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Boson-fermion pairing is considered in a discrete environment of bosons and fully spin-polarized fermions,
coupled via an attractive Bose-Fermi Hubbard Hamiltonian in one dimension. The results of the T-matrix
approximation for particles of equal mass and at double half-filling are compared with the results of exact
diagonalization and with quantum Monte Carlo results. Satisfactory agreement for most quantities is found.
The appearance of a stable, weak-coupling pairing mode is also confirmed.
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One of the most intriguing aspects in the field of cold
atoms involves the study of mixed boson-fermion �bf� sys-
tems. Several boson-fermion mixtures have been realized,
both in �1� and without �2� an optical lattice, and their prop-
erties have been studied. Several very interesting phenomena
unique to mixed bf systems have been predicted, including,
for example, the possibility of forming composite fermions
through the pairing of a boson and a fermion �3,4�. On the
theoretical side, bf mixtures have been studied in mean-field
approximation �5,6� and with various methods for treating bf
mixtures in one dimension �1D�. This includes exact solution
using the Bethe ansatz �7�, bosonization techniques �8�, and a
quantum Monte Carlo treatment for a bf mixture on an opti-
cal lattice �9�. There remains, however, the need for theoret-
ical approaches capable of reliably describing bf mixtures in
more than one dimension �10�.

A possible theoretical approach to mixed boson-fermion
systems was proposed recently in the context of nuclear
physics, to provide a framework for describing the transition
from a Fermi gas �of quarks� to one of composite fermions
�nucleons�, i.e., bound three-quark states. This problem was
simplified by assuming that two of the quarks are strongly
bound and form a boson. In this way, the extremely complex
in-medium three-body problem �11� was replaced by the
much simpler two-body problem of fermion-boson scatter-
ing, for which a T-matrix approach was developed �12�. An
interesting result of that study was that, due to the presence
of a Fermi surface, a stable bf branch was created for an
arbitrarily small bf attraction. The underlying mechanism
turned out to be analogous to the formation of stable Cooper
pairs in a pure Fermi gas, though in the latter case the pairs
are boson type, whereas here they are fermion type. Several
interesting questions follow naturally. On the one hand, we
would like to know how reliable the information provided by
the T-matrix approach developed in �12� is when dealing
with complex systems involving bosons and fermions. If it is
found to be acceptably reliable, we might then hope to fur-
ther develop the method for application to the variety of
systems in which boson and fermions degrees of freedom
coexist, such as those that arise in cold atomic gases.

As the next step in this program, we report in this work a

study of bf pairing in 1D optical lattices using the above
T-matrix approach. Such systems can be treated statistically
exactly for a fairly large number of bosons and fermions
using quantum Monte Carlo methods �9�, thereby providing
an appropriate testing ground for our method. As we will see,
even though 1D is a quite unfavorable case for the applica-
bility of a T-matrix approach in ladder approximation, most
quantities are nevertheless reproduced reasonably well with
this approach over a large range of coupling strengths.

To be more specific, we consider the bosons and fermions
on a 1D lattice governed by a Hubbard model Hamiltonian.
The bf interaction is assumed to be attractive and the boson-
boson interaction to be repulsive. We assume further that
there are no interaction among fermions, although a repul-
sive fermion-fermion interaction should not alter qualita-
tively our conclusions. The Hubbard model Hamiltonian for
such a system is given by

H = − tb�
�ij�

L

bi
†bj − tf�

�ij�

L

ci
†cj +

Ubb

2 �
i

L

bi
†bi

†bibi

+ Ubf�
i

L

bi
†ci

†cibi, �1�

where bi and ci are the bosonic and fermionic annihilation
operators on site i, respectively. The intersite spacing a is set
to unity, i.e., a=1. In this work we carry out our analysis at
zero temperature, i.e., T=0. For the quantum Monte Carlo
�QMC� simulations, we use a small but finite inverse tem-
perature �=2L which is sufficiently close to the ground state.
Extrapolations to larger � do not lead to significantly differ-
ent results.

