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Focusing properties of near-field time reversal
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A time-reversal mirror (TRM) is a plane apparatus that generates the time symmetric of a wave produced by
an initial source. Here we look for the conditions to obtain subwavelength focusing when the initial source is
in the near field of the TRM and the propagating medium is homogeneous and isotropic. Three variants of
TRM are studied: TRM made of monopoles, dipoles, or both of them. The analysis is performed in terms of
evanescent and propagative waves. We conclude that only the dipole-TRM leads to subwavelength focusing.
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I. INTRODUCTION

In classical wave imaging, the resolution of any apparatus
(optical, acoustical, etc.) cannot be better than half the wave-
length. This limitation is due to the fact that subwavelength
details are carried by evanescent waves, which decrease ex-
ponentially with the propagation distance and usually do not
reach the imaging system. As a consequence, the subwave-
length details are lost.

To overcome this limitation, near-field spectroscopy tech-
niques have been developed for surface imaging [1]. Basi-
cally, a single subwavelength scatterer, which is very close to
the surface, locally converts the evanescent waves into
propagative ones. Scanning this scatterer across the surface
allows a far-field reconstruction of the near-field image.
More recently, the concept of superlens has been proposed
for subwavelength imaging [2]. These superlenses are made
of a slab of left-handed material [3]. In such a material both
the permittivity and the permeability are negative, the index
of refraction equals —1, and the evanescent components are
exponentially amplified within the slab’s thickness [4].

Time reversal has been proposed to focus a wave field
below the half wavelength limit. The time-reversal technique
is well known in acoustics and has led to a number of appli-
cations [5]. A focal spot as small as one-thirtieth of a wave-
length has been reported when a time-reversal mirror (TRM)
backpropagates a wave inside a microstructured medium. In
such a medium, the propagative waves are converted back
into evanescent components [6] and subwavelength focusing
is achieved. As the resolution is due to the microstructured
medium, the TRM can be in the far field of the initial source
without losing the subwavelength focusing.

Contrary to microstructured media, the TRM has to be in
the near field of the initial source in a homogeneous medium
in order to get subwavelength focusing. Recently, experi-
mental results in such a configuration have been reported in
acoustics [7]. Here we propose a systematic approach of
near-field time-reversal focusing in homogeneous media. We
introduce three species of TRM: The perfect one, the dipole
one, and the monopole one. In each case, to obtain the fo-
cusing property of the TRM, we explicitly write the two-
dimensional Fourier transform of the time-reversed field. The
results of this study are rather surprising: A perfect TRM will
never focus a wave on a subwavelength spot size even if the
TRM is infinitely close from the initial source. We show that

1050-2947/2007/76(6)/065801(4)

065801-1

PACS number(s): 42.25.Fx, 03.50.—z, 02.30.Nw, 43.20.+¢

a subwavelength focal spot can only be obtained with the
dipole TRM.

II. TIME-REVERSAL BASICS

Let us introduce a Cartesian coordinate system Oxyz.
During the first step of the time-reversal operation, a distri-
bution of sources included in the plane Oxy emits a wave.
For simplicity, we deal with monochromatic sources of com-
plex amplitude. The time dependent expressions can be de-
duced by an inverse Fourier transform. The phase and the
amplitude of the wave field (¢) and its first normal deriva-
tive (d,¢) are measured on each point of two infinite planes.
These two planes are parallel to the x,y plane at the distance
d in the positive and negative z directions, respectively. Dur-
ing the second step of time reversal, these signals are flipped
in time, i.e., phase conjugated at each frequency and then
reemitted from these planes. It has been shown [8] that the
time-reversal principle is based on the Green’s theorem.
Consequently a perfect TRM contains both monopole and
dipole sources. The axis of the dipoles are perpendicular to
the TRM plane. The monopole sources emit the phase con-
jugated normal derivative signals and the dipole sources emit
the phase conjugated signals. The analytical expression of
the field ¢rgp created by two such perfect TRM is

brrp(xy,2)= 2 [G(x = x0,y = Y0,2 = 20)

zp=—d,+d
X 0, " (x0,¥0,20) = & (x0,¥0-20) 3, G (x = X,y
= 0,2 = 20) Jdxdyy, (1)

where G is the Green’s function. A two-dimensional Fourier
transform over x and y variables yields

d)l"R/P(kxaky’Z) = Z G(kxa ky,Z - ZO)(?nd)*(kx’ky’ZO)

zp=—d,+d
- ¢*(kx’ kya Z()) &nG(kx’ ky9Z - Z()) . (2)

