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We calculate the joint probabilities and the correlation function in Einstein-Podolsky-Rosen–type experi-
ments with a massive vector boson in the framework of quantum field theory. We report on the strange
behavior of the correlation function �and the probabilities�—the correlation function, which in the relativistic
case still depends on the particle momenta, for some fixed configurations has local extrema. We also show that
relativistic spin-1 particles violate some Bell inequalities more than nonrelativistic ones and that the degree of
violation of the Bell inequality is momentum dependent.
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I. INTRODUCTION

Different aspects of quantum information theory �1� in the
relativistic context have been discussed in many papers
�2–43�, mostly for massive particles. Photons have only been
discussed in a few papers �5–7,15,27,33–35,39,40�. Most of
these works were performed in the framework of relativistic
quantum mechanics. However, for the discussion of relativ-
istic covariance the most appropriate framework is the quan-
tum field theory �QFT� approach. Recently we have dis-
cussed the Einstein-Podolsky-Rosen �EPR� correlation
function for a pair of spin-1

2 massive particles in the QFT
framework �9�. In the present paper we consider a pair of
spin-1 massive particles in this framework and calculate the
correlation function in EPR-type experiments for such a pair
in a covariant scalar state. We also calculate the probabilities
of the definite outcomes of spin projections measurements
performed by two observers—Alice and Bob.

We observe very surprising behavior of the correlation
function �as well as the probabilities�. In the center-of-mass
frame for the definite configuration of the particles momenta
and directions of the spin projection measurements the cor-
relation function still depends on the value of the particle
momentum. It also appears that for some configurations this
dependence is not monotonic. In other words, for fixed spin
measurement and particle momenta directions, the correla-
tion function �and probabilities� can have an extremum for
some finite value of the particle momentum. As far as we are
aware this is the first time that such behavior of the correla-
tion function has been reported.

This strange behavior of the correlation function also af-
fects the violation of the Bell-type inequalities. Our analysis
shows that relativistic vector bosons violate Bell inequalities
stronger than nonrelativistic spin-1 particles and that the de-
gree of violation of Bell inequality depends on the particle
momentum.

In Sec. II we establish notation and recall basic facts con-
cerning the massive spin-1 representation of the Poincaré
group and quantum spin-1 boson field. In Sec. III we define

one- and two-particle states which transform covariantly
with respect to the Lorentz group. In the next section we
discuss the spin operator. Section V is devoted to the explicit
calculation of the probabilities and correlation function for
the boson pair in the scalar state. In Sec. VI we discuss our
correlation function and probabilities. Section VII is devoted
to the analysis of Bell-type inequalities for spin-1 particles in
the relativistic context. The last section contains our conclud-
ing remarks. In the paper we use the natural units �=c=1
and the metric tensor ���=diag�1,−1,−1,−1�.

II. PRELIMINARIES

For the readers convenience we recall the basic facts and
formulas concerning the spin-1 representation of the
Poincaré group and quantum vector boson field.

A. Massive representations of the Poincaré group

Let us denote by H the carrier space of the irreducible
massive representation of the Poincaré group. It is spanned
by the four-momentum operator eigenvectors �k ,��

P̂��k,�� = k��k,�� , �1�

k2=m2, with m denoting the mass of the particle and � its
spin component along the z axis. We use the following
Lorentz-covariant normalization:

�k,��k�,��� = 2k0�3�k − k������. �2�

The vectors �k ,�� can be generated from standard vector

�k̃ ,��, where k̃=m�1,0 ,0 ,0� is the four momentum of the

particle in its rest frame. We have �k ,��=U�Lk��k̃ ,��, where

the Lorentz boost Lk is defined by relations k=Lkk̃, Lk̃=1.
The explicit form of Lk is

Lk =�
k0

m

kT

m

k

m
1 +

k � kT

m�m + k0�
	 , �3�

where k0=
m2+k2.
By means of Wigner procedure we get
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U����k,�� = D��
s
„R��,k�…��k,�� , �4�

where the Wigner rotation R�� ,k� is defined as R�� ,k�
=L�k

−1�Lk. Because we are going to analyze correlations of
spin-1 particles, in the sequel we will focus on the represen-
tation D1(R�� ,k�)�D�R�. There exists such unitary matrix
V that every matrix D�R� is related to R by

