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Generalized hyperboloid structures of polarization singularities
in Laguerre-Gaussian vector fields
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We present the propagation-dependent polarization vector fields by use of an isotropic microchip laser with
the longitudinal-transverse coupling and the entanglement of the polarization states. With the coherent super-
position of orthogonal circularly polarized vortex modes which are made up of two Laguerre-Gaussian modes
with different order, the experimental three-dimensional vector fields can be reconstructed analytically. From
the theoretical analyses, the generalized structures of singularities such as V points, C lines, and L surfaces can
be clearly demonstrated. Importantly, the projections of C lines on the transverse plane are found to form the

intriguing petal structures.
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I. INTRODUCTION

Singular optics which includes phase and polarization sin-
gularities has become an important topic in modern physics
to understand the physics of light [1,2]. Recently, a consid-
erable number of studies have been focused on experimental
and theoretical results of phase singularities in scalar fields,
known as wave front dislocations, such as optical vortices
[3], vortex lattices in superconductors [4], quantum and mi-
crowave billiards [5], quantum Hall effects [6], and linear
and nonlinear optics [7-9]. In addition to phase singularities
in scalar fields, there are two types of polarization singulari-
ties in vector fields of paraxial optical beams, known as wave
front disclinations, to be discussed: Vector singularities and
Stokes singularities [10]. Vector singularities (V points) are
stationary points at which the orientation of the electric vec-
tor of a linearly polarized vector field becomes undefined.
The importance of the vector singularities has been explored
in the optical coherent waves with the representation of spa-
tial structures and polarization states [11-14]. Recently, the
complicated V point structure has been studied from the low-
order [15] and high-order [16] space-dependent linearly po-
larized fields in transversely isotropic laser systems. How-
ever, the mapping of vector field singularities onto the scalar
field vortices leads to many new consequences [10].

The more general state of optical field with two orthogo-
nal components is elliptically polarized state which leads to
two special conditions of Stokes singularities: C lines, on
which the field is circularly polarized and the orientations of
the major and minor axes of the ellipse are undefined, and L
surfaces, on which the field is linearly polarized and the
handedness of the ellipse are undefined [17]. In paraxial op-
tics, C lines present as isolated points in the observation
plane and L surfaces present as continuous lines, L lines,
which separate regions of right-handed and left-handed po-
larization [18-20]. With the experimental results of micro-
waves [10] and optical waves [21-24], the importance of
polarization singularities of elliptically polarized fields has
been revealed.
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Recently, a diode-pumped microchip laser has been em-
ployed to generate the propagation-dependent polarization
vector fields with the longitudinal-transverse coupling and
the entanglement of the polarization states [25]. However,
the characteristics of polarization singularities are revealed
with the theoretical wave representation only in the condition
of single-ring wave pattern. In this work, we demonstrate the
general expression of the multiple structures of polarization
singularities embedded in the multiring vector wave patterns.
With the coherent superposition of orthogonal circularly po-
larized vortex modes composed of two Laguerre-Gaussian
(LG) modes with different order, the general structures of the
polarization singularities are systematically analyzed. The
theoretical analyses reveal that the projection of the C lines
on the transverse plane displays the intriguing petal struc-
tures. From the analytical results of the singularities, the po-
larization states of the experimental LG vector fields under
propagation can be clearly demonstrated.

II. EXPERIMENTAL SETUP AND RESULTS

In this experiment, the laser system was a diode-pumped
Nd:YVO, microchip laser and the resonator was formed by
a spherical mirror and a gain medium. The spherical mirror
was a 10 mm radius-of-curvature concave mirror with anti-
reflection coating at the pumping wavelength on the entrance
face (R<<0.2%), high-reflection coating at lasing wave-
length (R>99.8%), and high-transmission coating at the
pumping wavelength on the other surface (T>95%). The
gain medium was a 2.0 at. % Nd:YVO, crystal with the
length of 2 mm. The laser crystal was precisely cut along the
c axis for high-level transverse isotropy [26]. One planar
surface of the laser crystal was coated for antireflection at the
pumping and lasing wavelengths; the other surface was
coated to be an output coupler with the reflectivity of 99%.
The pump source was a 1 W 808 nm fiber-coupled laser di-
ode with a core diameter of 100 um and a numerical aper-
ture of 0.2. A focusing lens was used to reimage the pump
beam into the laser crystal. The pump spot radius was con-
trolled to be in the range 50-200 um. The effective cavity
length was set in the range 9.6—9.9 mm to form a nearly
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FIG. 1. (Color online) Experimental far-field transverse patterns
with different radial index p and azimuthal index I: (a) (p,l)
=(1,66); (b) (p,D)=(2,41); (c) (p,1)=(7,100).

hemispherical resonator, in which the fundamental cavity
mode size was approximately 20 wm. Since the pump-to-
mode size ratio was significantly greater than unity, a variety
of high-order transverse modes could be generated.

