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We used nonequilibrium many-body Green techniques for the time varying resonant phenomena in few-body
systems. By relating the transition energy shift and width to the self-energy and by applying the functional
variational techniques to the transition energy shift and width, the corresponding initial state resonant wave
functions are derived. Then we obtained time-dependent decaying state wave functions, evolving from these
initial states by solving the time-dependent Schrödinger equation for the decaying system numerically. Finally,
we observed the plausible time decaying behaviors of our model as predicted by real few-body systems.

DOI: 10.1103/PhysRevA.76.064102 PACS number�s�: 03.65.Db, 31.15.Pf, 31.15.Lc, 03.65.Nk

When we investigate multichannel scattering, we use one
of several different methods including distorted wave ap-
proximation, close coupling methods, and S-matrix and
R-matrix methods �1,2�. However, when we consider quasi-
bound states of the decaying processes, the above-mentioned
procedures are generally very complex to apply. Complex
coordinate techniques �3–9� have been developed for this
purpose which are simpler than the above-mentioned stan-
dard procedures, especially in the neighborhood of the reso-
nant energy ranges. Recently nonequilibrium Green function
methods �10� have been attempted for the noncollective reso-
nant processes of the model potential of � barrier to evaluate
the resonance parameters �11�.

In this Brief Report we apply these techniques to the same
model for the study of time-dependent behavior of the de-
caying system. For this purpose, we consider a few particle
system. However, when field quantization is applied, this
system is reduced to a corresponding single particle reso-
nance scattering system with bound states by introducing a
hypothetical model potential. Let ���r� be the initial wave
functions of decaying states. These states can be represented

using decaying state annihilation and creation operators F̂�

and F̂�
† , respectively. The bound state operators �̂� and �̂�

† ,
respectively, satisfy Bose commutation relations, ��̂� , �̂��
=0 and ��̂� , �̂�

†�=���. We now try to find a unitary transfor-

mation Ô which shifts the description of decaying states to
the bound state operators. The creation and annihilation op-
erators for the �th decaying state of quantum mechanical one
particle system are

F̂�
† =� dr ���r��̂†�r� and F̂� =� dr ��

*�r��̂�r� ,

where the field operators satisfy the Bose commutation rela-
tions. Then we define a unitary operator,

Ô��� = exp��B̂� ,

where B̂=���F̂�
†�̂�− �̂�

†F̂�� is an anti-Hermtian operator and
� is a real number to be determined. If we let �̂���� be the
transformed operator of an arbitrary operator of �̂�, then
after some manipulation for the derivative of the transformed
bound operator, the derivative of the transformed decaying

state operator, and using the initial conditions �̂��0�= �̂� and

�̂���0�=−F̂�, we obtain

�̂���� = �̂� cos � − F̂� sin � .

Let Ô be the transformation for �=� /2, �k�r� the normal-
ized free particle wave function with wave vector k, and
�̂k, �̂k

† the free particle annihilation and creation operators,
respectively. Then using the transformed field operator and
after some arrangement, we finally derive the Tani Hamil-
tonian which takes the bound states explicitly into consider-
ation �11�.

Next, using Liouvillian operator L̂, F̂� satisfies the
Heisenberg equations of motion,

i
�F̂��t�

�t
= �F̂��t�,Ĥ� = L̂F̂��t� . �1�

In this paper the usual traditional algebraic procedure is em-
ployed. Hence the Liouvillian Green function is finally ex-
pressed in terms of expectation values �in terms of real num-
bers� of decaying state operators,

G��, �t��,0 = − i�F̂��t�F̂�
†	, t � 0,

where

�F̂��t�F̂�
†	 = �eiĤtF̂�e−iĤtF̂�

†	 = �F̂�e−iĤtF̂�
†	 .

