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We clarify the internal relationship between the coherent destruction of tunneling �CDT� for a two-state
model and the dynamic localization �DL� for a one-dimensional tight-binding model, under the periodical
driving field. The time evolution of the tight-binding model is reproduced from that of the two-state model by
a mapping of equation of motion onto a set of SU�2� operators. It is shown that DL is effectively an infinitely
large dimensional representation of the CDT in the SU�2� operators. We also show that both of the CDT and
the DL can be interpreted as a result of destructive interference in repeated Landau-Zener level crossings.
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The coherent control of quantum dynamics of electrons
by a periodically oscillating external field has been one of
the subjects of considerable interest both in nanoscale solid
state physics �1�, and in molecular physics under laser fields
�2�. The interest is now extended to the trapped atoms in
Bose-Einstein condensates �3�, the localized spins in molecu-
lar magnets �4�, the Cooper pairs in Josephson qubits �5�, to
name only a few. It should be noted that, even when the
static properties of a quantum system is well known, its re-
sponse to an explicitly time-dependent driving field may be
nontrivial and, in some cases, poses a quite interesting prob-
lem. The phenomena known as the coherent destruction of
tunneling �CDT� �6� and dynamic localization �DL� �7� are
such typical nontrivial phenomena. Note that the CDT was
originally found by Grossmann et al. �6� for a model of
double-well potential, but it has been made clear that the
essential mechanism of the phenomenon can be well under-
stood by a two-state model which represents the quantum
dynamics between the lowest two states localized to each
well �8,9�.

In both CDT and DL, the initial localized quantum state
never diffuses under a periodic external field. In this aspect,
these phenomena are similar. However, there are also some
dissimilarities. The DL is an exact result obtained in an infi-
nite driven system and is valid irrespective of the magnitudes
of the transfer matrix element. On the other hand, the CDT is
derived approximately in an extreme case of a small value of
the transfer matrix element. In the CDT, the initial distribu-
tion is frozen, while in the DL, the distribution oscillates
around the initial value. Thus the relation between the CDT
and the DL has been controversial �10,11�.

In this Rapid Communication, we study the relationship
between these remarkable phenomena in a unified way. One
may study this problem by assuming a tight-binding model
with a finite length, and by observing the change of the be-
havior of the electron according to the change of the chain
length �11�. However, the equation of motion for a finite
linear chain model does not allow for the analytical solution,
so that the analysis inevitably becomes a numerical one. We
present here an analytical approach, which shed light upon
the internal relationship between the CDT and the DL. It will
be shown that the DL is an infinitely large dimensional rep-

resentation of a generalized version of the CDT, and they are
closely related each other.

Let the two-state system �1� and �2� be under an external
field and driven by the Hamiltonian,

H1�t� =
E�t�

2
��1��1� − �2��2�� + ���1��2� + �2��1�� , �1�

where � is a constant tunneling matrix element. The
Schrödinger equation ��=1�, id /dt ���t��=H1�t� ���t��, is
cast into the form

i
d

dt
a1�t� =

E�t�
2

a1�t� + �a2�t� ,

i
d

dt
a2�t� = −

E�t�
2

a2�t� + �a1�t� , �2�

in the representation ���t��=a1�t� �1�+a2�t� �2�. Although this
is the simplest equation of quantum dynamics, it cannot be
solved analytically for general functional forms of E�t�.
Grossmann and Hänggi �8� and Llorente and Plata �9�
pointed out that for a sinusoidal time dependence of the
driving field E�t�=E0 cos��t�, Eq. �2� is solved
approximately in the limit of rapid modulation ���.
By substituting a1�t�=exp�−i�E0 /2��sin��t��c1�t�, a2�t�
=exp�i�E0 /2��sin��t��c2�t�, Eq. �2� is rewritten as

i
d

dt
c1�t� = � exp�i�E0/��sin��t��c2�t� ,

i
d

dt
c2�t� = � exp�− i�E0/��sin��t��c1�t� . �3�

In the limit ���, the above equation is integrated approxi-
mately for a short period 2� /� by assuming that c1�t� and
c2�t� are constant, since the rapidly oscillating terms are
separated out as the phase factors. This is the inverse adia-
batic approximation. We obtain

i
d

d�
c1��� = �J0�E0/��c2��� ,
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i
d

d�
c2��� = �J0�E0/��c1��� , �4�

where � is a coarse-grained time by the unit of 2� /�, and
J0�E0 /�� is the zero order Bessel function,

J0�E0/�� �
�

2�
	

t

t+2�/�

exp�i�E0/��sin��u��du .