In the standard T-matrix approach �13� to this problem,
we must solve the Bethe-Salpeter equation for the bf propa-
gator, that is �12�

Gk,k��K,E� = Gk
0�K,E��k,k� + �

k1

Gk
0�K,E�Vk,k1

bf Gk1,k��K,E� ,

�2�

with Gk,k��K ,E� being the Fourier transform of the bf propa-
gator
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Gk,k�
t−t� �K� = − i��t − t�����bK/2−kcK/2+k�t,�cK/2+k�

+ bK/2−k�
+ �t�	� .

Here �¯ ,¯	 denotes an anticommutator, K is the center-of-
mass momentum of the pair and k ,k� are relative momenta.
The interactions in momentum space are ��= �bf ,bb��

Vk,k�
� =

U�

L
�k,k� = g��k,k� �3�

and Gk
0�K ,E� is the bf propagator in the Hartree-Fock �HF�

approximation, i.e.,

Gk
0�K,E� =

���k
f − �F� + �K,kn0

E − �̃k
f − �̃K−k

b + i�
, �4�

with

�̃q
b = �q

b + �
k

Vkq,kq
bf ���F − �k

f � + 2n0Vq0,q0
bb ,

�̃k
f = �k

f + Vk0,k0
bf n0.

In these expressions, n0 represents the boson condensate, p
�h� refers to a fermion momentum above �below� the Fermi
surface, q is a boson momentum and �k

�f ,b�=−2t�f ,b� cos�k�.
The single particle energies in the denominator of �4� are the
fermion and boson HF energies, which are taken together
with the unrenormalized interaction, as is usual in the HF
random phase approximation �RPA� self-consistent scheme
�14�. Screening terms which would renormalize on the same
footing as the interaction and the single particle self-energies
are not considered in this prototype study but may be in-
cluded in later work.

Equation �2� can be solved analytically and the propagator
summed over relative momenta is given by

G�K,E� =
G0�K,E�

1 − gbfG
0�K,E�

, �5�

with G�K ,E�=�k,k�Gk,k��K ,E�. For a discrete number of
sites, it is also useful to consider the equivalent diagonaliza-
tion problem which can be thought of as a bf RPA in the
particle-particle channel in complete analogy with the pure
fermion case �14�. The relevant RPA eigenvalue equation is
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bf n0, �6�

where we define a�q�=�1+�q,0n0 and Vpq,p�q�
� =g��p+q,p�+q�.

In terms of the amplitudes X ,Y the propagator �3� can be
written in the following spectral representation:
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, �7�

with 
k
�+= �Yk

�Xk,K−k
� � and 
k

	+= �Yk,K−k
	 Xk

	�.
For a system with N particles, the propagator has poles at

E	,�= � �E0
N−E	,�

N�2�, i.e., essentially at the excitation ener-
gies of the N�2 systems. The RPA amplitudes obey the
following normalization conditions:

YK
� YK

�����F − �K
f � + �

p
Xp,K−p

� Xp,K−p
�� = ����,

XK
	 XK

	����F − �K
f � + �

p
Yp,K−p

	 Yp,K−p
	� = �		�. �8�

To assess the quality of our T-matrix approximation for the
in-medium bf problem, we consider finite numbers of sites,
where exact solution is possible. We first restrict to half-
filling and to NB=NF and tb= tf. We exactly diagonalize the
six-site problem, i.e., NB=NF=3. The maximum size of the
matrix is 318�318, whereas the RPA matrix has dimension
4�4. The range of Ubf values is arbitrary. However, since
we are interested in bf pairing, the range of Ubb values is, in
principle, restricted to Ubb Ubf /2. Smaller values of Ubb
lead to phase separation, i.e., the bf pairs cluster together and
occupy only one-half of the available space �9�. On the other
hand, our T-matrix approximation does not allow Ubb values
greater than Ubb�Ubf, since Ubb is only purely treated in
our theory, i.e., only in HF approximation. Improving on this
point is possible but left for the future. We therefore limit
ourselves to UbfUbb Ubf /2. As an intermediate value
we take Ubb= 3

4 Ubf throughout.
In Fig. 1, we present some typical examples of excited

states. We see that the agreement between approximate and
exact excitation energies is quite satisfactory. We should note
that we have chosen examples where in the exact case there
are only low degeneracies at Ubf =0, since RPA, because of
its very low dimension, cannot well reproduce a high degen-
eracy of uncorrelated configurations, even if there are also
cases in RPA where in the uncorrelated limit degeneracies
occur. However these degeneracies are always less numerous
than in the exact case. This is natural because of the dramati-
cally reduced size of the RPA matrices with respect to the
size of the exact ones. It should nevertheless be noted that
the RPA excitation energies somehow represent the average
trend of the bunch of exact levels.

