of the FW trans-
formation for relativistic particles of arbitrary spin in strong
external fields. Equation �15� can be significantly simplified
in some special cases. When �M ,O�=0 and the external
fields are stationary, it is reduced to

H� = �	 + E +
1

2T
„†T,�T,E�‡ − †O,�O,E�‡

− †�	 + M�,��	 + M�,E�‡

− ��O,��	 + M�,E�� + ���	 + M�,�O,E��…
1

T
.

�18�

In this case, �	 ,M�= �	 ,O�=0 and the operator T
=�2	�	+M� is even.

IV. SPIN-1/2 AND SCALAR PARTICLES IN STRONG
ELECTROMAGNETIC FIELD

As an example, the FW transformation for spin-1/2 and
scalar particles interacting with a strong electromagnetic
field can be considered. The initial Dirac-Pauli Hamiltonian
for a particle possessing an anomalous magnetic moment
�AMM� has the form �30�

HDP = c� · � + �mc2 + e
 + ���− � · H + i� · E� ,

� = p −
e

c
A, �� =

g − 2

2

e�

2mc
, �19�

where �� is the AMM and 
, A and E, H are the potentials
and strengths of the electromagnetic field.

Here and below the following designations for the matri-
ces are used:

� = � 0 �

− � 0
�, � 	 �0 = �1 0

0 − 1
� ,

� = �� = � 0 �

� 0
�, � = �� 0

0 �
� ,

� = �� = �� 0

0 − �
� ,

where 0 ,1 ,−1 mean the corresponding 2
2 matrices and �
is the Pauli matrix. Terms describing the electric dipole mo-
ment �EDM� d have been added in Ref. �31�. The resulting
Hamiltonian is given by

H = c� · � + �mc2 + e
 + ���− � · H + i� · E�

− d�� · E + i� · H�, d =
�

2

e�

2mc
, �20�

Where the � factor for the EDM is an analog of the g factor
for the magnetic moment. It is important that �� and d are
proportional to �.

In the case considered

M = mc2, E = e
 − ��� · H − d� · E ,

O = c� · � + i��� · E − id� · H .

Since only terms of zero and first powers in the Planck con-
stant define the semiclassical equations of motion of particles
and their spins, we retain only such terms in the FW Hamil-
tonian. The terms of order of � are proportional either to
field gradients or to products of field strengths �H2, E2, and
EH�. We do not calculate the terms proportional to products
of field strengths because they are usually small in compari-
son with the terms proportional to field gradients.
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The calculated Hamiltonian is given by

HFW = �	� + e
 − ��� · H −
�0

2

mc2

	�
,� · H� +

��c

4

 1

	�
,�� · �� 
 E� − � · �E 
 ���� +

�0mc3

�2	��	� + mc2�
�� · �� 
 E�

− � · �E 
 ���
1

�2	��	� + mc2�
+

��c2

2�2	��	� + mc2�
��� · ��,�H · � + � · H��

1
�2	��	� + mc2�

− d� · E

+
dc2

2�2	��	� + mc2�
��� · ��,�E · � + � · E��

1
�2	��	� + mc2�

−
dc

4

 1

	�
,�� · �� 
 H� − � · �H 
 ���� , �21�

where

	� = �m2c4 + c2�2 �22�

and �0= e�
2mc is the Dirac magnetic moment. The quantum evolution of the kinetic momentum operator � is defined by the

operator equation of particle motion

d�

dt
=

i

�
�HFW,�� −

e

c

�A

�t
. �23�

The equation of spin motion describes the evolution of the polarization operator �:

d�

dt
=

i

�
�HFW,�� . �24�

Because the operator � does not contain the Dirac spin matrices, the commutator of this operator with the Hamiltonian is
proportional to �. The equation of spin-1/2 particle motion in the strong electromagnetic field to within first-order terms in the
Planck constant has the form

d�

dt
= eE + �

ec

4

 1

	�
,„�� 
 H� − �H 
 ��…� + �� � �� · H� +

�0

2

mc2

	�
,��� · H�� −

��c

4
� 1

	�
,��„� · �� 
 E�…

− ��� · �E 
 ����� −
�0mc3

�2	��	� + mc2�
��„� · �� 
 E�… − �„� · �E 
 ��…�

1
�2	��	� + mc2�

−
��c2

2�2	��	� + mc2�
��� · ��,���H · �� + ��� · H���

1
�2	��	� + mc2�

. �25�

This equation can be divided into two parts. The first part does not contain the Planck constant and describes the quantum
equivalent of the Lorentz force. The second part is of order of �. This part defines the relativistic expression for the
Stern-Gerlach force. Since terms proportional to d are small, they are omitted.