The above equation tells us that the tunneling parameter is
reduced effectively by the factor J0�E0 /��, and even van-
ishes in the case that E0 /� coincides with a zero of the
Bessel function. This is the essence of the coherent destruc-
tion of tunneling �CDT� �6�.

An infinite dimensional analog of the model �1� is given
by the Hamiltonian

H2�t� = E�t� 

n=−	

	

n�n��n� + 
 

n=−	

	

��n��n + 1� + �n + 1��n�� .

�5�

This is a model Hamiltonian for an electron in an infinite
one-dimensional chain under a time-dependent electric field,
where �n� represents the Wannier state at site n. Paradoxi-
cally, the Schrödinger equation id /dt ���t��=H2�t� ���t�� is
solved analytically for arbitrary functional forms of E�t� as
shown by Dunlap and Kenkre �7�. We show explicit time-
evolution operator with a Lie algebra. We define T0
=
n=−	

	 n �n��n�, T+=
n=−	
	 �n+1��n�, and T−=
n=−	

	 �n��n+1�
to obtain H2�t�=E�t�T0+
�T++T−�. These operators satisfies
the relations

�T0,T�� = � T�, �T+,T−� = 0. �6�

The solution of the Schrödinger equation is written as
���t��=U�t� ���0��, where U�t�=exp+�−i�0

t H2�s�ds�. By Fey-
nman’s disentangling theorem, U�t� is written in the form,

U�t� = e−iA�t�T0 exp+�− i
	
0

t

�T̃+�u� + T̃−�u��du ,

where A�t���0
t E�u�du and T̃��u��eiA�u�T0T�e−iA�u�T0

=e�iA�u�T�. Since T+ and T− are commutable, U�t� is rewrit-
ten as

U�t� = exp�− iA�t�T0�exp�− iB�t�� �7�

in which B�t�=
�R�t�T++R�t�*T−� with R�t�
=�0

t exp�iA�u��du. Since B�t� has the translational symmetry,
its eigenstates are given by the plane waves �k�=
neikn �n�
with the time-dependent eigenvalue k�t�=
�R�t�e−ik

+R*�t�eik�. Then the matrix element for the transition �n�
→ �m� is calculated by using the closure relation as �7�

�m�U�t��n� = exp�− iA�t�m + i�� +
�

2
�m − n��

� Jm−n„2
�R�t��… , �8�

where �=arg R�t� and Jn�x� is the nth order Bessel function.
For a specific choice E�t�=E0 cos��t�, and at each period of
the oscillation �=2�l /� �l=0,1 ,2 , . . . �, we find A���=0 and

R���=�J0�E0 /��, and the transition probability is given by

��m�U����n��2 = Jm−n
2

„2�
�J0�E0/���… . �9�

This should be compared with the value Jm−n
2 �2�
� which

corresponds to the case without external field. Equation �9�
indicates that the oscillating external field generally reduces
the effective transfer by the factor J0�E0 /��. Especially, if
E0 /� coincides with a zero of J0�x�, the probability to find
the electron at site m��n� oscillates temporally and becomes
zero, while that to find it at the original site n becomes unity
at each period 2� /�. This is the dynamic localization �DL�
�7�.

It is clear that the integrability of the Schrödinger equa-
tion for Eq. �5� rests upon the commutativity of T+ and T−.
On the other hand, for the two-state model �1�, we can define
the analogous operators, S0= 1

2 ��1��1 �−�2��2 � �, S+= �1��2�,
and S−= �2��1�, to obtain H1�t�=E�t�S0+��S++S−�. These op-
erators, however, satisfy a true SU�2� Lie algebra,

�S0,S�� = � S�, �S+,S−� = 2S0. �10�

These are uncommutable relations and the time-evolution
operator cannot be decomposed in general.

