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The conventional probabilistic point of view implies that if a particle has a probability p to make a transition
from one site to another site, then the average transport should be (Q)=p with a variance var(Q)=(1-p)p. In
the quantum mechanical context this observation becomes a nontrivial manifestation of restricted quantum-
classical correspondence. We demonstrate this observation by considering the full counting statistics which is
associated with a two level coherent transition in the context of a continuous quantum measurement process.
In particular we test the possibility of getting a valid result for var(Q) within the framework of the adiabatic
picture, analyzing the simplest nontrivial example of a Landau-Zener crossing.
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I. INTRODUCTION

The discussion of quantum-classical correspondence
(QCC) in the mathematical physics literature is as old as the
history of quantum mechanics. Traditionally one has in mind
complicated semiclassical approximation schemes for calcu-
lating the propagation of wave packets. A more elaborated
analysis of the spreading process [1] leads to the distinction
between robust restricted QCC and fragile detailed QCC.
Restricted QCC means that (A),~(A)¢ holds only for a
restricted set of observables, and survives even in the pres-
ence of diffraction, while detailed QCC means (A)yy, = (A)q
for all the well behaved observables, and requires smooth
potentials as in the traditional formulation.

Controlling atoms in a few site system is state of the art
[2,3]. The prevailing studies are focused in restricted ques-
tions such as “what is the probability for a transition from
one site to the other site” [4,5]. But what about the associated
noise [6,7] and the full counting statistics (FCS) of a quan-
tum transition? We argue below that the simplest example of
a single particle in a closed two site system can be worked
out exactly so as to illuminate the essence of restricted QCC
in the context of FCS studies. This has the side benefit of
shedding light on the vague picture in the pioneering works
[8,9] about shot noise, where the discussion of FCS is im-
mersed in complicated diagrammatic calculations involving
a many-body system of fermions in an open geometry, hence
obscuring the simple physics that underlays the bottom line
results. While most follow-up publications about FCS
[10-14] are aimed in studying the distribution of transmis-
sion eigenvalues, our concern below is with some fundamen-
tal aspects that distinguish quantum dynamics from its clas-
sical stochastic analog.

We consider the simplest nontrivial example: the adiabatic
crossing of a particle from one site to another site, which
involves a two level Landau-Zener transition [15-19].
Within the framework of a classical probabilistic point of
view the particle has some probability p to make the transi-
tion. In any particular realization the particle either makes
the transition or not. Accordingly the integrated current from
the first to the second site is either O=1 or Q=0, respec-
tively. It follows that

(Q=p (1)

with the variance
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var(Q) = (1 -p)p. ()

This classical probabilistic point of view does not hold in the
quantum mechanical reality. The characterization of the full
counting statistics requires some care in the description of a
continuous quantum measurement. Accordingly one has to
distinguish between the naive mathematical definition [8] of
the Q probability distribution P(Q), and the proper physical
definition [20] of the quasiprobability distribution P(Q;x),
where x signifies the strength of the interaction with the de-
tector. It is important to realize that in general P(Q;x=0) is
not the same as P(Q), but still they have the same first and
second moments.

This paper has two parts. In the first part we establish
restricted QCC for the counting statistics using general prin-
ciples. In the second part we study whether the adiabatic
approximation can be used in order to derive leading order
results. The importance of the latter analysis becomes appar-
ent once one tries to obtain results for more complicated
multiple-path geometries where the exact solution for P(Q)
is out of reach. We further discuss this latter point in the
concluding section.

II. RESTRICTED QCC FOR MOMENTS OF Q

For a general network that consists of several sites we can
define a set of occupation operators A and current operators
7. In the Heisenberg picture the time derivative of any occu-
pation operator equals a sum over the ingoing current opera-
tors. In order to demonstrate the general idea of restricted
QCC we consider below the simplest example of one particle
in a two site system. The model Hamiltonian in the position

basis is
H (at/Z c ) 3)
N e —a2)’

where c is the hopping amplitude. We define an occupation
operator N and a current operator Z as follows:
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Using the Heisenberg picture the two are related by the equa-
tion

fN(r) - 70, ©)
t

where Z(t)=U(¢)"ZU(t), and U(#) is the evolution operator.
Consequently it is useful to define a counting (“transported
charge”) operator