From a practical point of view, it is very difficult to perform
such an ideal time reversal. Usually, the same device is used
as an emitter and a receiver (e.g., acoustic transducers, elec-
tromagnetic antennas, etc.). Moreover, most of the time,
these transceivers are reciprocal. That means, for instance,
when the emitting pattern of a monopole transceiver is om-
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nidirectional, the receiving one is also omnidirectional. This
property also stands for dipole transceivers. Consequently,
the two-dimensional Fourier transform of the field ¢rrm
generated by a TRM that is only made of monopole trans-
ceivers is given by

brmlknky,2) = 2 Glhukyz—20) ¢ (kkyzo). (3)

zop=—d,+d

As for a TRM only made of dipole transceivers, the Fourier
transform of the field ¢rgr/p leads to

(ﬁTR/D(kx’ky’Z) = E &nG(kx’kyZ - ZO)an¢*(kx?ky’ZO) .

z0=—d,+d

(4)

Note that the subscripts “TR/P,” “TR/M,” and “TR/D” stand
for perfect, monopolar, and dipolar time reversal, respec-
tively.

II1. POINTLIKE INITIAL SOURCE

From now on, we assume that the initial source is point-
like at position O. In other words, the source distribution
equals —8(x,y,z). As a result, the field ¢ is equal to the
Green’s function. In order to calculate Egs. (2)-(4), we first
work out the analytical expression of the two-dimensional
Fourier transform of the Green’s function. The Green’s func-
tion is the solution of the Helmoltz equation with a source
term,

(V2 + 0* —iwe)G(x,y,z) = — 8(x,y,2). (5)

Because we only deal with homogeneous propagation media,
the wave speed is set to 1 without loss of generality. A weak
attenuation in the propagation medium is considered by add-
ing the term —iew. The attenuation coefficient € will be
larger than zero only when the case of the monopole TRM
will be considered. Indeed, we shall see that this attenuation
coefficient is needed in order to regularize the mathematical
expression of the time-reversed field. The expression of the
two-dimensional Fourier transform over (x,y) coordinates of
G is given by

1 exp(— VA — 0* + iwelz])

G(ky,z) = , (6)

2 \/kﬁ -’ +iwe

where  k :\e"k2,+k§. Introducing «, such that «a
:\s”kﬁ—w2+iwe, the expressions of the fields given by Egs.
(2)—(4) become

Ima
drrip(kyky,z) = ﬁexp(— 2d Rea | )cosh(a,z), (7)
L
cosh(a, z)
(bTR/M(kmkysZ) =+ eXp(_ 2d ReaL)—lzv (8)
2|“L|
cosh(a, z)
¢TR/D(kx’ky9Z) == exp(_ Zd ReaL)Tia (9)

where Re and Im refer to the real and the imaginary parts of
the argument, respectively. Similar expressions are worked
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FIG. 1. Time-reversed fields along the z axis [(a) and (c)]and
along the x axis [(b) and (d)]. The distance between the TRM equals
two wavelengths (d=1) for subplots (a) and (b). The distance is 0.1
wavelength (d=0.05) for subplots (c) and (d). Here the time-
reversal method is the perfect one (see text). The X marks are
obtained by numerical integration of Eq. (10) and the continuous
lines result from the analytical expression (14).

out in [9] where the aim is to study the behavior of time-
reversal mirrors mounted in soft or rigid planar baffle. But no
attention is paid to the time-reversal properties when the
point source is close to the time-reversal mirror.

Finally, an inverse Fourier transform is performed that
leads to the spatial dependence of the fields between the TR

e’}

d(x,y,2) = ZL f JolkiNx? + y?) plky,2)kydky.  (10)
™)

We have all the mathematical tools to study the time-
reversed fields in terms of evanescent and propagating com-
ponents for the three species of TRM.