D�R� = VRV†. �5�

D�R� are generated by Si, i=1,2 ,3,

S1 =
1

2�0 1 0

1 0 1

0 1 0
	, S2 =

i

2�0 − 1 0

1 0 − 1

0 1 0
	 , �6�

S3 = �1 0 0

0 0 0

0 0 − 1
	 ,

�see, e.g., Ref. �44��, that is D�R�=ei�S. Taking into account
the form of generators of the rotations R, i.e., �Ii� jk=−i	ijk,
we can easily determine the explicit form of matrix V

V =
1

2�− 1 i 0

0 0 
2

1 i 0
	 . �7�

B. Vector field

Under Lorentz group action the vector boson field opera-
tor 
̂��x� transforms according to

U���
̂��x�U†��� = ��−1��
�
̂���x� . �8�

The field operator has the standard momentum expansion


̂��x� = �2��−3/2 �
�=0,±1

 d��k��eikxe�
��k�a�

†�k�

+ e−ikxe�
���k�a��k�� , �9�

where d��k�=��k0��(�k0�2−k
2)� d3k

2k
is the Lorentz-

invariant measure, k=
k2+m2, a�
†�k�, and a��k� are cre-

ation and annihilation operators of the particle with four-
momentum k and spin component along the z axis equal to
�. They fulfill canonical commutation relations

�a�
†�k�,a��

† �k��� = �a��k�,a���k��� = 0, �10a�

�a��k�,a��
† �k��� = 2k0��k − k������. �10b�

The field satisfies Klein-Gordon equation and Lorentz trans-
versality condition, which implies

m2 = k2, k�e�
��k� = 0. �11�

The one-particle states transform according to Eq. �4� pro-
vided that

U���a�
†�k�U†��� = D��„R��,k�…a�

†��k� , �12a�

U���a��k�U†��� = D��
�
„R��,k�…a���k� . �12b�

Here �0� denotes Poincaré invariant vacuum with �0 �0�=1;
a��k��0�=0. Equations �8�, �12a�, and �12b� imply the Wein-
berg conditions for amplitudes e�

��k�

e�
���k� = ��

�e�
��k�D�R��,k����. �13�

From Eq. �13� we have

e�k� = Lke�k̃� , �14�

where Lk is given by Eq. �3� and we used the fact that

R�Lk , k̃�=1. Therefore, to find the explicit form of e�
��k� it is

enough to determine e�
��k̃�. From Eq. �11� we get

�e�
��k̃�� = �0 0 0

ẽ
� , �15�

where ẽ is a 3�3 matrix. Now, from the Weinberg condition
�13� for pure rotations and by means of Eq. �5� and Schur’s
lemma we find

ẽ = VT, �16�

where explicit form of V is given by Eq. �7�. Finally from
Eq. �14� we have

e�k� =�
kT

m

1 +
k � kT

m�m + k0�
	VT. �17�

Equations �16� and �17� imply

e�
���k�e���k� = − ���, �18a�

e�
��k�e���k� = − �VVT���, �18b�

e�
���k�e�

��k� = − ��� +
k�k�

m2 , �18c�

where e�k�VVT=e��k� and VVT= � 0 0 −1

0 1 0

−1 0 0 �.
III. COVARIANT STATES

A. One-particle covariant states

In the discussion of Lorentz covariance it is convenient to
use states

���,k�� = e�
��k��k,�� , �19�

which transform covariantly

U������,k�� = ��−1��
����,�k�� . �20�

They are normalized as follows �cf. Eq. �2��

���,k����,p�� = 2k0��k − p�e�
���k�e�

��p� . �21�

Arbitrary one-particle state can be expanded in the standard
basis �k ,�� as well as in the covariant one �19�
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��� = d��k����k��k,�� = d��k����k����,k�� , �22�

where

���k�e�
��k� = ���k� . �23�

B. Two-particle covariant states

In analogy to Eq. �19� we can define covariant basis in the
two-particle sector of the Fock space

���,k�,��,p�� = e�
��k�e�

��p���k,��,�p,��� , �24�

where ��k ,�� , �p ,���=a�
†�k�a�

†�p��0�. The most general two-
particle state has the form

��� = d��k�d��p�����k,p���k,��,�p,���

�  d��k�d��p�����k,p����,k�,��,p�� . �25�

One can see that

����k,p�e�
��k�e�

��p� = ����k,p� . �26�

Moreover it holds that

����k,p� = ����p,k� , �27a�

k�����k,p� = ����k,p�p� = 0. �27b�

We can now define two-particle states transforming accord-
ing to irreducible representations of Lorentz group. The sca-
lar state describing particles with sharp momenta is defined
as

��s� = ������,k�,��,p�� . �28�

In terms of Eq. �24� it takes the form

��s� = ���e�
��k�e�

��p���k��,�p,��� . �29�

There are also two independent tensor states, the symmetric
traceless

��sym
�� � =

1

2
���

���
� + ��

���
� −

1

2
����������,k�,��,p��

�30�

and the antisymmetric one

��asym
�� � =

1

2
���

���
� − ��

���
�����,k�,��,p�� . �31�

In the sequel we will analyze correlations in the scalar state
�28�.