Q= JII(t’)dt’. (7)
0

From the Heisenberg equation of motion (6) it follows
that the occupation probability (A{z)) and the probability
current (Z(r)) are related by a continuity equation. However,
in fact we can derive a stronger statement. By integrating Eq.
(6) over time one obtains

Q=N - MO). (8)

Assuming that the particle is initially in the left site, which is
a zero eigenstate of )V, one concludes the nontrivial relation

(O =(N®, fork=1,2. 9)

This relation between the kth moment of the counting opera-
tor (as determined in the Heisenberg picture by an expecta-
tion value at the reference time r=0) and the kth moment of
the occupation operator (as determined in the Schrédinger
picture by an expectation value at time ¢) does not hold for
k> 2, because the operators in (O|[N(z)—N(0)]*|0) are non-
commuting.

Thus for a coherent quantum transition where initially
(N9,=0, we find at the end of the process (N*),=p, and
consequently it follows that (Q¥)=p for k=1,2, leading to
Egs. (1) and (2). But the higher moments would be different
compared with the classical expectation, as further discussed
in the next section, and therefore we have here a very simple
example for restricted rather than detailed QCC.

III. THE FCS-NAIVE RESULTS

Both Egs. (1) and (2) can be derived on the basis of a
classical probabilistic point of view. The classical reasoning
is based on the following idea regarding the counting statis-
tics:

B 1-p for 0=0,
P(Q)—{ R (10)

The kth moment of this probability distribution is (Q*)=p,
leading to Eq. (1) as well as to Eq. (2). But we are going to
explain that the classical reasoning is wrong: It is wrong both
according to the naive mathematical definition of P(Q), and
also according to the proper physical definition of P(Q;x),
which we review in Appendix A. Consequently in the
present section we derive the mathematically correct results
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for P(Q), while in the next section we work out the physi-
cally meaningful result for P(Q;x).

Let us elaborate on the straightforward procedure for na-
ive FCS calculation. The first step is to write the current
operator in the Heisenberg picture

Z(1), = (n|U() TU(2)|m). (11)

It is important to realize that the current operator and hence
the counting operator have a zero trace. Consequently inte-
grating over time we get

+0Q) 10, )
Qnm (_ in _ QH ( )

The first two moments (Q) and (Q?) are obtained from this
matrix, leading to the identifications

(D=0, (13)
var(Q) =[0, |*. (14)

The zero trace property also implies that the eigenvalues of
Q are opposite in sign

0.==\(Q)*+|0.* (15)

On the basis of the continuity equation we can argue that
(Q),=<1 for any preparation. Therefore we must get |Q.|
=< 1. In fact we can deduce much more on the basis of re-
stricted QCC. Observing that Egs. (13) and (14) should be in
agreement with Egs. (1) and (2) one deduces that

QH:p’ (16)
Q, =V(1 - p)p X phase factor. (17)

If we could regard Q as a conventional observable, then
upon measurement its observed values would have the dis-
tribution

for Q=
P(Q)={”‘ e (18)
ps for0=0,.
This distribution is characterized by two parameters because
Q. are opposite in sign, and p. sum up to unity. Restricted
QCC provides the two equations {Q)=p and (Q%)=p that
can be solved, leading to

0.=+\p, (19)

pa=>0%\p), (20)
where the expression for Q. is in agreement with Egs.
(15)—(17) of the previous paragraph. A look-alike result had
been obtained for shot noise of fermions using complicated
diagrammatic techniques [8]. An equivalent way to express
Eq. (18) is to say that the kth moment is

(O =p, 0k +p 0t = plks2 1)

where k=0,1,2,3,..., and |---] stands for the integer part
(i.e., rounded downward). The corresponding classical result
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FIG. 1. (Color online) Numerical calculation of the full counting
statistics kernel P(Q;x=0) for a coherent Bloch transition from one
site to another site. The evolution is governed by the Hamiltonian of
Eq. (3) with @=0 and ct=5. The thick bars represent delta func-
tions. See the text for further explanations.

is p irrespective of k. One may say that we have encountered
here the simplest example of restricted QCC.