Hence the Liouvillian Green function is related to the persis-
tence amplitude which is the probability of finding the same
energy state �� at time t. There exists some linearly indepen-

dent operator basis such that the revolution of F̂��t� may be
expanded in terms of this basis,

L̂F̂� = �F̂�,Ĥ� = �
n

	���n�
̂n, �2�

where 	�� �n� are the complete matrix elements of the Liou-
villian operators with respect to the operator basis 
̂n. From
Eqs. �1� and �2�, and using the Laplace transformation, we

obtain transformed Green function, G̃�� ,z �� ,0�.
Let us assume that Green function G̃�� , t �� ,0� increases

less rapidly than exponentially as t approaches +�; then the

Laplace transforms of G̃�� ,z �� ,0� will be analytic in the

PHYSICAL REVIEW A 76, 064102 �2007�

1050-2947/2007/76�6�/064102�4� ©2007 The American Physical Society064102-1

http://dx.doi.org/10.1103/PhysRevA.76.064102


upper half complex energy plane. For a decaying system the

analytical continuation of G̃�� ,z �� ,0� into the lower half
complex energy plane will have a complex pole z�, which
becomes u� as the interaction vanishes. From the analytic

behavior of G̃�� ,z �� ,0� we can propose the following form
of Green functions:

G̃���,z��,0� =
iG���,0��,0�
z − u� − ���z�

,

where ���z� will be called the self-energy. Then after rear-
rangement we derive the self-energy through the second or-
der �10�,

�
�

�2�

�z� =� dk
	���k�	�k�n�

u� − 1/2k2 + i
.

By introducing function ��r� such that the above formula can
be represented in more practical form �10�,

�
�

�2�

�z� = −� dr ��
*�r��H�r� − u�����r�

−� dr ��
*�r���r����r�

+� dr� dr���
*�r���r�G��r,r����r�����r�� �3�

where

G��r,r�� =� dk
eik·�r−r��

�2��3�u� − 1
2k2�

.

The variation process is related to the least variation of trial
functions. If we extend this stabilization process to the exact
variational method with the functional derivative, we suggest
that the solutions obtained from this variational process cor-
responds to the resonance poles for a decaying system.

For our decaying system the functional is a complex val-
ued function of decaying state waves, ���r� and ��

*�r�,

z� − �����,��� = u� + ��
�2� − i�

�2� − �����,��� ,

where �� are Lagrange undetermined coefficients due to the
normalization of the resonance wave functions and ��� ,���
is the inner product of trial �th decaying state wave func-
tions. In this respect our decaying state wave functions are
different from Gamow-Siegert states which are non-
normalizable outgoing waves. Using Eq. �3�,

z� − �����,��� =� dr ��
*�r�H�r����r�

−� dr ��
*�r��H�r� − u�����r�

−� dr ��
*�r���r����r�

+� dr� dr� ��
*�r���r�G��r,r��

���r�����r�� − �����,��� .

Now we define the functional derivative

�F���
������

= lim
�−�0

1

�
�F��� , �4�

where �F���=F�����+����−����−F���. With atomic
units, m=�=e=1 and by letting

� =� dr� dr� ��
*�r���r�

�G��r,r��
�u�

��r�����r��,

��r� =� dr� G��r,r����r�����r�� ,

Eq. �4� will be finally written as

−
�1 + ��

2
�2���r� + ��r�����r� + ��r���r� = ��� − u�����r� .

We now apply the variational method to our model, � shell
potential. This potential can roughly be regarded as a model
potential for a particle tunneling out of a self-field created by
a metastable excited resonant atom. By considering a single
spinless boson particle tunneling out of the potential, b��r
−a�, where a ,b are positive real numbers, we evaluate the
S-state wave functions, ���r� �11�.

In order to derive the time-dependent resonant phenom-
ena, we recognize the time-dependent phenomena for our
decaying system are related mathematically to the initial
value problem of the time-dependent Schrödinger equation,

i
���r,t�

�t
+

�2 � ��r,t�
2

− b��r − a���r,t� = 0, �5�

with initial wave functions ��r� at t=0. This problem can in
principle be solved by using the stationary states of the
Hamiltonian

H�k = uk�k.