IV. SPIN OPERATOR

When we want to calculate explicitly correlation func-
tions, we need to introduce the spin operator for relativistic
massive particles. Several possibilities have been discussed

in the literature �see, e.g., Refs. �8–11,24,28,36–38,40,41��.
We choose the operator

Ŝ =
1

m�Ŵ + Ŵ0 P̂

P̂0 + m
� , �32�

which is the most appropriate �8,38,45�. Here

Ŵ� =
1

2
	����P̂�Ĵ�� �33�

is the Pauli-Lubanski four-vector, P̂� is the four-momentum

operator, Ĵ�� denote the generators of the Lorentz group such

that U���=exp�i��Ĵ���, and we assume 	0123=1. Conse-

quently the spin operator Ŝ acts on one-particle states accord-
ing to

Ŝ�k,�� = S���k,�� , �34�

where Si are defined by Eq. �6�. In the Fock space Ŝ takes the
standard form

Ŝ = d��k�a†�k�Sa�k� , �35�

where the column matrix a�k�= (a+1�k� ,a0�k� ,a−1�k�)T. From
Eqs. �18a� and �19� we get

Ŝ���,k�� = − �e�k�STe†�k����
����,k�� . �36�

In real experiments detectors register only particles whose
momenta belong to some definite region � in momentum
space. Therefore we need the operator which acts similar to
Eq. �34� on particles with four-momenta belonging to � and
yields 0 in all other cases. Such an operator has the following
form:

Ŝ� = 
�

d��k�a†�k�Sa�k� . �37�

V. PROBABILITIES AND THE CORRELATION
FUNCTION

Let us consider two distant observers Alice and Bob in the
same inertial frame, sharing a pair of bosons in scalar state
��s� defined by Eq. �29�. Now let Alice measure the spin
component of her boson in direction a and Bob the spin
component of his boson in direction b, where �a�= �b�=1.

Their observables are �a · ŜA� and �b · ŜB�, respectively, where

�� · Ŝ�� is defined by Eq. �37� with � equal to A and B, and
� equal to a and b, respectively. We assume that A�B=0” .
Now we would like to explicitly calculate probabilities P��

of obtaining particular outcomes � and � by Alice and Bob,
respectively �� and � can take values ±1 and 0�. Let us first
notice, that from Eqs. �24�, �34�, and �37� we have
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�� · Ŝ����k,��,�p,��� = � · ����k�S������� + ���p�S��������

���k,���,�p,���� , �38�

where the characteristic function ���q� is defined in a stan-
dard way

���q� = �1 when q � � ,

0 when q � � .
� �39�

However, in EPR-type experiments we take into account
only those measurements in which Alice and Bob register
one particle each. Therefore we are actually interested in

spectral decomposition of observable �� · Ŝ���̂�
1 , where �̂�

1

is a projector �in the two-particle sector of the Fock space�
on the subspace of states corresponding to the situation in
which exactly one particle has momentum from the region

�. To find the explicit form of the �̂�
1 we use the particle

number operator N̂� answering the question of how many
particles have momentum from �. In the two-particle sector
of the Fock space we have the obvious spectral decomposi-

tion of N̂�

N̂� = 0�̂�
0 + 1�̂�

1 + 2�̂�
2 , �40�

and in the basis �24�

N̂���k,��,�p,��� = ����k� + ���p����k,��,�p,��� . �41�

In Eq. �40� �̂�
i , i=0,1 ,2, denotes a projector on the sub-

space of two-particle states, in which exactly i particles have
momenta from �. From Eqs. �40� and �41� we find