IV. THE FCS-PHYSICAL RESULTS

In a later publication [9] the naive mathematical definition
of the full counting statistics has been criticized. The most
illuminating approach [20] is to analyze the reduced dynam-
ics of the detector. Using the standard von Neumann pointer
scheme [21] and transforming to the Wigner representation
one deduces that the final state p(q,x) of the pointer is the
convolution of its initial state with a kernel P(¢g—q’;x), as
defined in Eq. (A5). It follows that

1 ) ' .
P(Q;)C = O) = 2_ J <[7—e_l(r/2)Q]T[%H(Nz)QDe—thdr
a

(22)

can be regarded as a quasidistribution that describes the full
quantum statistics. It is of course a physically measurable

(Q

FIG. 2. (Color online) A caricature that illustrates the final prob-
ability distribution of the von Neumann pointer ¢. It is assumed that
the initial state is a wave packet that is concentrated at ¢~ 0. The
upper panel is based on the classical expectation of having either
Q=0 or Q=1 displacement. The middle panel is the naive quantum
mechanical prediction that suggests Q=Q. displacements, while
the lower panel is the actual quantum prediction based on a convo-
lution with P(Q;x).
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FIG. 3. (Color online) Numerical calculation that illustrates the
final probability distribution of the von Neumann pointer g corre-
sponding to the lower panel in Fig. 2. The parameters are the same
as in Fig. 1. The initial preparation is a Gaussian wave packet
centered at g=x=0 of width o,=1.2 (solid line), and ¢,=0.8
(dashed line), and ,=0.5 (dotted line). Its evolution has been cal-
culated using Eq. (A4) with Eq. (A5).

object. The naive mathematical definition is obtained if we
ignore time ordering:

PO)= 3 [ @ ar=(a0-2y. @3

In general the calculation of P(Q;x=0) is very compli-
cated. However, we can gain some insight by considering the
simplest case of a Bloch transition, which is Eq. (3) with «
=0. After time ¢ the probability to find the particle in the
second site is p=[sin(ct)]*>. The expectation value in the in-
tegrand of Eq. (22) is

;{sin[ct\r’m]}?

P=1- (r2) +i

(24)
[More conveniently one can use instead of Eq. (22) the
equivalent expression Eq. (A5), where the U’s can be inter-
preted as spin 1/2 rotation matrices]. In order to get
P(Q;x=0) we have to Fourier transform (FT) the function

P(r). For the purpose of discussion let us assume long
times (cr>1) so as to have separation of scales. Then we

can distinguish between a central part where ﬁ(r)
~1+ipr—(1/2)pr*+--- as implied by restricted QCC, and
oscillatory far tails where P(r) = cos(ctr). The FT of the cen-
tral part gives a nonsingular exponential-like piece, while the
FT of the tails contributes two delta functions (1/2)8(Q =* cr)
which are screened by negative clouds as illustrated in Fig.
1. We can regard the singular delta functions at Q= *cr as
the remnants of those that are centered at Q. =% \p in the
naive calculation. It is interesting that for long times their
location reflects the eigenvalues of the current operator rather
than the eigenvalues of the counting operator.

Figure 2 is a caricature that illustrates the significance of
the FCS results with regard to the outcome of a quantum
measurement. We sketch the final probability distribution of
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the von Neumann pointer as implied by different “concep-
tions.” The upper panel is based on the classical expectation
of having either Q=0 or Q=1 displacement. The middle
panel is the naive quantum mechanical prediction that sug-
gests Q=0 displacements, while the lower panel is the ac-
tual quantum prediction based on a convolution with
P(Q:;x). An actual numerical illustration for the outcome of
this convolution is presented in Fig. 3. Needless to say that in
principle one can measure not only the ¢ distribution but the
whole probability matrix so as to determine P(Q;x) and in
particular the quasiprobability distribution P(Q;x=0) via a
deconvolution procedure. But looking at Fig. 3, it is nice to
realize that the main features of the FCS are not smeared and
pop to the eyes even without any deconvolution.