Then the formal solution to the problem is given by

��r,t� =� dk ��k�e−iukt�k�r� with ��k� = ��k,��r,0�	 ,

where ��r ,0� is the given initial wave function. This prob-
lem, however, is very inefficient for numerical computations
�12,13�. Hence we now try to solve Eq. �5� directly.

The solution of Eq. �5� may be found for all the space-
time coordinates such that r�R and t�0 in a certain region
R and boundary S. For the S states the wave functions are
depended on the radial coordinate only. Substituting ��r , t� /r
for ��r , t� in Eq. �5� becomes

���r,t�
�t

−
1

2

�2��r,t�
�r2 = 0, r � a,t � 0, �6�

with boundary conditions

��0,t� = 0 for t � 0,

BRIEF REPORTS PHYSICAL REVIEW A 76, 064102 �2007�

064102-2



���a + ,t�
�r

−
���a − ,t�

�r
= 2b��a,t� , �7�

and the initial condition �11�

��r,0� = �1�e�ik−��r − e−�ik−��r� for r � a ,

=�2e�ik−��r for r � a . �8�

The function ��r , t� is required to be continuous for r� �0,
+ � � and t�0. For any positive integer L and M let �Lj�t�
=��jh , t� , j=0,1 , . . . ,L , . . . ,M, where the following condi-
tions are required: Lh=a. The semidiscretization involves
representing �2��r , t� /�r2 at the points �jh , t� in terms of
� j�t� ,� j−1�t� and � j+1�t�. Substituting in Eq. �6� one obtains a
system of ordinary differential equations involving the de-
pendent variables �1�t� ,�2�t� , . . . ,�L−1�t� ,�L+1�t� , . . . ,
�M−1�t�. Thus, for example, if we let

�2� j�t�
�t2 


� j+1�t� + � j−1�t� − 2� j�t�
h2 ,

then we obtain, upon substitution in Eq. �6�, the system of
ordinary differential equations

d� j�t�
dt

= −
i

2

� j+1�t� + � j−1�t� − 2� j�t�
h2 . �9�

From Eqs. �7� and �8� we have

�0�t� = 0 �10�

and

� j�0� = �1�e�ik−��hj − e−�ik−��hj� for j � L ,

=�2e�ik−��hj for j � L . �11�

For j=L we obtain the wave function from Eq. �7�,

�L�t� =
1

2b
�� ���r,t�

�r
�

j=L+1
− � ���r,t�

�r
�

j=L−1
 �12�

where

� ���r,t�
�r

�
j=L+1

=
�L+2�t� − �L+1�t�

h

 � ���r,t�

�r
�

r=a+3h/2

and

� ���r,t�
�r

�
j=L−1



�L−1�t� − �L−2�t�

h
= � ���r,t�

�r
�

r=a−3h/2
.

Although we actually need �� /�r at j=L±1 in Eq. �12�,
these differ from the derivatives at j=L+3 /2 only by 0.01%.
This estimate was made by evaluating �2� /�r2 in terms of
�� /�t, using the Schrödinger equation. Equations �9�–�12�
are systems of initial value ordinary differential equations.
Let us consider the forward difference method

� j�t + �t� = � j�t� −
i�t

2h2 �� j+1�t� + � j−1�t� − 2� j�t�� .

Mesh ratio d is given by

d =
i�t

2h2 .

Since �0�t� is given for all t as well as �1�0� , ¯ ,�M�0�, and
�L��� is evaluated from Eq. �12�, then �1�2�t� ,�2�2�t�, etc.
We used this method with the condition �d � �1 /2 for stabil-
ity.

