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We propose an experiment for the observation of the quantum Zeno effect �QZE� in a bipartite system. The
setup involves two microwave cavities and a “tunneling” photon, which is observed by the passage of Rydberg
atoms. Our proposal allows for the consideration of two types of measurements, namely, sequential observa-
tions of the atomic state and its inclusive measurement. In the present system the two processes are shown to
lead to the same result in the ideal case. We consider realistic atom-field interaction times, cavity dissipation,
and limited detection efficiency. Analytical expressions for the “tunneling” probability are obtained exhibiting
a competition between the environment induced exponential decay and the characteristic t2 �for short times�
dependence of the QZE. We show that for sufficiently small dissipation constants the effect can be observed
with current experimental facilities.
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I. INTRODUCTION

The success of physical theories is intimately connected
to its potentiality to describe existing empirical data and to
predict new, yet to be observed, phenomena �1�. However,
the interpretation of empirical data is not completely inde-
pendent of the proposed theory. Therefore in natural sciences
the measurement process plays a double role: it is at the
same time a testing tool of theories and also a physical pro-
cess in itself, subjected to theoretical analysis. In the quan-
tum domain theoretical descriptions of the measurement pro-
cess are a matter of innumerous discussions.

In 1932, in his famous treatise �2�, von Neumann pro-
posed a quantum measurement theory, which became quickly
well known. An initial premise of this theory is the postulate
that the measurement of a given observable always yields
one of the eigenvalues of this observable and, after the mea-
surement, the system collapses to the corresponding eigen-
vector. This working hypothesis is known as “projection pos-
tulate” and is responsible for several counterintuitive aspects
of the theory. It has led to the formulation of several para-
doxes.

The “quantum Zeno paradox” was presented in a math-
ematically rigorous fashion in 1977 by Misra and Sudarshan
�3�. In this formulation the authors show that a sequence of
projective measurements on a system inhibits its time evolu-
tion. The paradoxical character of this conclusion becomes
explicit when one continuously observes the state of an un-
stable particle. When the quantum Zeno effect �QZE� was
first formulated, it has been associated to two factors: an
initially quadratic time decay and the projection postulate.

In the 1990s, after the realization of the pioneer experi-
ment �4� on the effect, which showed the inhibition of tran-
sitions between quantum states by means of frequent obser-
vations, the QZE became the center of fervorous debates
�5,6�. The role attributed to the projection postulate was at
the center of the discussions. New approaches have been

proposed �5,7� and the strong association between the QZE
and the projection postulate was no longer a necessary ingre-
dient. Nowadays the literature on the subject is vast, espe-
cially on the theoretical side. In order to give an idea of the
broad range of questions raised by the QZE we quote a �very
limited� set of examples. Essentially formal structures have
been developed to study general properties of the QZE �8�;
its relation with quantum jumps is considered in �9�; tem-
perature effects on the visibility of the QZE are discussed in
�10� and in Ref. �11� the QZE is shown to be compatible with
a measuring process which produces a random phase on the
measured state of multilevel atoms. There are also many pro-
posals to use quantum Zeno �and Zeno-type� effect as a strat-
egy for state preservation and control �12–14�.

In the present contribution we consider the experimental
setup proposed in �15�, which consists of two microwave
cavities coupled by a waveguide. We devise therewith two
conceptually different schemes. In the first one a single pho-
ton initially in cavity A may tunnel through the waveguide to
cavity B. A resonant atomic probe is sent through cavity B
and the final atomic state is detected by field ionization de-
tectors. According to this scheme the probability of N suc-
cessful events �the atom remains in the ground state� in-
creases as N increases �for perfect detectors�. In our second
proposal the atomic probes are sent through cavity B, interact
with it but are not measured, i.e., an inclusive experiment.
The transition of the excitation from A to B is due to the
periodic interactions of the atoms with the mode in cavity B.
The same final probability is obtained for both schemes in
the ideal case: being resonant with the photon, the atom takes
it away in case the transition has occurred and leaves the
system in a stationary state �the vacuum in this case� making
the repopulation process impossible. In the experiment by
Itano et al. �4� repopulation occurs in a natural way �16�
since the laser pulses populate an intermediate metastable
state. The type of measurement in Ref. �4� corresponds to an
inclusive measurement �like in our second scheme�. The re-
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sult, however, is different from ours in what concerns the
finite N dependence.