The pump power was controlled to be near lasing thresh-
old to maintain the single mode in the cavity to explore the
characteristic of polarization. To measure the far-field pat-
tern, the output beam was directly projected on a paper
screen at a distance of ~50 cm from the rear cavity mirror
and the scattered light was captured by a digital camera.
Figures 1(a)-1(c) show three experimental far-field trans-
verse patterns which are represented as flower modes with
different transverse radial index. Not only the single-ring but
also the multiring is the general transverse mode formed by
the propagation-dependent polarization states to prevail in
the laser cavity. The fundamental mode is not excited be-
cause the pump-to-mode size ratio is significantly greater
than unity and then the lasing threshold of fundamental mode
is higher than that of high-order transverse modes. A micro-
scope objective lens mounted on a translation stage was used
to reimage the tomographic transverse patterns at different
propagation position onto a CCD camera. Figure 2 displays
the polarization-resolved transverse patterns at three different
propagation positions: z=0, z=zg, and 7>z, where the Z
is the Rayleigh range and Zz=1.28 mm. It can be found that
the polarization-resolved patterns represent as an azimuthally
polarized flower mode at the beam waist (z=0), whereas it
turns out to be like a radially polarized flower mode at the far
field (z>>zg). Moreover, the polarization state at z=zx was
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confirmed to behave as a circularly polarized flower mode by
use of a quarter-wave plate. The polarization-resolved trans-
verse modes formed by the three-dimensional (3D) coherent
vector field provide an important aspect to explore the phys-
ics of polarization singularities. It is worthwhile to mention
that the lasing modes are propagation-dependent polarization
vector fields which are generated from the nearly hemi-
spherical cavity. The following analysis will substantiate that
the longitudinal-transverse coupling with the entanglement
of the polarization states leads to the formation of 3D coher-
ent vector fields in the isotropic laser cavity. Therefore, the
generalized structures of polarization singularities in coher-
ent vector fields with longitudinal-transverse coupling can be
clearly revealed with the theoretical analysis.

III. ANALYTICAL WAVE FUNCTIONS
FOR EXPERIMENTAL PATTERNS
AND POLARIZATION SINGULARITIES

According to the lasing modes represented as flower
modes in the transverse patterns, we start from the LG mode
to be the basis of the experimental results. The wave function
of LG mode with longitudinal index s, transverse radial in-
dex p, and transverse azimuthal index / in cylindrical coor-
dinates (p,¢,z) is given by ¥, (p,$.2)=€"?®,; (p,2),
where

[ 1 (2! |1< ZPZ)
®,15(p.2) = 7T(p+|l|)!W(Z)(W(Z)) Ly w(z)?
p’ o’
Xexp{— W(Z)2:|6Xp - ikp,[,xz|:1 + 2(ZZ+ZZ):|
R

Xexpli(2p +|I| + 1)65(z)] (1)

where w(z)=wgy\1+(z/zg)% wy is the beam radius at the
waist, zg=7wg/\ is the Rayleigh range, L;(~) are the associ-
ated Laguerre polynomials, k,; is the wave number, and
05(z)=tan"!(z/zg) is the Gouy phase. In the resonator with

the effective length L, the wave number k,,, is given by

ky, L=mals+2p+|l|)(Af7/Af1)], where Af;=c/2L is the

FIG. 2. (Color online)
Polarization-resolved  transverse
patterns for the experimental re-
sult with the index (p,l)=(1,39)
at three different propagation po-
sitions: z=0, z=zp, and 7>z,
where zp is the Rayleigh range.
The arrows indicate the transmis-
sion axis of the polarizer.
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longitudinal mode spacing and Af; is the transverse mode
spacing. It has been verified [27] that the longitudinal-
transverse coupling and mode-locking effect can lead to the
frequency locking among different transverse modes with the
help of different longitudinal orders when the ratio Af;/Af;
is close to a simple fractional. As a result, the configuration
of the nearly hemispherical cavity refers to be Afy/Af;
~1/2, and the group of LG modes ¥, ;o ;(p, ¢,2), with
k=0,1,2,3..., forms an important family of frequency de-
generate states. With LG modes as the basis, the experimen-
tal vector fields can be decomposed into a coherent superpo-

sition of orthogonal circularly polarized helical modes E
=Eg(p, ¢,2)ag+EL(p, $,2)d;, where

