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The mechanism underlying the substantial amplification of the high-order harmonics q�2K �K integer�
upon the addition of a weak seed extreme uv �XUV� field of harmonic frequency q� to a strong IR field of
frequency � is analyzed in the framework of the quantum-mechanical Floquet formalism and the semiclassical
recollision model. According to the Floquet analysis, the high-frequency field induces transitions between
several Floquet states and leads to the appearance of new dipole cross terms. The semiclassical recollision
model suggests that the origin of the enhancement lies in the time-dependent modulation of the ground
electronic state induced by the XUV field.
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Focusing intense linearly polarized monochromatic IR la-
ser pulses into a gas of atoms can lead to the emission of
high-energy photons with frequencies extending into the ex-
treme ultraviolet �XUV� and x-ray region by high-order har-
monic generation �HHG�. The HHG phenomenon stands as
one of the most promising methods of producing short at-
tosecond �as� pulses �1�.

The contamination of the strong IR field with a second
�2–4� or more �5–7� weak XUV fields has a dramatic effect
on the dynamical behavior of the electrons, and had drawn a
lot of attention in recent years. On the basis of the three-step
�recollision� model �8–10�, it had been argued that the role of
the XUV field is to switch the initial step in the generation of
high-order harmonics from tunnel ionization to the more ef-
ficient XUV single-photon ionization. This might explain the
improved macroscopic HHG signal obtained in experiments:
the XUV-assisted ionization increases the number of atoms
that participate in the HHG process and improves phase
matching �11�.

The effect at the single-atom level, however, is less clear.
It has been shown that the XUV photons control the timing
of ionization, and preferentially select certain quantum paths
of the electron �12�. While this effect may lead to the en-
hancement of the low-order harmonics in the plateau, it can-
not account for the large enhancement in the cutoff and be-
yond �Fig. 1�. A three-step-model classical analysis of HHG
suggests that the contribution of the XUV field to the kinetic
energy of the returning electron is negligible. The kinetic
energy of a classical free electron of charge e and mass m,
driven by a linearly polarized strong IR fundamental field of
frequency �, amplitude �1

in, and polarization ek �E1�t�
=ek�1

in cos��t�� is Ek�t�= p2�t� /2m. p�t�= �e�1
in /���sin��t�

−sin��ti�� is the momentum of the electron, and it has been
assumed that the electron is freed at time ti with zero mo-
mentum. The addition of a weak harmonic XUV field of
frequency q� �where q is a large integer� and amplitude
�q

in ��q
in��1

in� with the same polarization �Eq�t�
=ek�q

in cos�q�t�� adds a small correction to the momentum,
which is proportional to �q

in /q�. As a result, the correction to

the kinetic energy, which appears in the form of two addi-
tional terms, proportional to �q

in /q� and ��q
in /q��2, is negli-

gible. Thus, the additional XUV field will not affect the elec-
tron trajectories and will not contribute to their kinetic
energy. For this reason the relative phase between the two
fields does not play a role in the harmonic generation spectra
�HGS�, which is indeed verified in both classical analysis
and quantum-mechanical simulations �a small q, however,
will affect the dynamics differently �2,13��. In addition, as-
signing the electron a nonzero initial momentum to account
for the photoelectric effect will not increase its kinetic energy
upon recombination.

An illustrative time-dependent Schrödinger equation
�TDSE� simulation, however �Fig. 1�, shows an enhancement
of the cutoff harmonics and the harmonics q�2K �K integer�
upon addition of a weak XUV field to the strong IR field.
Moreover, the HGS possesses certain symmetries: with re-
spect to its center at harmonic q, the distribution of harmon-
ics of the enhanced part of the spectrum �harmonics that have
been produced only due to the addition of the XUV field� is
symmetric with respect to q and remains almost invariant
upon variation of q. This suggests that, despite the fact that
the additional weak XUV field does not affect the electron
trajectories, it does affect the recombination process. As will
be shown later, the XUV field induces periodic modulations
to the remaining ground electronic state, with the same fre-
quency as the one of the XUV field. The returning electronic
wave packet recombines with this modulated ground state to
emit new harmonics. The purpose of this Rapid Communi-
cation is to reveal this mechanism which is responsible for
the amplification phenomena due to the inclusion of the
weak XUV field and to prove that the enhancement is a
robust single-atom phenomenon. The mechanism could sug-
gest new types of HHG experiments. It is not limited to the
description of the self-occurring case in monochromatic
HHG experiments where XUV radiation, generated by the
leading edge of the IR pulse, copropagates with the IR field
to form a bichromatic driver field in the last part of the me-
dium �thus leading to the extension of the cutoff energy in
real experiments as compared to single-atom calculations�.
In cases where the XUV field saturates, it might be useful to
add it externally. For example, He is known to produce
higher harmonics than Ar. Hence, the support of the HGS
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obtained from Ar can be dramatically extended by illuminat-
ing the Ar with a high-order harmonic obtained from He
�which is absent in the Ar HGS� in addition to the strong IR
field.