Our first scheme is in line with Ref. �17� �see also �18��,
where on page 3, Sec. V, the importance of sequential mea-
surements in connection to the QZE is discussed. To our
knowledge, one of the novel aspects of the present contribu-
tion is the fact that the experimental proposal involves a
bipartite system, where entanglement plays a very crucial
role in the resulting QZE. Moreover, several limiting aspects
of a realistic observation of the effect are taken into account
in detail. For example, the finite quality factor of the cavities
is shown to yield an exponential decay, which competes with
the t2 tunneling probability characteristic of the QZE for
short times. Recently a nonexponential decay has been in-
deed observed �19,20� in the tunneling of trapped ions.

Another result from the present investigation is the study
of the experimental limitations on N, the number of probe
atoms. We present two limits for N, one for each experimen-
tal proposal. In the first one N is limited by the detectors
inefficiency �the analysis of dissipative effects is not neces-
sary in this proposal since they are irrelevant when compared
to the limitations imposed by the detection process�. In the
second proposal N is limited by dissipation since the time for
the realization of the measurement depends on N. All our
results are analytical and the physics becomes transparent.

This contribution is divided as follows: In Sec. II, we
describe the main elements of the proposed experiment and
their interaction. In Section III, the QZE is investigated in
the situation where several atoms interact with one cavity
mode and next with ionization detectors. In Sec. IV, we show
that these measurements of several atomic states are not es-
sential for the QZE; the effects of finite atom-field interac-
tion times and of field dissipation are also studied in this
section. In Sec. V we draw the conclusions.

II. MODEL FOR AN EXPERIMENT

Let us consider two cavity modes coupled by a conduct-
ing wire �waveguide�, as proposed in �15�. The Hamiltonian
for the system is given by

HAB = ��a†a + ��b†b + �g�a†b + b†a� , �1�

where a† �a� and b† �b� are creation �annihilation� operators
for modes MA and MB, � their frequency and g a coupling
constant �15�. The situation we shall consider concerning the
electromagnetic degree of freedom will always involve the
following initial state:

�F�0� = �1A,0B��1A,0B� = �1,0��1,0� ,

where the ket �bra� �n ,m� ��n ,m�� refers to n excitations in
mode MA and m excitations in mode MB. The evolution of
this state according to Eq. �1� in a time interval T is given by

�F�T� = �c1�T��2�1,0��1,0� + �c2�T��2�0,1��0,1�

+ �c1�T�c2
*�T��1,0��0,1� + H.c.� , �2�

where c1�T�=cos�gT�, c2�T�=sin�gT�, and H.c. stands for
Hermitian conjugate. Thus, due to the coupling between the
cavities, a photon initially in cavity A may be found at time

T in cavity B with probability �c2�T��2. At T=� /2g the pho-
ton has performed a complete transition from mode MA to
mode MB: �C�T�= �0,1��0,1�.

In order to experimentally verify the occurrence of this
transition, one can measure the number of photons in cavity
B: if the value found is zero we know for sure that the tran-
sition did not occur. This may be realized by sending an
effectively two level atom �21� in its lowest state through
cavity B. The atom prepared in its lowest state works as a
probe for the field state. In order to realize this “two level
atom” one uses a Rydberg atom whose relevant transition
may be tuned to the field quanta ��. We denote by �e� ��g��
the higher �lower� energy atomic state. This tuning may be
effected by using a quadratic Stark effect, as in Ref. �22�.
The control of the atom-field interaction time may be per-
formed by this method with a precision of 1 �s. Since this
time is small compared to the other relevant times in the
experiment, we will not consider imperfections in the atom-
field interaction time. The interaction of the atom with the
field mode in cavity B may be described by the Jaynes-
Cummings model, which gives ��=� /�0, where �0 is the
vacuum Rabi frequency, for the � pulse time, the time in
which one excitation moves from mode MB to the atom. If
the atom-field coupling is much stronger than the coupling
between modes MA and MB, �� may be disregarded �32�, and
we may write the density operator for the system composed
of the atom and the field modes, after the atom-field interac-
tion, as

�AF�T� = �c1�T��2�1,0,g��1,0,g� + �c2�T��2�0,0,e��0,0,e�

+ �c1�T�c2
*�T��1,0,g��0,0,e� + H.c.� . �3�

Since the atom-field state is maximally entangled, to measure
the atomic level in an ionization detector is equivalent to
measuring the number of photons in each cavity before the
atom-field interaction.

III. SEQUENTIAL OBSERVATIONS

In this section we will consider the measurement of the
atomic state by ionization detectors De and Dg constructed in
such a way as to ionize the atom in states �e� and �g�, respec-
tively.