A. Perfect time reversal

From Eq. (7), we deduce that ¢y p is equal to zero for the
evanescent components because « is real when k> w. As a
consequence, the perfect time-reversal mirror cannot gener-
ate subwavelength details even when it is infinitely close to
the original source point. This is confirmed in Fig. 1 where
the field created by a perfect TRM is plotted. Introducing the
normal wave vector k, (a, =ik, ), the expression of ¢drgp
when k< w becomes

%R/P(kx’kysz) = lCOSIE—ZkL) (1 1)

1

This last expression can be written in terms of the imaginary
part of the two-dimensional Fourier transform of the Green’s
function,

d)TR/P(sz kya Z) =-2i ImG(kx’ky’ Z) . (12)

Doing a two-dimensional inverse Fourier transform, it
readily becomes

d’TR/P(x’y’Z) == 2l ImG(x’y’Z)' (13)

Here we find a fundamental property that came up with the
first developments of the time-reversal theory [8] when the
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FIG. 2. Normalized time-reversed fields on the z axis (see Fig. 1
for details on the subplots). Here dipole transceivers time reverse
the field. The X marks are obtained by numerical integration of Eq.
(10) and the continuous lines result from Egs. (15) and (16).

field and its normal derivative are time reversed from a
closed surface. In our case, the two TR planes do not form a
closed surface but as the field vanishes at large distance and
the TR planes are boundless, it is natural to find Cassereau
and Fink’s result.

In a homogeneous medium, the Green’s function is given
by G(x,y,z)=e"“R/4mR, where R=\x’+y’>+z>. Conse-
quently, the time-reversed field is given by

sin(wR)
drrip(x,y,2) =i TR

(14)

Note that the focal spot size always equals half a wavelength
regardless of the distance between TR planes (and more gen-
erally of the geometry of the close surface).

B. Dipole time-reversal mirrors

We now perform an imperfect time reversal where we
assume that the TRM is only made of dipole transceivers
(see Fig. 2). In such a case, Eq. (9) shows that ¢rg,p is
different from zero for evanescent components (k> w).
From Egs. (9) and (10), the analytic expression of the field
along the z axis is calculated,

[cos(wz) + wz sin(wz) — 1]
2

d’TR/D(O,O,Z) = 4
Tz

.\ (2% +4d%)
47(z - 2d)*(z +2d)*

(15)

As for the field ¢ in the plane Oxy, only an approximate
expression can be derived,

R )Jl(ka) 16)

’ ’0 =~ 2+ ’
drp(X,Y,0) (w 2 4Rk,

where k,2n=w2+ 1/d*. To obtain this expression, we approxi-
mate exp(—2d Rea ) in Eq. (10) by a step function which
equals 1 when d Rea| <1 and 0 otherwise. This approxima-
tion gives rise to ripples in Fig. 1(c) because of the sharp
integral cutoff.
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When d> 1/ w, which means that the TRM is in the far
field of the source, the amplitude at the focus is given by
®?/87r and the spatial dependence of the focal spot in plane
Oxy is given by J,(wR)/2wR. These two quantities are inde-
pendent of the distance d, and the focusing is again diffrac-
tion limited. In the near-field limit (d < 1/w), k,,~1/d and
the width of the focal spot in plane Oxy is roughly equal to
2d, i.e., the distance between the two time-reversal mirror
planes [see Fig. 2(c)]. Moreover, the amplitude of the focus
is dominated by the evanescent components of the wave and
is equal to 1/16md>. Actually, the subwavelength focusing is
due to the directivity of the dipole transceivers. Indeed, due
to this directivity, the amplitude of the signal is higher when
the transceivers that are just in front of the source. Due to
transceiver reciprocity, the same effect occurs during emis-
sion of the phase conjugated field. This “geometrical” effect
explains the lateral subwavelength focusing.

In the next section, we show that a nonperfect TRM does
not necessarily imply subwavelength resolution.