�̂�
1 = 2N̂� − N̂�

2 �42�

and

�̂�
1 ��k,��,�p,��� = ����k� + ���p� − 2���k����p��

���k,��,�p,��� . �43�

Therefore from Eqs. �38� and �43� we finally get

�� · Ŝ����
1 ��k,��,�p,��� = � · ����k��1 − ���p��S�������

+ ���p��1 − ���k��S��������

���k,���,�p,���� . �44�

By definition the observable �Ŝ��̂�
1 measures the spin com-

ponent of one particle in the direction �, therefore its spec-
tral decomposition is

�� · Ŝ���̂�
1 = 1�̂��

+ − 1�̂��
− + 0�̂��

0 , �45�

where the projectors �̂��
± and �̂��

0 correspond to eigenval-
ues ±1 and 0, respectively. Simple calculation gives

�̂��
± =

1

2
�� · Ŝ����� · Ŝ�� ± 1��̂�

1 , �46a�

�̂��
0 = �1 − �� · Ŝ��2��̂�

1 . �46b�

Now we can find explicitly the probabilities P�� mentioned
above in the state �29�:

P�� =
��s��̂Aa

� �̂Bb
� ��s�

��s��s�
. �47�

From Eqs. �38�, �43�, �44�, �46a�, and �46b� we find

�̂��
± ��s� =

1

2
���e�

��k�e�
��p����� · S�2 ± � · S�����������k�

��1 − ���p�� + ��� · S�2 ± � · S�����������p�

��1 − ���k�����k,���,�p,���� , �48a�

�̂��
0 ��s� = ���e�

��k�e�
��p��������������k� + ���p��2

− �� · S����
2 �������k��1 − ���p��

− �� · S����
2 �������p��1 − ���k�����k,���,�p,���� .

�48b�

Let us assume that Alice can measure only the bosons with
four-momentum k and Bob those with four-momentum p,
i.e.,

�A�p� = �B�k� = 0 �49�

and

�A�k� = �B�p� = 1. �50�

After a little algebra we find

P±± =
1

4�2 +
�kp�2

m4 �
Tr�M�k,a��M�p,b�� − N�k,a��N�p,b��� ,

�51a�

P±� =
1

4�2 +
�kp�2

m4 �
Tr�M�k,a��M�p,b�� + N�k,a��N�p,b��� ,

�51b�

P0± =
1

2�2 +
�kp�2

m4 �
Tr�T�k,a��M�p,b��� , �51c�

P±0 =
1

2�2 +
�kp�2

m4 �
Tr�M�k,a��T�p,b��� , �51d�

P00 =
1

2 +
�kp�2

m4

Tr�T�k,a��T�p,b��� , �51e�

where we have introduced the following notation:

N�q,���� � e�
���q��� · S���e�

��q� , �52a�

M�q,���� � e�
���q��� · S���

2 e�
��q� , �52b�
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T�q,���� � e�
���q����� − �� · S���

2 �e�
��q� �52c�

�for explicit form of matrices N, M, T �see the Appendix�.
All the above probabilities add up to 1.

Using Eqs. �51a�–�51e� and �A1� one can easily find ex-
plicit form of the probabilities for arbitrary a, b, k, and p.
However, the resulting formulas appear to be rather long and
we do not put them here. In the next section we are going to
limit ourselves to the simpler case when Alice and Bob are at
rest with respect to the center of mass �c.m.� frame of the
boson pair.

In EPR-type experiments we usually analyze the spin cor-
relation function defined as

Ca·b = �
�,�=−s

s

��P��, �53�

where �, � denote spin projections on the directions a and b,
respectively, and P�� is the joint probability of obtaining
results �, �. Let us note that cases when � or � equal 0 do
not contribute to the correlation function �53�. In principle
one could define the “normalized” correlation function as
Cab �Eq. �53�� divided by ��,��0P��. However we prefer to
deal with the function �53� which contains more information.
The “normalized” correlation function can be also easily cal-
culated by means of Eqs. �51a�–�51e�. Therefore in our case
�s=1� the correlation function takes the following form:

Cab�k,p� = P++ + P−− − P−+ − P+−, �54�

which in notation �52a�–�52c� reads

Cab�k,p� = −
1

2 +
�kp�2

m4

Tr�N�k,a��N�p,b��� . �55�

Of course the above correlation function can be also found
by means of standard formula

Cab�k,p� =
��s��a · ŜA��b · ŜB���s�

��s��s�
. �56�

After some calculation we get

Cab�k,p� =
2

2 +
�kp�2

m4

�− a · b −
�a · �k � p���b · �k � p��

m2�m + k0��m + p0�

−
�a · p��b · k� − �a · b��p · k�

m2

+
�a · p��b · p� − p2�a · b�

m�m + p0�

+
�a · k��b · k� − k2�a · b�

m�m + k0�

+
�k · p��a · p��b · k� − �k · p�2�a · b�

m2�m + k0��m + p0� � . �57�

In the next section we will analyze behavior of the probabili-
ties and the correlation function in the c.m. frame.