A. Perfect detectors

If one has perfect detectors, each atom sent through cavity
B will produce a click either in De or Dg. Thus the probabil-
ity p1,0 that a photon initially in mode MA did not reach
cavity B is equal to the probability pclick Dg

of one click in
detector Dg �p1,0= pclick Dg

= �c1�T��2�.
If we send N atoms, one at each time t= iT0 /N �i=1 to N�,

during the fixed time interval T0=� /2g, we can, in principle,
monitor the photon transition from mode MA to mode MB.
The temporal evolution of the system under such conditions
consists of N steps composed of a free evolution during a
time interval �A,B=T0 /N, followed by an atom-field interac-
tion, when the atom and the mode MB perform a � Rabi
pulse �regarded as instantaneous�.
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If in one of these steps we observe one click in De, we
must conclude that the photon was found in cavity B. As may
be seen in Eq. �3�, after this click the field state becomes
�F= �0,0��0,0�, and all the subsequent atoms will be detected
in the �g� state.

If no clicks in De are observed, the state of the field col-
lapses to the initial state at the end of each step; therefore,
the evolution of the system is composed of N identical steps.
The probability of N clicks in Dg is

pclick Dg

�N� = ��c1��AB��2�N, �4�

which is equal to the probability p1,0
�N� that the photon is still

in cavity A at time T0, after the interaction between the field
and the N atoms. If we consider the limit N→�,

lim
N→�

p1,0
�N� = lim

N→�
pclick Dg

�N� = 1. �5�

The Zeno effect becomes explicit: the continuous measuring
of the number of photons in cavity B inhibits the transition of
the photon from cavity A to cavity B.

B. Inefficient detectors

In order to take the limited efficiency of the detectors into
account we need a model for the detection process. In what
follows we consider a schematic model for the atom-detector
interaction �23�:

HD = �	g�g��g� + �	e�e��e� + �� dk	k�k��k�

+ �vg� dk��g��k� + �k��g�� + �ve� dk��e��k� + �k��e�� ,

�6�

where �e� and �g� represent the same atomic levels as in
previous sections, and the set 	�k�
 concerns the continuum of
atomic levels related to the ionization of the atom. We next
consider several possibilities.

1. Only detector Dg is present

This case corresponds to the Hamiltonian �6� with ve=0.
For the calculation of the probability that Dg �the inefficient
detector� clicks for N atoms, we include the description of
the atom-detector interaction for all the steps. As a click in
Dg collapses the state of the field to the initial state, this
evolution is also composed by N identical steps, and the
probability of N clicks can be written as

Pclick Dg

�N� = ��c1��AB��2pg�N, �7�

where pg is the efficiency of the detector Dg as defined in
�23�

pg =� dk�� d��
��g���k�
��e−i	��g�2

. �8�

The sets 	�
�
g �
 and 		�

g 
 correspond to eigenvectors and ei-
genvalues of HD with ve=0. In the limit pg=1 one recovers
the result of the previous section,

lim
N→�

Pclick Dg

�N� = 1.

The effect of having an inefficient measurement, i.e., hav-
ing a detection efficiency pg�1, will change this scenario.
This is illustrated in Fig. 1, where we plot the probability of
N consecutive clicks in Dg as a function of N for different
values of pg. In this case the limit N→� yields

lim
N→�

Pclick Dg

�N� = 0. �9�

This does not mean that the Zeno effect is not present. Given
the detector’s inefficiency one cannot associate the effect to
the statistics of Dg clicks: no click in Dg does not necessarily
mean that the photon in fact decayed from cavity A to B. The
intrinsic detection inefficiency limits the experimental vis-
ibility of the Zeno effect in the present experimental scheme.

2. Only detector De is present

Another possibility of investigating the limited detection
efficiency in the same experimental scheme consists in hav-
ing only detector De present. This corresponds to the Hamil-
tonian �6� with vg=0. Note that in this case one click in De
projects the cavity state to �0,0��0,0�; thus, in order to observe
the effect we must study sequences of events that do not give
rise to any click in De. After each step of such a sequence the
atomic state is projected into the subspace spanned by the
discrete levels ��e� , �g�� �23�. Therefore, the probability of N
consecutive no clicks in De may be computed as

Pñ click De

�N� = ��c1��AB��2�N + �c2��AB��2�1 − pe�

��
k=1

N

�c1��AB��k−1� , �10�

where pe, the efficiency of the detector, is given by

FIG. 1. Probability of consecutive clicks in Dg as a function of
N, for T= �

2g and different values of pg: pg=1 �dashed�, pg=0,9
�dotted� and pg=0,5 �continuous�.
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pe =� dk�� d��
�
e �e���k�
�

e �e−i	�
e �e�2

.