C. Monopole time reversal

At first, looking at Eq. (8), we may think that the same
subwavelength focusing effect occurs for TRM containing
only monopoles. Indeed, the Fourier transform of ¢y con-
tains evanescent components. However, we shall see that the
focal spot size equals approximately half a wavelength in
this case.

At position O (x=y=z=0) and without considering dissi-
pation (a=0), the integration in Eq. (7) goes to infinity be-
cause of the singularity at k| =w/c. The physical meaning of
this divergence is the following: The monopole sources gen-
erate waves that decrease as the inverse of the distance. So a
monopole transceiver will produce at O a time-reversed field
which is inversely proportional to the square of the distance
between the transceiver’s position and O. Introducing R as
the distance between the transceiver and the z axis, the total
time-reversed field amplitude is  proportional to
27[R dR/(R*+d?). This integral diverges when the integra-
tion is performed between R=0 and R=% because the inte-
grand behaves for large distances as 1/R, giving a logarith-
mic singularity. Actually, one can show that the TR field
diverges not only at O but everywhere between the two
TRM. This divergence is due to the fact that the contribution
of monopoles included in an elementary ring with radius R
and thickness dR does not vanish as R increases. To “regu-
larize” the integral, we introduce a weak dissipation into the
propagation equation (£>0). The far contributions are there-
fore attenuated faster than 1/R and the TR field is finite. The
upper integration domain is now limited to about R=1/\we
because this distance is the attenuation length of the wave.
The relative amount of TR field generated by monopoles
farther than one wavelength from O is 1-2melw. If € is
small, the TR focal spot is mainly due to these far monopolar
transceivers and it is therefore diffraction limited even when
d<\ (see Fig. 3).

To obtain an approximate analytical ex,plession of the
field on the z axis, first we assume that dVwe<1, i.e., the
attenuation length is much larger than the distance between
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FIG. 3. Normalized time-reversed fields on the z axis (see Fig. 1
for details on the subplots). Here monopole transceivers time re-
verse the field. The X marks are obtained by numerical integration
of Eq. (10) and the continuous lines result from Egs. (li) and (18).
The plots are obtained with an attenuation length (1/Vwe) equal to
a 126.2 wavelength.

the TRM. Second, we introduce an angular frequency ()
which is chosen such that ywe< Q< 1/2d [11]. By dividing
the integral domain of Eq. (10) into four intervals [12], we
get for the time-reversed field on the z axis

Yrrm(0,0,2) = S%T{i’ﬂ— Ci(wz) + Ci(Qz) + Ei(Q[z + 2d])

+ Ei(Q[2d - 2], (17)

and the transverse focus pattern is given by
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Yrra(x..0) = JO;“’R) [iw+ 2 1n<9> + 2Ei(2Qd)} .
T

(18)

To obtain this latter expression, it is, moreover, assumed that
the main contribution for the spatial dependence of the field
inside plane Oxy comes from the transverse components
such that ky=w. In other words, we assume that the far trans-
ceivers only contribute to the focal spot, which is consistent
with d<< 1/vwe. In Fig. 3, we see that this approximation is
particularly valid when the distance between the two TRM is
small. Note that the angular frequency () has no physical
meaning; it is a sort of “hidden” variable that has been in-
troduced to obtain analytical expressions.

IV. CONCLUSION

As we have seen, near-field time reversal does not sys-
tematically imply subwavelength focusing. First, we have
shown that a “perfect” TRM generates the imaginary part of
the Green’s function of a homogeneous medium. In such a
medium, the imaginary part of the Green’s function does not
contain evanescent components. In other words, even when
the TRM is very close to the focal spot, the time-reversal
focusing is still diffraction limited. On the other hand, we
have shown that when using monopole-only TRM or dipole-
only TRM, the time-reversed field contains evanescent com-
ponents. Nevertheless, subwavelength focusing is only
achieved with a TRM made of dipole transceivers. Recently,
a subwavelength focusing inside a strongly heterogeneous
medium has been reported [10]. In such a case, the focus is
still given by the imaginary part of the Green’s function, but
the near-field scattering of the wave off the medium’s het-
erogeneities allows the Green’s function to fluctuate faster
than the wavelength.
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