The equation of spin motion is given by

d�

dt
=

2��

�
� 
 H +

�0

�

mc2

	�
,� 
 H� −

��c

2�

 1

	�
,�� 
 �� 
 E� − � 
 �E 
 ���� −

�0mc3

��	��	� + mc2�
�� 
 �� 
 E�

− � 
 �E 
 ���
1

�	��	� + mc2�
−

��c2

��2	��	� + mc2�
��� 
 ��,�H · � + � · H��

1
�2	��	� + mc2�

+
2d

�
� 
 E

−
dc2

��2	��	� + mc2�
��� 
 ��,�E · � + � · E��

1
�2	��	� + mc2�

+
dc

2�

 1

	�
,�� 
 �� 
 H� − � 
 �H 
 ���� . �26�

Equations �21�, �25�, and �26� agree with the corresponding
equations derived in Refs �3,31�. However, unlike the latter
equations, Eqs. �21�, �25�, and �26� describe strong-field ef-
fects.

We can also consider the interaction of spinless particles
with the strong electromagnetic field. The initial Klein-
Gordon equation describing this interaction has been trans-
formed to the Hamilton form in Ref. �9�.

In this case, the Hamiltonian acts on the two-component
wave function which is the analog of the spinor. The explicit
form of this Hamiltonian is �9�

H = �3mc2 + ��3 + i�2�
�2

2m
+ e
 . �27�

Therefore,

FOLDY-WOUTHYUSEN TRANSFORMATION AND... PHYSICAL REVIEW A 77, 012116 �2008�

012116-5



M = mc2 +
�2

2m
, E = e
, O = i�2

�2

2m
, �M,O� = 0.

�28�

For spinless particles,

	 = �m2c4 + c2�2, T =� 	

mc2 �	 + mc2� . �29�

The Hamiltonian transformed to the FW representation is
given by

HFW = �	 + E = ��m2c4 + c2�2 + e
 . �30�

There are not any terms of order of � in this Hamiltonian,
while it contains terms of second and higher orders in the
Planck constant. We do not calculate the latter terms because
their contribution into equations of particle motion is usually
negligible.

The operator equation of particle motion takes the form

d�

dt
= eE + �

ec

4

1

	
,��� 
 H� − �H 
 ���� . �31�

The right-hand side of this equation coincides with the spin-
independent part of the corresponding equation for spin-1/2
particles.

Equation �30� for the FW Hamiltonian agrees with Eq.
�12� in Ref. �32�. In this reference, the weak-field approxi-
mation has been used and the operator equation of particle
motion in the strong electromagnetic field has not been ob-
tained.

V. SEMICLASSICAL LIMIT OF RELATIVISTIC
QUANTUM MECHANICS FOR PARTICLES

IN STRONG EXTERNAL FIELDS

To obtain the semiclassical limit of the relativistic quan-
tum mechanics, one needs to average the operators in the
quantum mechanical equations. When the FW representation
is used and relations �12� and �13� are valid, the semiclassi-
cal transition consists in trivial replacing operators by corre-
sponding classical quantities. In this representation, the prob-
lem of extracting even parts of the operators does not appear.
Therefore, the derivation of equations for particles of arbi-
trary spin in strong external fields made in the precedent
section solves the problem of obtaining the semiclassical
limit of the relativistic quantum mechanics. If the momentum
and position operators are chosen to be the dynamical vari-
ables, relations �12� and �13� are equivalent to the condition

��pi�� · ��xi�� � ���pi,xi��� = �, i = 1,2,3. �32�

The angular brackets which designate averaging in time will
be hereinafter omitted. Obtained semiclassical equations may
differ from corresponding classical ones.