The sets 	�
�
e �
 and 		�

e 
 correspond to eigenvectors and ei-
genvalues of HD with vg=0. In the limit N→�,

lim
N→�

Pñ click De

�N� = 1.

In Fig. 2 we show the probability of N consecutive no
clicks in De for different values of pe. For pe=1 the curve is
the same as the one for pg=1, since no clicks in a perfect De
is equivalent to clicks in a perfect Dg. For inefficient detec-
tors, the probability of N consecutive no clicks must be
larger than this probability for perfect detectors. This is illus-
trated in Fig. 2, where the curves representing smaller pe
tend to reach the asymptotic value 1 faster as N→�. Note
that for inefficient detectors no click in De does not neces-
sarily mean that the photon is for sure in cavity A: the moni-
toring of the photon transition is not perfect. However, the
asymptotic behavior of Pñ click De

�N� , tending to 1 for any value

of pe, is most certainly a consequence of the Zeno effect.

IV. NO INTERMEDIATE MEASUREMENTS

In the experimental setups discussed in the previous sec-
tions the photon transition was monitored by N probe atoms
and a macroscopic signal was generated. We were interested
in the probability of occurrence of selected sequences,
namely, N consecutive clicks in Dg or N consecutive no
clicks in De, which would be associated to the permanence of
the photon in cavity A. Obviously, a complete correlation
cannot be achieved due to the inefficiency of the detectors.

Pascazio and Namiki propose in Ref. �7� a dynamical ap-
proach to QZE and show the essential role of the generalized
spectral decomposition. They propose that QZE occurs even
in the absence of intermediate measures, which explains
Itano results in �4�. For the system composed by two coupled

cavity modes, the generalized spectral decomposition is
brought about by the interaction between the two level probe
atom and the cavity B mode. As we will see, the classical
signals generated by the ionization detectors in each step
�intermediate measures� are not necessary for inhibiting the
photon transition and, accordingly, with the approach in �7�,
are not essential for the characterization of the QZE.

The idea now is to send atoms through cavity B, also in
T0 /N intervals, and not to measure the outcome of the atom-
cavity interaction each time. After N such interactions one
atom is sent through cavity A and measured by a detector De.

As in the previous schemes, the first step of the evolution
starts with the atom-fields state given by

�AF�0� = �1,0,g��1,0,g� , �11�

which evolves to

�AF��A,B� = �c1��AB��2�1,0,g��1,0,g� + �c2��AB��2�0,1,g��0,1,g�

+ �c1��AB�c2
*��AB��1,0,g��0,1,g� + H.c.� , �12�

and then to

�AF��A,B� = �c1��AB��2�1,0,g��1,0,g� + �c2��AB��2�0,0,e��0,0,e�

+ �c1��AB�c2
*��AB��1,0,g��0,0,e� + H.c.� . �13�

Since this atom is not measured, the field state must be rep-
resented in the end of the step by

�F��AB� = TrA	�AF��A,B�
 �14�

= �c1��AB��2�1,0��1,0�

+ �c2��AB��2�0,0��0,0� , �15�

where TrA is the trace over the variables of the atom, and
accounts for the lack of information about the atomic state.

In order to calculate the final state of the following steps,
we must observe that only the part of �A related to �1,0��1,0�
changes with time, in a way that may be described by

�1,0��1,0� → �c1��AB��2�1,0��1,0� + �c2��AB��2�0,0��0,0� .
�16�

Thus, it is easy to see that the state operator for the fields in
the cavities, after the interaction of MB with N atoms, can be
written as

�F�T0� = ��c1��AB��2�N�1,0��1,0�

+ �c2��AB��2
k=1

N

��c1��AB��2�k−1�0,0��0,0� . �17�

The probability that the photon transition from cavity A to
cavity B has not occurred is

p1,0
�N� = ��c1��AB��2�N, �18�

and, in the limit N→�,

lim
N→�

p1,0
�N� = 1. �19�

This, according to the dynamical approach in �7�, character-
izes the Zeno effect. The measurement of this probability can

FIG. 2. Probability of consecutive no clicks in De as a function
of N, for T= �

2g and different values of pe: pe=1 �dashed�, pe=0,8
�dotted�, and pe=0,5 �continuous�.
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be done by using one probe atom prepared in the �g� state
and sent through cavity A immediately after the interaction
of MB with the Nth atom. If this probe atom and mode MA
perform a � Rabi pulse, the atom-fields state will be given
by

�AF�T0� = ��c1��AB��2�N�0,0,e�0,0,e�

+ �c2��AB��2
k=1

N

��c1��AB��2�k−1�0,0,g��0,0,g� ,

�20�

and measuring the energy level of the atom with an ioniza-
tion detector tells us about the field state. The inefficiency of
the detector enters just as a multiplicative factor in the data.