In order to reveal the enhancement mechanism due to the
inclusion of the weak XUV field, we study the dynamics of a
single active electron in an atom described by the field-free
Hamiltonian H0�r� subjected to a long pulse of the IR field
E1�t� in the length gauge and under the dipole approxima-
tion. The long pulse evolves the system adiabatically �14�
from the initial ground state of the field-free Hamiltonian
��1�r�� to a single resonance Floquet eigenstate ��1

�0��r , t�� of
Eq. �1� which describes the entire dynamics of the system
�15�. A formalism of time-independent perturbation theory is
applicable since the time t may be treated as an additional
coordinate �16,17�. In the following, all the parameters
m , m� , n , n� , M , K denote integers ��Z�.

HF
�0��r,t��� j,m

�0� �r,t�� = � j,m
�0� �� j,m

�0� �r,t�� , �1�

where HF
�0��r , t�=H0�r�−er ·E1�t�− i�� /�t is the Floquet

Hamiltonian. The indices �j ,m� label the eigenstates j within
any given Brillouin zone m and r describes the internal de-
grees of freedom. The Floquet eigenfunctions of this opera-
tor satisfy the c-product inner product �18,19� �written in the
usual Dirac notation� �� j,m

�0� �r , t� ��
j�,m�
�0� �r , t��r,t=	 j j�	mm� and

form a complete set. Floquet eigenfunctions that lie within
the mth Brillouin zone may be defined as �� j,m

�0� �r , t��
��� j

�0��r , t��ei�mt and �� j,m
�0� �r , t����� j

�0��r , t��e−i�mt with ener-

gies � j,m
�0� �� j

�0�+m��. The bra and ket Floquet eigenfunc-
tions are periodic with period T�2
 /� and can therefore be
decomposed as a Fourier sum �� j

�0��r , t��=	n�� j,n
�0��r��ei�nt

and �� j
�0��r , t��=	n�� j,n

�0�*�r��e−i�nt. Note that the Fourier com-
ponents of the bra state are not complex conjugated �18�.

In order to calculate the HGS one may assume the Larmor
approximation �20� and analyze the time-dependent accel-
eration expectation value a1

�0��t����2 /�t2���1
�0��r , t��r��1

�0��r ,
t��r which is proportional to the emitted field. The accelera-
tion in energy space is given by the Fourier transform
a1

�0����= �1 /T�
0
Tdt a1

�0��t�e−i�t. Exploring only frequencies
that are integer multiples of � ��=M� �M �Z��, and using
the property �1 /T�
0

Tdt e−i�nt=	n,0, the expression obtained is
a1

�0��M��=−�2M2	n��1,n
�0�*�r��r��1,n+M

�0� �r��r. It can be shown
to be nonvanishing only for integer odd values of M, which
is a well-known feature of monochromatic HHG �21�.

Suppose the weak XUV field Eq�t� is added. A new Flo-
quet problem is obtained, which could be described by the
Floquet Hamiltonian HF

new�r , t��HF
�0��r , t�+V�r , t�, where

the additional term V�r , t�=−er ·Eq�t� could be treated as a
perturbation. Time-independent first-order perturbation
theory may be used to get an approximate solution for the
Floquet Hamiltonian HF

new�r , t� as

��1
new�r,t�� = ��1

�0��r,t�� + 	
�j�,m����1,0�

c1
j�,m��q��� j�

�0��r,t��ei�m�t,

�2�

where the coefficients c1
j�,m��q� are given by

c1
j�,m��q� = −

1

2
e�q

inek · 	
n

�� j�,n
�0�*�r��r��1,n+m�−q

�0� �r��r + �� j�,n
�0�*�r��r��1,n+m�+q

�0� �r��r

�1
�0� − � j�

�0� − m���
. �3�
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FIG. 1. �Color online� HGS obtained from a one-dimensional �1D� model Hamiltonian of Xe atom irradiated by a 50-oscillation
sine-square pulse of bichromatic laser field composed of a strong laser field of frequency � �=800 nm� and amplitude �1