VI. PROBABILITIES AND CORRELATION FUNCTION
IN THE c.m. FRAME

In the c.m. frame p=−k and probabilities �51a�–�51e�
take the form

P±± =
1

4�2 + �1 + 2x�2�
��1 + 2x�2 − 2�1 + 2x��a · b�

+ 4x�a · n��b · n� − 4x�x + 1���a · n�2 + �b · n�2�

+ �a · b + 2x�a · n��b · n��2� , �58a�

P±� =
1

4�2 + �1 + 2x�2�
��1 + 2x�2 + 2�1 + 2x��a · b�

− 4x�a · n��b · n� − 4x�x + 1���a · n�2 + �b · n�2�

+ �a · b + 2x�a · n��b · n��2� , �58b�

P0± =
1

2�2 + �1 + 2x�2�
�1 + 4x�1 + x��a · n�2

− �a · b + 2x�a · n��b · n��2� , �58c�

P±0 =
1

2�2 + �1 + 2x�2�
�1 + 4x�1 + x��b · n�2

− �a · b + 2x�a · n��b · n��2� , �58d�

P00 =
1

2 + �1 + 2x�2 �a · b + 2x�a · n��b · n��2, �58e�

where x= � �k�
m

�2, n= k
�k� . Furthermore in this frame the correla-

tion function reduces to

Cab�k,− k� =
2

2 + �1 + 2x�2 �− �1 + 2x��a · b� + 2x�a · n�

��b · n�� . �59�

For a given configuration of directions a, b, and n the prob-
abilities and the correlation function depend on the value of
the three-momentum of the particles. What is very unex-
pected, for some configurations the probabilities and the cor-
relation function have local extrema. It suggests that for
some values of momenta Bell inequalities may be violated
stronger. We discuss this possibility in the next section.

Configurations can be found, where the correlation func-
tion and some of the probabilities have local extrema, while
other probabilities are monotonic �see Figs. 1 and 2�. Con-
figurations can also be found where all the probabilities are
monotonic and such configurations where all of the prob-
abilities and the correlation function have local extrema �see
Figs. 3 and 4�. Finally let us consider the ultrarelativistic
�x→�� and nonrelativistic �x→0� limits of formulas
�58a�–�58e� and �59�.

Ultrarelativistic limit. In the ultrarelativistic limit the
probabilities take the form

P±± = P±� =
1

4
�1 − �a · n�2��1 − �b · n�2� , �60a�

EINSTEIN-PODOLSKY-ROSEN CORRELATIONS OF ... PHYSICAL REVIEW A 77, 012103 �2008�

012103-5



P0± =
�a · n�2

2
�1 − �b · n�2� , �60b�

P±0 =
�b · n�2

2
�1 − �a · n�2� , �60c�

P00 = �a · n�2�b · n�2 �60d�

and the correlation function vanishes

Cab�k,− k� = 0, �61�

which means that for ultrafast particles there is no correlation
between outcomes of measurements performed by Alice and

Bob. One can notice that in this limit none of the probabili-
ties �60a�–�60d� depend on the relative configuration of di-
rections a and b but only on their configuration with respect
to direction of the momentum n. Figure 5 illustrates the de-
pendence of probabilities �60a�–�60d� on scalar products a ·n
and b ·n.

Nonrelativistic limit. Now in the nonrelativistic limit the
probabilities are

P±± =
1

12
�1 − �a · b��2, �62a�

P±� =
1

12
�1 + �a · b��2, �62b�
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FIG. 1. The plot shows the dependence of probabilities P�� in
the c.m. frame on x for a ·b=−1, a ·n=b ·n=0. The probabilities
P++ and P−− have a maximum equal to 3/8 for x=1 /2. Probabilities
P0± and P±0 vanish.
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FIG. 2. The plot shows the dependence of the correlation func-
tion Cab in the c.m. frame on x for a ·b=−1, a ·n=b ·n=0. The
function has maximum equal to 1 /
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FIG. 3. The plot shows the dependence of probabilities P�� in
the c.m. frame on x for a ·b=−1 /2, a ·n=b ·n=1 /2. The probabili-
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FIG. 4. The plot shows the dependence of the correlation func-
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P0± = P±0 =
1