As a result of replacing operators by corresponding clas-
sical quantities, the semiclassical equations of motion of par-
ticles and their spins take the form

d�

dt
= eE +

ec

	�
�� 
 H� + �� � �P · H� +

�0

mc2	�
� �P · H�

−
��c

	�
� �P · �� 
 E�� −

�0mc3

	��	� + mc2�
� �P · �� 
 E��

−
��c2

	��	� + mc2�
�P · �� � �H · ��, P =

S

S
, �33�

dP

dt
= 2��P 
 H +

2�0mc2

	�
�P 
 H� −

2��c

	�
�P 
 �� 
 E��

−
2�0mc3

	��	� + mc2�
�P 
 �� 
 E�� −

2��c2

	��	� + mc2�
�P 
 ��


�� · H� + 2dP 
 E −
2dc2

	��	� + mc2�
�P 
 ���� · E�

+
2dc

	�
�P 
 �� 
 H�� . �34�

In Eqs. �33� and �34�, 	� is defined by Eq. �22�, P is the
polarization vector, and S is the spin vector �i.e., the average
spin�.

For scalar particles

d�

dt
= eE +

ec
�m2c4 + c2�2

�� 
 H� . �35�

The first two terms on the right-hand sides of Eqs. �33� and
�35� are the same as in the classical expression for the Lor-
entz force. This is a manifestation of the correspondence
principle. The part of Eq. �34� dependent on the magnetic
moment coincides with the well-known Thomas-Bargmann-
Michel-Telegdi �TBMT� equation. It is natural because the
TBMT equation has been derived without the assumption
that the external fields are weak. The relativistic formula for
the Stern-Gerlach force can be obtained from the Lagrangian
consistent with the TBMT equation �see Ref. �33��. The
semiclassical and classical formulae describing this force
also coincide. High-order corrections to the quantum equa-
tions of motion of particles and their spins should bring a
difference between quantum and classical approaches.

VI. DISCUSSION AND SUMMARY

The method of the FW transformation for relativistic par-
ticles of arbitrary spin in strong external fields described in
the present work is based on previous developments �3�.
However, the use of transformation operator �14� is not re-
stricted by any definite commutation relations �see Eq. �8��
between even and odd operators. The proposed method uti-
lizes the expansion of the FW Hamiltonian into a power
series in the Planck constant which defines the order of mag-
nitude of quantum corrections. In the FW Hamiltonian, exact
expressions for low-order terms in � can be obtained. If the
de Broglie wavelength is much less than the characteristic
size of the nonuniformity region of the external field �see
Eqs. �12� and �13��, the transition to the semiclassical ap-
proximation becomes trivial. In this case, it consists in re-
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placing operators by corresponding classical quantities. The
simplest semiclassical transition is one of main preferences
of the FW representation.

If Eqs. �12� and �13� are not valid, the proposed method
can be used in the weak-field expansion. This expansion pre-
viously used in Ref. �3� presents the FW Hamiltonian as a
power series in the external field potentials and their deriva-
tives. In this case, the operator equations characterizing dy-
namics of the particle momentum and spin can also be de-
rived. Solutions of these equations define the quantum
evolution of main operators. Semiclassical evolution of clas-
sical quantities corresponding to these operators can be ob-
tained by averaging the operators in the solutions. An ex-
ample of such an evolution is the time dependence of
average energy and momentum in a two-level system.

When the FW Hamiltonian can be expanded into a power
series in the Planck constant, we obtain the semiclassical
limit of the relativistic quantum mechanics. Since the corre-
spondence principle must be satisfied, classical and semiclas-
sical Hamiltonians and equations of motion must agree. As

an example, we consider the interaction of scalar and spin-
1/2 particles with the strong electromagnetic field. We car-
ried out the FW transformation and derived the quantum
equations of particle motion. We have also deduced the
quantum equations of spin motion for spin-1/2 particles. Av-
eraging operators in the quantum equations consists in sub-
stitution of classical quantities for these operators and allows
one to obtain the semiclassical equations which are in full
agreement with the corresponding classical equations. The
proved agreement confirms the validity of both the corre-
spondence principle and the aforesaid method. All calcula-
tions have been carried out for relativistic particles in strong
external fields.
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