So far we have not invested effort to exactly diagonalize
problems with higher numbers of sites, since the dimensions
of the matrices grow exponentially. However, exact QMC
results for ground-state properties for higher number of sites
are available �9�. For L=70 we show a comparison of the
exact ground-state energy E0 with the RPA in Fig. 2 �see �12�
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for the expression for E0�. The error bars for QMC are
smaller than the point size. Again the agreement is reason-
able up to rather high values of Ubf.

We also calculated the occupation numbers nbf�K�
=�kk��cK−k

+ bk
+bk�cK−k�� of the bf pairs and compare them

with the exact results in Fig. 3�a�. In our case the bf occupa-
tion numbers are simply obtained from the residue of the bf
Green’s function �5� at the poles E	. We see that the agree-
ment with the exact result is quite satisfactory. One might
wonder about the upward tendency around K=� /2 in the bf
occupation numbers for the RPA data, since it is much more
pronounced than in the QMC data. Notice, however, that for
other system parameters the upward trend in the occupation
numbers can also be quite pronounced even in the exact so-
lution. Probably, the RPA gives relatively more weight to the
density wave correlator than to the superfluid properties be-

cause of the truncated model space and the fact that in three
dimensions a gapped density wave was found in dynamical
mean-field theory �DMFT� �15�. The fermion occupation
numbers nf�k�= �ck

+ck� can only be obtained in a somewhat
indirect way within our formalism. This goes, however, com-
pletely parallel to what is known from the usual RPA formal-
ism for fermions �16�. The corresponding expression is given
by

nf�k� = �
	

Xk
	2���F − �k

f � + �
K,	

Yk,K−k
	 2���k

f − �F� .

�9�

One can demonstrate that �9� conserves fermion particle
number. In Fig. 3�b� the fermion occupation numbers are
shown for two cases of the coupling Ubf =−2,−6. Again the
agreement with the exact case is rather good, in spite of the
fact that for Ubf =−6 our solution shows a small Fermi step
whereas the exact one seems to be completely smooth. One
should realize, however, that our theory cannot describe a
non-Fermi liquid behavior and this seems to be the case for
stronger interactions in the exact solution. This deficiency of
our approach to describe specific 1D features shows up more
dramatically for the boson occupation numbers where we
still obtain a large fraction of particles condensed into the
q=0 state whereas the exact solution is, of course, totally
distributed with no particles in the condensate. In spite of
this failure, we conclude, however, that our first objective of
the work has been realized, namely our T-matrix approach
which has been applied to the in-medium bf case in �12�
seems to work reasonably well. In addition, for tb� tf, our
formalism is still valid. We compare in Table I the ground-
state energies obtained by RPA, HF, and QMC for tf =4tb,
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FIG. 1. �Color online� Excitation energy as a function of Ubf
for the six-site Bose-Fermi Hubbard model and K=� /3 �a� and for
K=0 �b�. The solid lines correspond to the results of exact diago-
nalization and the dashed lines to the RPA results.
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FIG. 2. �Color online� Ground-state energy per site as a function
of Ubf for L=70. The solid line corresponds to the QMC, dotted
line to the HF approximation, and dashed line to the RPA.
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FIG. 3. �Color online� �a� bf occupation numbers as a function
of the total momentum K, and �b� fermion occupation numbers as a
function of the relative momentum k �Ubb=0.75Ubf, L=70�.
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and see that the results are still of the same quality as for the
case with equal tunneling amplitude �see Fig. 2�. Similar
conclusions hold for the occupation numbers and for a com-
parison with exact diagonalization for a system size L=6. We
also should note that we eventually would like to apply our
theory to the three-dimensional �3D� case where mean-field
and RPA theories usually perform much better, and where no
QMC data are available.