Erlp.¢.2) = [\Ifﬁ,—(Hl),x—](p, $.2) - \I,P.,l—l,s(p7 ¢,Z)]/\E,
(2)

Enpo.2) =[Wp 1015010 6.2 = Wy o0 8.2,
G)

and dg=(d,~id,)/ V2 and 4, = (a,+id,)/ V2 are the helical ba-
sis unit vectors for the right- and left-handed circulation po-
larizations, respectively. Figure 3 displays the numerically
reconstructed patterns for the experimental results shown in
Fig. 2. There is a good agreement between the reconstructed
and experimental patterns. From this point of view, the cir-
cularly polarized vortex modes indeed play an important role
to form the propagation-dependent polarization vector fields.
Equations (2) and (3) indicate that each circularly polarized
component of the vector fields is composed of two LG
modes with different order. It is worthwhile to mention that
the frequency locking of two LG modes with different azi-
muthal orders arises from the longitudinal-transverse cou-
pling in a nearly hemispherical cavity.

After some algebra, Egs. (2) and (3) for the general con-
dition can be simplified as
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FIG. 3. Numerically recon-
structed patterns for the experi-
mental results shown in Fig. 2.

ER(P, ¢,Z) = [5]26_i21¢ei206(2) - 1]€i(1_1)¢®1),l—1,5(p’ Z)/\z’
4)

EL(p, ¢>Z) = [5126[21@361.206(:) - 1]e_i(]_l)(bq)p,/fl,x(pvz)/\‘ﬁ‘z?
(5)

where

7 =[\2pmw (@ LN+ p) T+ p+ 1]
1+1 2p2> /1<2P2):|
x[Lp (W(Z)2 / L, v | (6)

In the basis of circular polarizations, the condition for left-
handed and right-handed C point loci can be given by
Er(p,¢,2)=0 and E;(p,¢,z)=0, respectively. For the
paraxial 3D vector fields, the trajectories of C singularities
can be expressed as the parametric curves with z as a vari-
able. In addition to the central singularity at the origin, the
expression in the bracket of Eq. (4) indicates the left-handed
C point trajectories are determined by the following two con-
ditions: (1) pr=1 and e?%?%@=1; (2) p=—1 and
e 2206 =1 n general, there are 2p+ 1 solutions of the
exact radius which the C points are symmetrically embedded
in. Note that for p=0 there are 2/ peripheral left-handed C
points _symmetrically arrayed on a circle of radius py
= I+ 1)w(z)/\2 at angles ¢,,=[05(z)+mm]/l with m
=0,1,2,...,2/—1 and 2!/ peripheral right-handed C points
on the same circle of radius at angles ¢,,=[—05(z)+m]/1
with m=0,1,2,...,2]—1. The brief case of p=0 has been
verified to be in good agreement with experimental results
[25]. Besides p=0, the theoretical solution of radius with
radial index p can be solved analytically for the cases p
=1-3. Further, we analyzed the case of p=1. For p=1, the
three solutions of radius can be expressed analytically:
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1 / [ [ / f

p1= 5\52 FLHVI+ DI +2) = N6+ TL+2P + 41+ 1) (1 +2) = 21N+ 1) (1 + 2)w(2), (7)
1 / [ / i [

pr= 5\32+Z+ VI+ DI +2) + N6+ T1+2P + 4+ 1)1 +2) = 21N+ D1+ 2)w(2), (8)
1 r/ [ [ [ [

p3= 5\52 FL=NVI+ DI +2) +N6+T1+2P =4I+ 1) (1 +2) + 21N+ 1) (1 + 2)w(2). 9)