A. Finite interaction times and lossy cavities

The problems related to the inefficiency of the ionization
detectors, which imposed important limitations for the obser-
vation of the Zeno effect in the proposals of Sec. III, have
been overcome by the experimental proposal of the present
section. However, there are other limitations if a realistic
experiment is to be performed. Firstly the cavity is not per-
fect and dissipation and decoherence will also affect the vis-
ibility of the effect. And secondly, the interaction time is
finite. We consider all these effects in the present section.

Figure 3 sketches the time evolution, divided in N steps,
each one composed of two parts: no atom is present and the
cavities are coupled �clear zones�, and the atom interacts
with mode MB during a � Rabi pulse �dark zones�. Each
clear zone corresponds to the time interval �AB=T0 /N, where
T0 is, as in previous sections, the time during which a photon
passes from cavity A to cavity B if no atom is present: T0
=� /2g. Since our goal here is to study the inhibition �due to
intermediate interactions� of such a photon transition, the
cavities will be uncoupled during the atom-field interactions,
in order to keep the total interaction time between modes MA
and MB fixed in T0 �33�. For the rubidium atoms used in the
experiment �24�, the � Rabi pulse time is ���10−5 s, and
the increase in the number of probe atoms N may turn the
total time of atom-field interactions N�� quantitatively im-
portant. In order to take this time into account, we must
consider

T0� = T0 + N��

as the total time of one experimental sequence.

Let us start by modeling the environment as a large set of
harmonic oscillators linearly coupled to the system of inter-
est �modes MA and MB� �25�. This model has been used to
calculate the time evolution of two microwave modes con-
structed in a single cavity, and the theoretical results showed
good agreement with experimental ones �26�. In Ref. �27� it
is shown that, for identical cavities and zero temperature, the
model leads to the master equation

d

dt
�F�t� = k�2a�F�t�a† − �F�t�a†a − a†a�F�t�� − i��a†a,�F�t��

+ k�2b�F�t�b† − �F�t�b†b − b†b�F�t��

− i��b†b,�F�t�� − ig�b†a + a†b,�F�t�� , �21�

where � is the frequency of the modes of interest, g is their
coupling constant, and k gives the decay rate of the cavities;
cross decay rates and shifts in � and g, which tend to be
small �28�, were disregarded. Using this master equation, we
calculate the time evolution of the state

�F�0� = �1A,0B��1A,0B� = �1,0��1,0� �22�

as

�F�t� = �f1�t��1,0� + l2�t��0,1���H.c.�

+ �1 − �f1�t��2 − �l2�t��2��0,0��0,0� , �23�

where

f1�t� = exp�− �k + i��t�cosh�− igt� ,

l2�t� = exp�− �k + i��t�sinh�− igt� . �24�

The probability of finding the photon in cavity A, in this
case, is given by

�f1�t��2 = e−2kt cos2�gt� . �25�

If the field state has evolved from t=0 to t=�AB in the
manner described above, and at time t=�AB an atom prepared
in the �g� state begins its interaction with mode MB, the state
of the whole system will be given by

�AF��AB� = �f1��AB��1,0,g� + l2��AB��0,1,g���H.c.�

+ �1 − �f1��AB��2 − �l2��AB��2��0,0,g��0,0,g� .
�26�

During the atom-field interaction, the field modes evolve in-
dependently, since they are uncoupled. The evolution of state
�26� is described by the master equation

d

dt
�AF�t� = k�2a�AF�t�a† − �AF�t�a†a − a†a�AF�t��

+ i��a†a,�AF�t�� + k�2b�AF�t�b† − �AF�t�b†b

− b†b�AF�t�� − i
�0

2
�b†− + b+,�AF�t�� , �27�

where �0 is vacuum Rabi frequency, and −=+
† = �g��e�. The

first line of Eq. �27� describes the dissipation of mode MA;
the second line describes the interaction of the atom with
mode MB according to the dissipative Jaynes-Cummings