6
�1 − �a · b�2� , �62c�

P00 =
1

3
�a · b�2, �62d�

and the correlation function reads

Cab = −
2

3
a · b . �63�

Let us note that in this limit probabilities and the correlation
function do not depend on the momentum k. One can also
easily check that in this case they are the same as calculated
in the framework of nonrelativistic quantum mechanics in
the singlet state

��� =
1

3

��1��− 1� − �0��0� + �− 1��1�� , �64�

where �1�, �0�, and �−1� are states with spin component along
the z axis equal to 1, 0, and −1, respectively.

VII. BELL-TYPE INEQUALITIES

The spin-1 system has three degrees of freedom, which
makes the full analysis of Bell inequalities much more diffi-
cult and subtle �see, e.g., Refs. �46–48��. In the present paper
we will show that at least for some Bell-type inequalities its

violation strongly depends on the particle momenta. More-
over we discuss inequality which is satisfied for the nonrel-
ativistic correlation function but is violated in the relativistic
case.

For spin-1
2 particles the most commonly discussed Bell-

type inequality is the Clauser-Horne-Shimony-Holt �CHSH�
inequality �50�:

�Cab − Cad� + �Ccb + Ccd� � 2. �65�

In Eq. �65� Cab denotes the correlation function of spin pro-
jections on the directions a and b. One can easily check that
Eq. �65� is also valid for spin-1 particles. �see e.g., Ref. �51��.
The nonrelativistic correlation function �63� does not violate
the inequality �65�. Indeed, inserting Eq. �63� into Eq. �65�
we get

�a · b − a · d� + �c · b + c · d� � 3. �66�

The largest value of the left side of Eq. �66� is equal to 2
2,
therefore Eq. �66� holds in all configurations. In the relativ-
istic framework, inserting Eq. �59� into Eq. �65� we get the
following inequality:

1

2 + �1 + 2x�2 ���1 + 2x���a · b� − �a · d��

− 2x��a · n��b · n� − �a · n��d · n��� + ��1 + 2x���c · b�

+ �c · d�� − 2x��c · n��b · n� + �c · n��d · n��� � 1� .
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FIG. 5. Dependence of probabilities �60a�–�60d� on a ·n and b ·n in the ultrarelativistic limit.
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Our numerical simulations show that the largest value of left
side of Eq. �67� is equal to 1. Therefore the CHSH inequality
is not violated in the relativistic framework either.

Therefore for spin-1 particles we have to consider other
Bell-type inequalities. According to Mermin’s paper �49�, in
EPR-type experiments with a pair of spin-1 particles in the
singlet state the following inequality has to be satisfied:

Cab + Cbc + Cca � 1 �68�

in the theory which fulfills the assumptions of local realism.
This inequality, similar to the CHSH one, is not violated in
the nonrelativistic quantum mechanics. Indeed, inserting Eq.
�63� into Eq. �68� we get the inequality

−
2

3
�a · b + b · c + c · a� � 1 �69�

which is equivalent to

1

3
�3 − �a + b + c�2� � 1. �70�

The left side of Eq. �70� is largest when a+b+c=0. In this
case Eq. �70� is, of course, fulfilled. Therefore nonrelativistic
quantum mechanics does not violate the Bell-type inequality
�68�.

However, we show that the inequality �68� can be violated
in the relativistic framework. Inserting Eq. �59� into inequal-
ity �68� we get

2

2 + �1 + 2x�2 �− �1 + 2x��a · b + b · c + c · a� + 2x��a · n�

��b · n� + �b · n��c · n� + �c · n��a · n��� � 1. �71�

In the configuration a+b+c=0, a ·n=b ·n=c ·n=0, Eq. �71�
takes the form

3�1 + 2x�
2 + �1 + 2x�2 � 1, �72�

and one can easily check that this inequality is violated for
0�x�1 /2. �Let us note that the value x=0 corresponds to
the nonrelativistic limit for which the inequality is not vio-
lated�. The dependence of the left side of the inequality �72�
is shown in Fig. 6.