in �I1
in�4.3

�1013 W /cm2� and a weak field of frequency q� and amplitude �q
in �Iq

in�3.5�108 W /cm2� for different values of q: q=25 �solid red �dark
gray� line�, 37 �dotted green �bright gray� line�, and 52 �solid blue �dark gray� line�. HGS in the absence of the XUV field is shown in the
dotted black �bright gray� line where the position of the cutoff is at the 15th harmonic. The harmonics above the 29th harmonic are enhanced
in the addition of the XUV field, despite its small intensity. In addition, with respect to its center q, the distribution of the new harmonics
in the HGS is symmetric �i.e., for q=37, ��33�����41��, etc.� and upon variation of q it shifts but remains almost invariant.
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Using this solution the time-dependent acceleration expectation value a1
new�t����2 /�t2���1

new�r , t��r��1
new�r , t��r can be calcu-

lated. Keeping terms up to first order in �q
in, the following expression for the acceleration in the frequency domain is obtained:

a1
new�M�� = a1

�0��M�� − �2M2 	
�j�,m����1,0�

	
n

�c1
j�,m��q���1,n

�0�*�r��r�� j�,n−m�+M
�0� �r��r + c1

j�,m�*�q��� j�,n−m�−M
�0�* �r��r��1,n

�0��r��r� . �4�

This is the expression for the emitted HHG field. The HGS
���M����a1

new�M���2� has the same features as those pre-
sented in Fig. 1 �see �22��. The weak perturbative XUV field
shifts the HGS beyond the cutoff obtained by the IR field
alone. In the Floquet formalism presented here the origin of
the HHG enhancement phenomenon lies in the interferences
between the ground and excited Floquet states. The HGS is
modified due to the new dipole cross terms introduced by the
weak XUV field.

The features in the HGS could also be explained in terms
of the recollision model. It was shown that the additional
weak XUV field does not affect the electron trajectories, i.e.,
it does not modify the kinetic energy of the recolliding elec-
tron. According to the findings of the numerical simulation it
must, however, affect the recombination process. To see this
we turn to the semiclassical recollision model �8�, where the
electronic wave function at the event of recombination could
be described as a sum of the following continuum and bound
parts. Under the strong field approximation the returning
continuum part in the direction of the polarization ek �which
we take as the x direction from now on for simpli-
city� is a superposition of plane waves �c

� �x , t�
= �1 /2
�
−�

� dk�̃c�k , t�ei�kx−�Ek/��t� where k=kex �k= �k � � is
the momentum of the electron, Ek��2k2 /2m is the usual

dispersion relation, and �̃c�k , t� are expansion coefficients
which weakly depend on time. It is assumed that the con-
tinuum wave packet �c�r , t� is separable in the x coordinate
and the two other lateral coordinates such that �c�r , t�
=�c

� �x , t��c
��y ,z , t�. It is assumed that the ground state is

only slightly depleted during the tunnel ionization and that
due to the ac Stark effect the electron adiabatically follows
the instantaneous ground state of the potential, which is pe-
riodically modified by the IR and XUV fields. Since the ac
Stark corrections to the instantaneous energy and wave func-
tion are small for normal field intensities, the instantaneous
ground state could be approximated as �b�r , t���1�x
+�1

out cos��t�+�q
out cos�q�t� ,y ,z�e+�i/��Ipt �where Ip�0 and

�1�r� are the field-free ground state eigenvalue and eigen-
state, respectively�. Note that �b�r , t� approximately de-
scribes the resonance Floquet state ��1

new�r , t��. The quiver
amplitudes �1

out, �q
out of the spatial oscillations of the ground

state are of the order of �q
out=�q

in /q2�2, i.e., a tiny fraction of
a Bohr radius for normal laser intensities and/or large values
of q. The bound part may therefore be expanded in a
Taylor series as �b�r , t��e+�i/��Ipt��1�r�+ ��1

out cos��t�
+�q

out cos�q�t���� /�x��1�r��. Using the total wave function
at the event of recombination ��r , t�=�b�r , t�+�c�r , t�, the
time-dependent acceleration expectation value a�t�
��1 /m����r , t��−�V0�r����r , t��r could be calculated,

where V0�r� is the field-free potential. The dominant terms
that are responsible for the emission of radiation at frequen-
cies other than the incident frequencies � and q�
are the bound-continuum terms a�t��2 Re��b�r , t��
−�V0�r���c�r , t��r. After some algebra it can be realized that
the acceleration is composed of oscillating terms of the form

a�t� � − 2 Re
1

2

�

−�

�

dk��̃˜ IR�k�e−�i/���Ek+Ip�t

+ �̃
˜

XUV�k��1
oute−�i/���Ek+Ip����t

+ �̃
˜

XUV�k��q
oute−�i/���Ek+Ip�q���t� , �5�

where �̃
˜

IR�k���1 /m��̃c�k�
−�
� d3r �1�r��V0�r��c

��y ,z , t�eikx

and �̃
˜

XUV�k���1 /2m��̃c�k�
−�
� d3r���1�r� /�x��V0�r��c

��y ,
z , t�eikx, and the � sign in each of the last two terms stands
for summation over two terms each. The emitted field in a
single recollision event is composed of a continuum of these
frequencies.