FIG. 3. Sketch of the total time of one experimental
sequence.
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model �29�. In previous calculations, �� was the time spent
by an atom to absorb the excitation of mode MB. Here, ��

plays an analogous role, and will be defined as

�� =
1

��0
2 − k2

arccos�2k2 − �0
2

�0
2 � . �28�

This time, which depends not only on the vacuum Rabi fre-
quency, but also on the dissipation constant, is the time for a
complete transfer of the excitation of mode MB to the atom
or to the environment. This definition coincides with the pre-
vious one if no dissipation is considered �k=0�. Using master
equation �27� to describe the evolution of the system from
t=�AB to t=�AB+��, we get

�AF��AB + ��� = �f1��AB��2e−2k���1,0,g��1,0,g�

+ �l2��AB��2e−k���0,0,e��0,0,e�

+ �1 − �f1��AB��2e−2k��

− �l2��AB��2e−k����0,0,g��0,0,g� . �29�

The state of the fields after the interaction with the first
atom is obtained by taking the trace over the atomic vari-
ables as follows:

�F��AB + ��� = TrA	�AF��AB + ���


= �f1��AB��2e−2k���1,0��1,0�

+ �1 − �f1��AB��2e−2k����0,0��0,0� .

Observing that the part of the density operator associated to
�0,0��0,0� does not change with time, it is easy to calculate
the probability to find the photon in cavity A after the inter-
action with N atoms as follows:

p1,0
�N� = ��f1��AB��2e−2k���N = e−2k�T0+N����cos2�gT0

N
��N

.

�30�

This equation makes explicit the effect of N intermediate
interactions over two kinds of temporal dependencies. The
term �cos2� gT0

N
��N

represents no transition of the photon from
cavity A to cavity B. It grows when N increases, tending to 1
when N→�. The term e−2k�T0+N���, related to the probability
that the photon has not decayed to the environment, de-
creases to zero when N→�. Of course this decrease is due to
the enhancement of the total time in which the field is ex-
posed to the environment, not being related to any kind of
anti-Zeno effect. Since the dynamics of dissipation is expo-
nential, it is not affected by intermediate measurements. The
role played by the finite interaction time �� is also made
explicit and will become quantitatively important as N→�.

In order to observe the dependence of p1,0
�N� on N, an atom

prepared in the �g� state is sent into cavity A just after the
interaction of the Nth atom with mode MB. The atom then
performs a � Rabi pulse, and passes through a De detector. If
the efficiency of De is pe, the probability of a click will be
given by

pDe click
�N� = pee

−2k�T0+N����cos2�gT0

N
��N

. �31�

This is the empirical quantity to be measured in the present
proposal.

There will be no problems associated with the efficiency
pe, since it enters just as a multiplicative factor that does not
depend on N. However, the term e−2k�T0+N��� depends on N,
and may prevent the observation of the Zeno effect if the
decay constant k is not small enough. In Fig. 4, we may
observe the competition between the tendencies of pDe click

�N�

when N grows: the increasing one, due to the Zeno effect,
and the decreasing one, due to dissipation. In the continuous
curve k=103 s−1, corresponding to the cavities used in sev-
eral experiments �22�. In this case it would be very difficult
to observe the Zeno effect, since dissipation dominates even
for small values of N. For the dashed curve k=10 s−1; this
value corresponds to the cavity described in �30,31�, and
makes the observation of the Zeno effect possible.

V. CONCLUSION

We proposed two experimental arrangements to observe
the QZE in cavity QED.

Differences between sequential measurements and inclu-
sive measurements have been reported �16–18�. In the
present proposal we obtain the same result in both cases
�disregarding experimental imperfections, Eqs. �7�, �10�, and
�31� give the same result, even for finite N�, differently from
the results reported in �4�.

Also as to the matter of exponential versus t2 characteris-
tic times, we can say that we get an exponential decay inevi-
tably due to environment effects superimposed to the usual
expression for the time dependence of the probability for
observing the effect as follows:

FIG. 4. Probability of one click in De as a function of N, for
T= �

2g , �0=105 s−1, pe=1, g=103 s−1, and different values of k: k
=103 s−1 �continuous� and k=10 s−1 �dashed�.
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pDe click
�N� = pee

−2k�T0+N����cos2�gT0

N
��N

. �32�

This is the main result of the present contribution. It expli-
cates, within the context of the present model, the role
played on the visibility of the QZE by a realistic apparatus

and realistic detectors. We hope this result may encourage
the experimental realization of the present proposal.
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