V. FCS IN THE ADIABATIC APPROXIMATION

In the following sections we would like to examine the
capabilities of the leading order adiabatic approximation in
obtaining physically significant results for var(Q). We con-
sider the model system of Eq. (3). Initially (at r=—c0) the
particle is in the ground state, which is the left site. The
probability at r=2 to find the particle in the right site is

pzl—PLz, (25)

where

2 T
PLZ=exp{—27T—] Eexp[——y] (26)
o 2
is the Landau-Zener (LZ) probability to make a transition
from the lower to the upper energy level. The rate of the
driving is characterized by the dimensionless parameter

v=(2c)a. (27)

The straightforward way to calculate var(Q) is also the most
complicated one, because it requires an explicit evaluation of
the evolution operator U(). For our two site system this can
be done using parabolic cylinder functions [18]. But having
in mind more complex systems [23], for which exact solu-
tions are not available, we would like to make the explicit
calculation within the framework of the adiabatic approxima-
tion

Ur) =~ |n(t)>expl— i f En(t’)dt’]m(to)l-

0

In this expression |n(z)) and E,(f) are the so-called adiabatic
states and the adiabatic energies [16]. The associated expres-
sion for the matrix elements of the time-dependent current
operator in the Heisenberg picture is

Z() = (| U ZU(2) | m)
~ <n(t)|I|m(t)>exp{ift Enm(t')dt’:|
ice'®?
- (— ice 0 )’ 28

where
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d(r) = f V(at)? + (2¢)%dt' . (29)

Using the zero order [O(a”)] adiabatic states we get for the
off diagonal terms Q | = Q;, where

= 3] e[ oo oo

—o0 —00

Above we use the substitution r=(2c/a)7 followed by 7
=sinh(z).

Before we go on with the calculation of Q;, we would
like to comment on the calculation of the diagonal terms in
Eq. (28). This terms are trivially related via Eq. (16) to the
Landau-Zener transition probability P;, of Eq. (26). The
leading order estimate of this probability is based on a con-
ventional time-dependent treatment [17], leading to

lf ! ei‘D(T)dT lf ! ei<I’(z)dZ
2) . 7+1 2J_, cosh(z)

2 2

Pz~

@31

It is important to realize that in the zero order adiabatic ap-
proximation we get zero for the diagonal terms of Eq. (28),
because the zero order adiabatic states are time-reversal sym-
metric and hence do not support nonzero average current. If
we use the first order [O(a')] adiabatic states we get for the
diagonal terms *1 but still miss the nonadiabatic P, cor-
rection. It is therefore nontrivial and requires verification that
Q= (0,7 is a valid approximation.

VI. THE CALCULATION OF 0, ,

In order to evaluate Q;, of Eq. (30) we use the contour
integration method as in Ref. [17]. The explicit expression
for the phase ® as a function of z=x+iy is

D(r) = %(z + % sinh(2z)>

- %’{ (x + % sinh(Zx)cos(Zy))

+ i(y + % cosh(2x)sin(2y))} . (32)

The contour of integration in Eq. (30) is y=0, but we would
like to deform it into the complex plane so as to get rid of the
rapid oscillations of the phase factor, and have instead a
smooth monotonic variation. The deformed contour is dis-
played in Fig. 4. The phase is pure imaginary along the
curves C_ and C,. At zp=0+i(7/2) we have ®=i(7/4)v,
while cosh z=i(z—z,). Consequently in the P;; integral of
Eq. (31) we have a pole leading to the standard LZ results
(disregarding the prefactor which requires higher orders).
However, in the case of the Q; ; integral (30) we do not have
a pole: rather we have to consider the nonsingular part that
comes from the integration along the C. curves. One ob-
serves that
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Im(z)

FIG. 4. (Color online) The calculation of Py, and Qyy is done
by deforming the integration contour into the complex plane. The
integration is along the curves C. where the integrand is nonoscil-
latory, and along the arc C, that encircles the pole P at
20=0+i(7/2). The contributions of the (nondisplayed) vertical seg-
ments that connect C_ and C, to the real axis at infinity can be
neglected.

QLsz ...dZ:ZRef ...dzzf f(x)ei(b(X)dx,
c_+C, c, 0

where
2
iP(x)=- 4 - arccos(,—x>
4 sinh(2x)

2 \2]12
+ {l - <—Sinh(2x)) ] cosh(2x)

_1/2< sinh(4x) — 4x
cosh(4x) — 1

and

flx) = l{l 2 )sinh(x).