Let us discuss the relations between the dynamics of CDT
and DL. We consider the following bosonic representation
for Eq. �1� with Schwinger bosons:

H3�t� =
E�t�

2
�b1

†b1 − b2
†b2� + ��b1

†b2 + b2
†b1� , �11�

where bi satisfies the commutation relation of independent
bosons, �bi ,bj

†�=�i,j. The Heisenberg equation for b1
† and b2

†

is given by

i
d

dt
b1

†�t� = −
E�t�

2
b1

†�t� − �b2
†�t� ,

i
d

dt
b2

†�t� =
E�t�

2
b2

†�t� − �b1
†�t� , �12�

which is equivalent to Eq. �2� by the replacement bi
†�t� by

ai�t�. The solution of Eq. �12� with the initial conditions,
b1

†�0�=b1
† and b2

†�0�=b2
†, is generally written as

�b1
†�t�

b2
†�t�

 = Ub�t��b1
†

b2
†  ,

Ub�t� = � � �

− �* �*  , �13�

where � and � are time-dependent complex numbers satis-
fying ���2+ ���2=1. The point is that if the two-state dynam-
ics described by Eq. �2� is solved somehow, it can be mapped
onto the solution for Eq. �12� and we obtain a class of solu-
tions for state vectors in higher dimensional representation
spaces of SU�2�. Recently, Pokrovsky and Sinitsyn �12� uti-
lized the same argument to derive a class of exact formulas
describing the nonadiabatic transitions for a model of mul-
tiple level crossings.
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Let us define the basis states designated by the boson
numbers,

��� = �p,q� =
1

�p ! q!
b1

†pb2
†q�vac� , �14�

where �vac� is the vacuum state of the bosons. The total
boson number is a constant of motion. We fix p+q=2N,
and define the site index n by n��p−q� /2. The basis
states are classified as �n�= �N+n ,N−n� , �n=−N ,−N
+1, . . . ,0 ,1 , . . . ,N�. The nonzero off-diagonal matrix ele-
ments are then given by �n+1 �H3 �n�=���N+n+1��N−n�. If
we set �=
 /N, we have a 2N+1-site linear chain model as a
representation of the SU�2� Hamiltonian,

H3�t� = E�t� 

n=−N

N

n�n��n� + 
 

n=−N

N−1

fn��n + 1��n� + �n��n + 1�� ,

�15�

in which fn=��1+ n+1
N

��1− n
N

�. Also in the sector p+q=2N
−1, an analogous expression is obtained. Specifically, for
p+q=1, the two-state model H1�t� is recovered. An impor-
tant observation here is that in the limit N→	 with fixed n,
the tight-binding model with an infinite chain H2�t� is also
recovered since fn→1. The temporal behavior of the wave
function for the Hamiltonian �15� approaches to that for Eq.
�5� asymptotically in this limt. Thus the CDT in Ub�t� can be
connected to the DL in the wave functions for the Hamil-
tonian �15�.

We now study the time-evolution operator for the wave
function, V�t�, which satisfies ���t��=V�t� ���. Once explicit
matrix elements in Ub�t� are obtained, one obtains a class of
time evolutions for the driven system �15�. The wave func-
tion ���t�� is given with Ub�t� as

���t�� =
1

�p ! q!
��*b1

† − �b2
†�p��*b1

† + �b2
†�q�vac� . �16�

By expanding the right-hand side, and rearranging the terms
proportional to b1

†N+mb2
†N−m, we find the transition amplitude

for �n�→ �m�,

�m�V�t��n� =��N + m� ! �N − m�!
�N + n� ! �N − n�!

�*n+m�*m−n

� 

r=rm

rM �N + n

r
� N − n

N − n − r


� ���2�N−m−r��− ���2�r, �17�

where the summation over r runs from rm=max�0,n−m� to
rM =min�N+n ,N−m�. This is rewritten as

�m�V�t��n� =��N + m� ! �N − m�!
�N + n� ! �N − n�!

�*m+n�*m−nPN−m
m−n,m+n�x� ,

�18�

where x=2 ���2−1, and PN−m
m−n,m+n�x� is Jacobi’s polynomial

�13� defined as

Pn
�a,b��x� =

1

2n

r=0

n �n + a

n − r
�n + b

r
�x − 1�r�x + 1�n−r.

This expression of V�t� is valid in the region m−n�0,
m+n�0. In other regions, �m �V�t� �n� is given by the re-
placement; m→−n, n→−m, �*→� for m−n�0, m+n�0,
m→n, n→m, �*→−� for m−n�0, m+n�0, and m→
−m, n→−n�*→�, �*→� for m−n�0, m+n�0.