On the one hand, there are 2/ peripheral left-handed and 21
peripheral right-handed C points symmetrically arrayed at
angles ¢,,=[05(z)+m]/l and ¢,,=[—605(z) +m]/1, respec-
tively, with m=0,1,2,...,2]-1 according to the circle ra-
dius in the situation of ﬁ[2= 1, and, on the other hand, there
are 2/ peripheral left-handed and 2/ peripheral right-handed
C points symmetrically arrayed at angles ¢,,=[2605(z)+(2m
+1)m]/2] and ¢,,=[-205(z)+(2m+1)7]/21, respectively,
with m=0,1,2,...,2[-1 according to the circle radius in the
situation of 'p',Z:—l. As aresult, there are 2I(2p+1) left-
handed C points and 2/(2p+ 1) right-handed C points embed-
ded in the polarization-dependent vector field. Therefore, C
lines singularities embedded in the propagation-dependent
polarization vector field with p=0 form the hyperboloid
structure. The theoretical results of the view from the propa-
gation direction to the beam waist of the general structures of
the C lines singularities with p=1-3 and /=1-6 are repre-
sented in Figs. 4-6. The different color of C line singularities
represents the different allowable circle of radius according
to the radial index p of the transverse modes. Therefore, the
different radial position of the C line singularity with the
same color implies the different propagation position of the
propagation-dependent polarization vector field. The mini-
mum of the radial position represents the beam waist and the
maximum of the radial position represents the far field.

FIG. 4. (Color online) Structure of the C line singularities of the
theoretical vector field from the view of propagation direction to the
beam waist with the same radial index p=0 and different azimuthal
index [ (a) (p,)=(0,1); (b) (p,=(0,2); (c) (p,N)=(0,3); (d)
(p.D)=(0,4); (e) (p.D)=(0,5); () (p,1)=(0,6).

Another important and interesting feature is that the ex-
perimental 3D polarization vector fields at the beam waist
and far field which are made up of two linearly polarized
modes with different spatial structures. For the general con-
dition, the experimental vector field can be given by E
=E(p,$.p)X+E(p,¢,p)y, where

Efp,$,2) =P, 1 (p,0){pre2% cos[(I+ 1) ]
—cos[(I= 1) B2 (10)

and

E\(p,$,2) = ©,, 1 ,(p,0){pe>%6 sin[(1 + 1) ]
+sin[(I - 1) T}/ 2. (11)

The transverse vector field at beam waist and far field can be
verified to possess the V point singularities that are generally
described in terms of the field of the angle function @(x,y)
=arctan(E,/E,) [10,28], where E, and E, are the scalar com-
ponents of the vector field along the x and y axes. The vor-
tices of ®(x,y) are the vector singularities at which the ori-
entation of the electric vector is undefined. Figures 7-9 show
the angle pattern ®(x,y) of the numerical vector field at the
far field. Consistently, the V point singularities are right at

FIG. 5. (Color online) Structure of the C line singularities of the
theoretical vector field from the view of propagation direction to the
beam waist with the same radial index p=1 and different azimuthal
index I: (a) (p,0)=(1,1); (b) (p,0)=(1,2); (¢) (p,0)=(1,3); (d)
(p.)=(1,4); (e) (p.D)=(1,5); (f) (p,0)=(1,6).

063809-4



GENERALIZED HYPERBOLOID STRUCTURES OF...

PHYSICAL REVIEW A 76, 063809 (2007)

FIG. 6. (Color online) Structure of the C line singularities of the
theoretical vector field from the view of propagation direction to the
beam waist with the same radial index p=2 and different azimuthal
index I: (a) (p.)=(2,1); (b) (p.))=(2.2); () (p.)=(2,3); (d)
(p.D)=(2,4); (e) (p.D=(2,5); () (p.)=(2,6).

the intersections of the right-handed and left-handed C lines
shown in Fig. 4-6. With Egs. (10) and (11) and some alge-
bra, there are 2/ peripheral V points symmetrically arrayed at
angles ¢,,=mm/l on a circle of radius p of the condition
512:1 and 2/ peripheral V points symmetrically arrayed at
angles ¢,,=(2m+1)m/2l on a circle of radius p of the con-
dition ﬁlz=—1 with m=0,1,2,...,2/—1 at the beam waist in
addition to the central singularity at the origin. The Gouy
phase plays a vital role to transform the singularities between
V points and C points under propagation of the 3D vector
field. Consequently, there are 2[ peripheral V points sym-
metrically arrayed at angles ¢,,=(2m+1)r/2[ on a circle of
radius p of the condition 5,2=1 and 2/ peripheral V points
symmetrically arrayed at angles ¢,=m/l on a circle of
radius p of the condition ﬁlzz—l with m=0,1,2,...,2]/-1 at
the far field in addition to the central singularity at the origin.
Intriguingly, each peripheral V point with the winding num-
ber of 1 is transformed to two different handed C points with