V2 - sinh(2x)

Deep in the adiabatic regime (y> 1) the integration is domi-
nated by the small x interval where f(x)oyx and
[®(x)—D(0)] o yx3. Accordingly

a
017~ 7" exp{— Z?’] . (33)
Inspired by the calculation procedure of P, in Ref. [16], our
speculation is that also here the pre-exponential term would
be renormalized to unity by higher orders, which would im-

ply consistency with the expected (exact) result |Q |
=/(1=Py,) P, that follows from Eq. (17).

VII. DISCUSSION

We have demonstrated how restricted QCC can be estab-
lished and utilized in order to determine the counting statis-
tics of a quantum coherent transition. It is important to real-
ize that this procedure has some limitations. Namely, if we
had considered not a two site system but a more complex
system with multiple path geometry, then the same consider-
ations would not allow us to deduce the variance var(Q) of
the integrated current. In particular one wonders what hap-
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pens if a particle has two optional paths available to get from
one site to another site [22]. Within the framework of the
classical probabilistic theory, a splitter would imply a noisy
outgoing current. However, in Ref. [23] we argue that the
coherent splitting of a wave packet is not noisy, and further-
more that the whole study of fluctuations in quantum stirring
devices requires one to go beyond QCC considerations. Con-
sequently the problem that has been raised in Ref. [23] has
motivated us to study the capabilities of the leading order
adiabatic approximation for the purpose of calculating
var(Q).

The calculation of the Landau-Zener transition probability
P;; and the associated dispersion Q7 in the leading order
adiabatic approximation yields a contour integral in the com-
plex plane. While the P;; integral is dominated by a pole,
the Q) integration is related to the corresponding principal
part. Restricted QCC implies that Py, and Q;, are related.
Our analysis has demonstrated that the dominant exponential
term is correctly reproduced, but not the pre-exponential
term which apparently requires infinite order.

The traditional QCC principle is based on the semiclassi-
cal approximation and implies detailed QCC for all the mo-
ments up to the quantum resolution limit. In contrast to that
restricted QCC is very robust, and survives even in the pres-
ence of diffraction [1]. The Landau-Zener problem is possi-
bly the simplest nontrivial example where this idea can be
demonstrated. For some more complicated (chaotic) systems
restricted QCC can be established as an approximation in the
long time limit, on the basis of the short time perturbative
analysis which is extrapolated using the central limit theo-
rem. It would be interesting to explore the implications of
coupling to the environment in this context [24].
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APPENDIX A: THE VON NEUMANN MEASUREMENT
SCHEME

In this section we present a short, simple derivation of the
main result of Ref. [20] regarding the measurement of the
full quantum statistics. The original derivation has been
based on an over-complicated path integral approach.

The coupling of the system to a von Neumann pointer
[21] whose canonical coordinates are (£,4§) is described by
the Hamiltonian
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7—[total = H(t) -1x. (Al)

The states of the system can be expanded in some basis |n),
and accordingly for the system with the detector we can use
the basis |n,x). The representation of the evolution operator
is

U(n,x

nO’XO) = U[x]n,noé(x - )Co), (AZ)

where U[x] is a system operator that depends on the constant
parameter x. We formally write its explicit expression both in
the Schrodinger picture and also in the interaction picture
using time ordered exponentiation

Ulx]= Texpl— ift (H —xI)dt’}
0

= U[O]Texp|:ixft1'(t’)dt']. (A3)

0

The time evolution of the detector is described by its reduced
probability matrix
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P x) = 2
n,né,ng

! n
dxdx

X U(n,x"|ng,x5) U(n,x’ |n6,x6)*pzzfn6p0(x3,x6)

— " 4 sys o
- [ Z ” ULx"],, Ul ]n,n(’,Png,né]Po(x x'),
n,no,no

where p™*=|y)(y| is the initial state of the system, and
po(x(,xp) is the initial preparation of the detector. Transform-
ing to the Wigner function representation we get the convo-
lution

pg.x) = f P(q-q":x)po(q’.x)dq’, (A4)

where

P(Q;x) = i f (YULx = (2)] ULx + (r/2) || e~ dr.
(AS)
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