The numerical values of time-dependent wave functions
are evaluated and shown in Figs. 1 and 2 for b=1. The peak
shown in Fig. 1 appears around t=1.0, afterwards the sharp
shot decreases and the width widens substantially in a time
reverse manner against t=1.0 which is shown in Fig. 2. Here
we used interactive graphic technology to observe the peak
arising during the real time process by utilizing powerful
open GL under G�� �object oriented GNU C language� pro-
gram language environment in open SUSE Linux 10.2 oper-
ating system of 64 bit kernel. We retained less than 2% over-
all accuracy for the evaluation of the wave functions for the
lowest S states. Initially we discretized at each 0.1 interval,
then we obtained the corresponding second-order difference
equations with respect to time variable t. First we let �t
=0.1, then we let �t be a half of the previous �t. We ob-
tained the deviation of the magnitudes of the wave functions
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FIG. 1. Time-dependent phenomena for n=1 and b=1.
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FIG. 2. Time-dependent phenomena for n=1 and b=1.
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using these two different time steps at the same fixed time
for all the semidiscretization points of r, then we averaged
the relative differences of the absolute values of the wave
functions over these semidiscretization points. In case these
average relative difference became more than 2% we divided
the time steps into another half of the previous time interval
�t, and solved the corresponding time-dependent second-
order difference equation. Again the above procedure tested
whether the relative accuracy was within 2%. We repeated
these processes until the overall accuracy reached within 2%
up to 64 times. If after 64 times repetetion the overall accu-
racy did not fall within 2%, we reduced the distance interval,
h, to a half of the previous value, then we tried the above-
mentioned procedure again up to 64 times.

Finally, in the case for true single particle wave functions
of the lowest energy level of S states, the functions would be
concave toward the x axis everywhere and would not change
curvature from convex toward concave. However, our sys-
tem is actually an adaptation of interactive more than one
particle system by using the hypothetical model potential of
a three-dimensional � shell. Hence as shown in Fig. 1, even
at t=0, there seems to be a slightly different form of wave
shapes.

In conclusion, we solved time-dependent Schrödinger
wave equations for the decaying system. We realized that
after t=0.5 the probability of finding the particle inside the
potential is considerably less than that of the corresponding
initial decaying state. From then on there is no appreciable
change of the probability inside the potential up to the largest
time for which the solution was evaluated. This implies that
the particle initially inside the potential is leaking out rather
rapidly at early times and then less rapidly as time
progresses. Hence we calculated relatively small values of
time in order to observe the more apparent behavior of the

time-dependent phenomena. The results for the n=1 and b
=1 case are shown in Figs. 1 and 2. At t=0.2 the shape of the
wave function is similar to the initial state. This implies that
before t=0.2 there is no significant time-dependent phenom-
ena of the particle. After this time the shape of the wave
function becomes more complicated, and a small peak is
observed near r=1. A possible interpretation of this is that
the particle initially inside the potential barrier attempts to
tunnel out through the potential shell; however, the barrier is
repulsive at this time at this point, preventing the particle
from leaking out easily. This causes a time delay effect of the
particle insude the barrier, explaining the occurrence of the
peak near the repulsive potential barrier. As time progresses
the peak near r=1 grows higher and also the width decreases
correspondingly. Around t=1 this peak is highest and steep-
est. Afterwards the probability of finding the particle inside
the potential barrier becomes smaller and the peak also be-
comes smaller. After t=1.6 there is no appreciable peak ob-
servable and the magnitude of the wave function inside the
potential barrier becomes considerably smaller due to the
leak out of the particle through the potential. These observa-
tions predict that the decaying behaviors of our model case is
similar to those of typical few-body systems.

From the results of these calculations we finally conclude
that our nonequilibrium many-body Green function ap-
proaches will be applicable to the resonance behaviors of
real few particle systems beyond model cases. Compared
with other approaches, our methods may not be the simplest
and the most efficient way to the decaying problems. How-
ever, the merits of our Liouvillian Green techniques are more
algebraic in nature and adapted intrinsically far from equilib-
rium. Hence we expect that our procedure will be applicable
in the broader realms of resonance scattering phenomena in a
unifying way, at least in the conceptual view points.
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