Another objective of this work is to confirm a surprising
finding discussed in �12�, the appearance of a second stable
bf branch at arbitrary small bf �attractive� interaction. It ex-
ists only because of the presence of a sharp Fermi surface
and is thus analogous to the formation of Cooper pairs in
pure Fermi systems. For this investigation, we pass to the
continuum limit in which the bf propagator in HF approxi-
mation is given analytically by

GK
0 �E� =

x

�LP0

1
�x2 − 1

�arctan� �x + 1�cot
K

4
+

kF

2
�

�x2 − 1
�

− arctan� �x + 1�cot
 kF

2
−

K

4
�

�x2 − 1
��

+
n0/L

P1 + 2 + 2 cos�K�
, �10�

with

x =
P0

4 cos
K

2
� ,

P0 = E +
2kF

�
�Ubb + Ubf� + i� ,

P1 = E +
kF

�
�Ubb + Ubf� + i� .

In Fig. 4 we show the spectral function, i.e.,
−Im�G�K ,E�� /�, for a typical set of parameters for NB

=NF=L /4, away from half-filling. Besides the low-lying
peak which corresponds to the free fermion dispersion in the
Ubf →0 limit, we see the striking feature that a second stable
branch develops right below the continuum. This stable sec-
ond branch exists for arbitrarily small values of Ubf. It is the
same phenomenon as was seen in our earlier work �12�. The
existence of a Fermi surface entails a logarithmic divergence
of Re�G0� at E /2=�F and then there is always a sharp state
below the continuum solution of 1−gbfG

0�K ,E�=0. How-
ever, contrary to what happens in the homogeneous con-
tinuum case �12�, this second branch does not interact
strongly with the lowest free fermion-type branch. In �12�
there was a level crossing of the two branches which does
not occur here. Also the upper branch has rather little spec-
tral weight compared with the lower one. It would be inter-
esting to see whether this second branch can be found ex-
perimentally. In 1D, however, we should note that this
slightly detached second branch is certainly an artifact of the
T-matrix approximation because the correlated fermion oc-
cupation numbers do not show any discontinuity �see Fig. 3�.
However, in two and three dimensions, we think that this
second branch should exist. Whether it survives in a trap
geometry �17� remains to be seen.

In conclusion, we have investigated in this work boson-
fermion pairing in a bf mixture on a 1D optical lattice. The
in-medium boson-fermion scattering problem was solved in
T-matrix approximation. As in a previous investigation, in

TABLE I. Comparison of the ground-state energies per site ob-
tained by RPA, HF, and QMC for a system of size L=30 and tun-
neling amplitudes tf =4tb. The HF and RPA relative errors are
roughly constant.

�Ubf ;Ubb� ERPA EHF EQMC

�−40;6� −24.30 −12.85 −20.78

�−50;10� −29.71 −14.88 −25.54

�−60;12� −35.69 −17.15 −30.33
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FIG. 4. �Color online� �a� The solid line with circles represents the free fermion-type branch of the spectral function, the solid line
represents the second bf branch, the solid lines with squares represent the limits of the continuum, and the dashed line represents
a second plateau in the continuum. �b� The spectral representation corresponding to �5� for K=� /4, see vertical broken line of �a�
�Ubf =−10, kF=� /4�.
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the thermodynamical limit, two stable branches were found.
One corresponds to the elastic scattering of the fermions off
the Bose condensate and the other is created from scattering
of bosons out of the condensate with fermions above the
Fermi sea. The latter comes because of the presence of a
sharp Fermi surface and therefore has the same origin as the
Cooper pole in a pure two component Fermi system. While
in 1D systems, the second branch is unphysical and just an
artifact of the method, we think that in 3D such a branch
should be real. We checked the validity of our approach ver-
sus exact results available for a finite number of sites. For
most quantities we found good qualitative and semiquanti-

tative agreement. This is satisfying because, as already men-
tioned, RPA generally works better in higher dimensions.
More elaborate studies of bf pairing are under way.
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