In Ref. �49� another Bell-type inequality, which is vio-
lated in the nonrelativistic case, is considered. This inequal-
ity contains not only a correlation function but also the av-
erage value of the difference of spin projections measured by
Alice and Bob and has the following form:

�
�,�

�� − ��P���a,b� � Cac + Cbc. �73�

We have calculated the probabilities P���a ,b� �Eqs.
�58a�–�58e�� therefore we can analyze the inequality �73�
also in the relativistic framework. Inserting Eqs. �58a�–�58e�
and �63� into Eq. �73� we obtain the inequality

2

2 + �1 + 2x�2�− �1 + 2x��a · b + b · c + c · a� + 2x��a · n�

��b · n� + �b · n��c · n� + �c · n��a · n��

+
1

2
��a · b� + 2x�a · n��b · n��2� � 1. �74�

This inequality is stronger than Eq. �71�. Let us analyze the
inequality �74� in the configuration considered in Ref. �49�,
that is, let us assume that a, b, c are coplanar and a ·b
=cos��−2��, a ·c=b ·c=cos�� /2+��. Moreover let us as-
sume that a ·n=b ·n=c ·n=0. In this configuration �74� takes
the following form:

2�1 + 2x��2 sin � + cos�2��� + cos2�2��
2 + �1 + 2x�2 � 1. �75�

We have shown the dependence of the left side of Eq. �75�
on � for two chosen vales of x: x=0 corresponding to the
nonrelativistic case and x=1 /6 in Fig. 7.

We show the dependence of the left side of Eq. �75� on x
in Fig. 8. We have chosen �=2� /3 corresponding to the
configuration a+b+c=0 considered earlier. Summarizing,
our analysis shows that relativistic vector bosons violate Bell
inequalities more than nonrelativistic spin-1 particles and
that the degree of violation of the Bell inequality depends on
the particle momentum.

VIII. CONCLUSIONS

We have discussed joint probabilities and the correlation
function of two relativistic vector bosons in the framework
of quantum field theory. We have classified two-particle co-
variant states and defined the observables corresponding to
detectors measuring the spin of the particles with momenta
belonging to a given region of momentum space. Using this
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FIG. 6. The plot shows the dependence of the left side of in-
equality �72� on x. The plotted function has a maximum value equal
to 3
2 /4 for x= �
2−1� /2.
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formalism we have explicitly calculated the correlation func-
tion and the probabilities in the scalar state. We observed
strange behavior of the correlation function and the prob-
abilities. It appears that in the c.m. frame for the definite
configuration of the particles momenta and directions of the
spin projection measurements, the correlation function still
depends on the value of the particles momenta. Recall that
for two fermions the correlation function in the c.m. frame in
the singlet state does not depend on momentum �9�. Further-
more, in the bosonic case for fixed spin measurement direc-
tions, the correlation function �and the probabilities� can
have extrema for some finite values of the particles mo-
menta. This affects the degree of violation of Bell-type in-
equalities. We have discussed the Bell-type inequality �68�
which is fulfilled in the nonrelativistic limit but is violated in

some finite region of the particle momenta. We have also
shown that Bell-type inequality �73� which is violated for
nonrelativistic spin-1 particles in the relativistic case is vio-
lated more in some finite region of the particles momenta.
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APPENDIX: EXPLICIT FORM OF MATRICES
N��, M��, AND T��

The explicit form of matrices �52a�–�52c� is

N���q,�� =� 0
i

m
�q � ��T

−
i

m
�q � �� − i	ijkk + i�q � �q � ��T − �q � �� � qT

m�m + q0� �ij	 , �A1a�

M���q,�� =�
q2 − �� · q�2

m2

qT

m
�q0

m
−

�� · q�2

m�m + q0�
g� − �T� · q

m

q

m
�q0

m
−

�� · q�2

m�m + q0�
g� − �

� · q

m
1 − � � �T −

� · q

m�m + q0�
�� � qT + q � �T� + �1 −

�� · q�2

�m + q0�2�q � qT

m2
	 ,

�A1b�

T���q,�� =�
�� · q�2

m2

� · q

m
��T +

�� · q�qT

m�m + q0��
� · q

m
�� +

�� · q�q
m�m + q0�� � � �T +

� · q

m�m + q0�
�� � qT + q � �T� +

�� · q�2

m2�m + q0�2q � qT	 . �A1c�
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FIG. 7. The plot shows the dependence of the left side of the
inequality �75� on �. The value x=0 corresponds to the nonrelativ-
istic case. The plotted function has a maximum value equal to
3
2 /4 for x= �
2−1� /2.
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