Now set E�t� to a sinusoidal modulation, E�t�
=E0 cos��t� with �=
 /N. The condition for the rapid modu-
lation limit ��� is satisfied for Eq. �12� in the limit N�1,
and it is solved just the same way as the corresponding equa-
tion for the c numbers �2�. We obtain

���� = exp�i
E0

2�
sin ���cos�


N
J0�E0/��� ,

���� = i exp�i
E0

2�
sin ���sin�


N
J0�E0/��� . �19�

Note that the time � is coarse grained by the unit 2� /�.
The following formula is easily proved by using Stirling’s

formula �14�,

lim
N→	

N−aPN
�a,b��1 −

z2

2N2 = � z

2
−a

Ja��z�� . �20�

Then, inserting Eq. �19� into Eq. �18�, and noting that
x=cos�2
J0�E0 /��� /N�, we obtain, in the limit N→	,

�m�V����n� = exp�i
�

2
�m − n�Jm−n„2
��J0�E0/���… .

�21�

This is exactly the same as the formula �8� at the time
t=2�l /� �l=0,1 ,2 , . . . �, including the phase factor. Espe-
cially, when E0 /� coincides with a zero of J0�E0 /��, the
CDT occurs in Ub�t�, while the DL occurs in V�t�. Thus it is
shown that the DL is an infinitely large dimensional repre-
sentation of a generalized version of the CDT.

One of the special cases of a class of the Hamiltonian �1�
that allows the exact solution is the Landau-Zener model
�15,16� E�t�=vt. The solution is written in terms of Weber
functions, and the transition probability from one branch to
another at the level-crossing is given by the celebrated
Landau-Zener formula �15,16�. One of the present authors
�17� pointed out that CDT can be regarded as a result of
destructive interference between the transition paths for re-
peated Landau-Zener level crossings. The above result sug-
gests the possibility to extend this interpretation to the DL. In
the case E�t�=vt�v�0�, the transition matrix elements with-
out dynamical phases are given by

� = �P, � = − �1 − Pei�, �22�

where P=exp�−2��� is the Landau-Zener nonadiabatic tran-
sition probability with �=
2 / �N2v�, and � is the Stokes
phase given by �=� /4+arg ��1− i��+��ln �−1� in which
��z� is the � function. The transfer matrix for the two-state
Landau-Zener model can be mapped onto the 2N+1-site rep-
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resentation S as before. Noting that, in the limit N�1,
�2�1−2�� and ��−�2��ei�/4, we find, using Eq. �20�, for
the matrix element �m �S �n� at the crossing

�m�S�n� = exp�− i
�

4
�m − n��Jm−n�2
�2�/v� . �23�

This formula has been obtained by Pokrovsky and Sinitsyn
�18�. It is also derived by the technique used to obtain exact
formula equation �8�, as it should. We only need to set E�t�
=vt, take the initial time at −	, and set t→	.

For a repeated crossings of the two-state model driven by
E�t�=E0 cos��t�, and in the case that E0 is much larger than
� and �, we can approximately decompose the whole pro-
cess into sudden transitions at level crossings and the free
propagation between them �17�. The velocity of energy
change v is given by the value estimated at the crossings,
v=E0�. This is also mapped onto the �2N+1�-dimensional
representation. Thus, for a double crossing within a period of
the oscillation, say at t1=� /2� and t2=3� /2�, we have the
transition amplitude �m �T �n� from �n� to �m� in the limit
N→	 as a sum of all contribution from the intermediate
states,

�m�T�n� = 

l=−	

	

�m�S�l�e−i�l�l�ST�n� , �24�

where ST is the transpose of S, and ���t1
t2dtE0 cos��t�

=2E0 /�. The summation is carried out exactly by using
Graf’s formula �19�,



m=−	

	

J�+m�z�Jm���eim�

= J���z2 + �2 − 2z� cos ��� z − �e−i�

z − �ei� ��/2

,

valid for real numbers z and �. The transition probability is
thus obtained as

��m�T�n��2 = Jm−n
2 �2
�2�/�E0 sin�E0

�
+

�

4
2�

�
� . �25�

If one notices the asymptotic formula J0�x���2 /�x sin�x
+ �� /4�� for x�1, it can be seen that the formula �9� agrees
at �=2� /� with the above one in the limit E0 /��1. The
phase factor � /4 is nothing but the Stokes phase at the level
crossing in the diabatic limit. Thus it is revealed that, in the
level of the two-state model, the CDT is a result of interfer-
ence between the two intermediate transition paths, while in
its infinitely large dimensional representation, the DL is a
result of interference between infinite number of intermedi-
ate transition paths.
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