It is therefore seen that, despite their small magnitude, the
periodic time-dependent modulations to the ground elec-
tronic state induced by the XUV weak field of frequency q�
are responsible for the appearance of the new harmonics
around q in the HGS via recombination with the returning
electronic wave packet. Each electron trajectory �plane
wave� with kinetic energy Ek recombines with the nucleus to
emit, with equal probabilities, one of three possible photons
with energies Ip+Ek, q��+ Ip+Ek, or q��− �Ip+Ek�. The
HGS in the presence of the IR field alone ��= Ip+Ek is now
shifted by the energy of the XUV photon �q�, and new
harmonics are also formed, such that their distribution about
the center q is symmetric. Also, with respect to the center q,
the distribution of the XUV-formed harmonics is invariant to
a change in the energy of the XUV photon �q�, since these
harmonics are created from the same set of electron trajec-
tories, which are characteristic of the IR field alone. When
each single recollision event is repeated every half cycle of
the IR field, integer harmonics q�2K are obtained in the
HGS. To see this, note that in two consecutive recollision
events at times tr and tr+T /2 the following symmetry holds:

�̃c�k , tr+T /2�= �̃c�−k , tr�. Consequently, since V0�r� and
�1�r� are symmetric functions for atoms �and ��1�r� /�x is

antisymmetric�, the following symmetry holds: �̃
˜

IR�k , tr

+T /2�=−�̃
˜

IR�−k , tr�. The acceleration that results from the
IR field therefore switches signs between subsequent recol-
lision events, which is the origin of the odd-selection rules.
However, the behavior of the coefficients resulting from the
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addition of the XUV field is different, �̃
˜

XUV�k , tr+T /2�
= + �̃

˜
XUV�−k , tr�. The acceleration that results from the addi-

tional XUV field does not switch signs between subsequent
recollision events and therefore yields even harmonics
around q.

The above suggestion could be verified by plotting the
time-frequency distribution of high-order harmonics �Fig. 2�
obtained from the time-dependent acceleration expectation
value whose spectra is given in Fig. 1 for q=52. In accor-

dance with the classical recollision model, different harmon-
ics are emitted repeatedly every half cycle, with the IR cutoff
harmonic �the 15th harmonic� emitted at times �0.2T
+K�0.5T�. At those instants, the 38th and 66th harmonics,
which are produced by the most energetic IR trajectory, are
also emitted. Each electron trajectory in general, which un-
der the IR field alone produces a harmonic �, generates upon
the addition of the XUV field two duplicated new harmonics
with energies q��+��, q��−��, and similar properties.
For example, the harmonics of orders 38–48 and 56–66 have
a “plateau” character �constant intensity�, like the plateau
harmonics 5–15. Moreover, as Eq. �5� predicts, the intensity
ratio of the enhanced-plateau harmonics and the IR-plateau
harmonics should be �for any of the values of q given in Fig.
1� ��q

out�2= ��q
in /q2�2�2�10−10, in agreement with the results

of Fig. 1.
In conclusion, we have shown that the addition of a weak

XUV harmonic field to a strong IR field leads to the exten-
sion of the cutoff in the HGS. The results of the quantum
analytical expressions, quantum numerical simulations, and
classical arguments suggest that the enhancement is a single-
atom phenomenon. The seed XUV field modulates the
ground state and affects the recombination process of all re-
turning trajectories, and leads to the generation of new har-
monics with structure well related to the HGS in the pres-
ence of the IR field alone. This amplification mechanism for
the generation of high-order harmonics might be used to en-
hance the yield of harmonics in HHG experiments.
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FIG. 2. �Color online� Top view �pink �dark gray� color—high
intensity, yellow �bright gray� color—low intensity� of the absolute
square of the Gabor-transformed acceleration expectation value
��1 /50T�
0

50Ta�t�e−�t − t0�2/�2
e−i�t, �=0.1T� of the quantum-

mechanical simulation described in Fig. 1 for q=52, as a function
of t0 and �.
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