FIG. 8. (Color online) Numerical patterns of the angle function
at the far field of the same radial index p=1 and different azimuthal
index I: (a) (p.0)=(1,1); (b) (p.0)=(1.2); (¢) (p.N)=(1,3); (d)
(p.D)=(1,4); (e) (p.0)=(1,5); () (p,1)=(1,6).

the winding number of 1/2. Apparently, the winding num-
bers are conserved during the singularity transformation and
under the vector field propagation [29]. Figure 10 depicts the
characteristics of the C line and V point singularities of an
experimental result. It can be found that the structure of C
lines shown in Fig. 10(b) forms the hyperboloid with
multilayer in the radial direction. The theoretical pattern of
the view from the propagation direction to the beam waist of
the structures of the C lines singularities forms a kind of
fascinating petal pattern corresponding to the experimental
transverse pattern shown in Fig. 10(a).

Besides C line and V point singularities, there is L surface
singularity embedded in the propagation-dependent polariza-
tion vector fields with the longitudinal-transverse coupling
and the entanglement of the polarization states. The L singu-
larities can be determined by the conditions |Eg|>=|E;|%.
With Egs. (4) and (5), it can be found that there are 41 L
surfaces on the p-z plane with the azimuthal angles at ¢,
=nm/(2l), where n=0,1,2,...,41-1. Figure 11 displays the

FIG. 7. (Color online) Numerical patterns of the angle function
at the far field of the same radial index p=0 and different azimuthal
index [ (a) (p,0)=(0,1); (b) (p,)=(0,2); (c) (p,))=(0,3); (d)
(p.0)=(0,4); (e) (p,0=(0,5); () (p.))=(0,6).

FIG. 9. (Color online) Numerical patterns of the angle function
at the far field of the same radial index p=2 and different azimuthal
index I (a) (p,)=(2,1); (b) (p,)=(2,2); (c) (p,1)=(2,3); (d)
(p,D=(2,4); (e) (p,D)=(2,5); () (p.D)=(2,6).
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(a)

FIG. 10. (Color online) (a) Experimental far-field pattern with
radial and azimuthal index (p,l)=(1,12). (b) Structure of C line
singularities of the correspondent 3D vector field. (c) Structure of
the C line singularities from the view of propagation direction to the
beam waist. (d) Numerical pattern of the angle function at the far
field.

vector and polarization singularities with the analytical rep-
resentation of the transverse pattern with the radial and azi-
muthal index (p,l) to be (0,4) from the view of the propa-
gation direction to the beam waist. The different radial
position of the figure implies the different propagation posi-
tion of the 3D polarization vector field. The minimum of the
radial position represents the beam waist and the maximum
of the radial position represents the far field. From the ana-
lytical structures of the singularities, the polarization state of
the experimental 3D vector field under propagation can be
clearly revealed. From the loci of C lines, it can be confirmed
that L surfaces separate regions of right-handed and left-
handed polarization and V points locate on the intersection of
right-handed and left-handed polarization.

It is worthwhile to give a more detailed comparison be-
tween theory and experimental results. The present hyperbo-
loid structures of polarization singularities are directly de-
rived from Egs. (2) and (3) in which the two different LG
modes are superposed with equal amplitude. For general
cases of experimental results, however, the amplitude of the
two LG modes can be somewhat different. Nevertheless,
with the same theoretical analysis, the distributions of the
polarization singularities can be certainly found to be topo-
logically invariant. In other words, the hyperboloid structure
of polarization singularities represents a characteristic feature
of resonant laser modes emitted from degenerate cavities. On
the other hand, more complicated phase singularities, such as
link and knot structures, can be produced by using a Gauss-
ian laser beam illuminating a hologram or a phase modulator
[30,31]. However, these complex structures are not at all
related to the fundamental aspects of laser resonators.
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FIG. 11. (Color online) Diagram of the representation of the
polarization state under propagation corresponding to the singulari-
ties of C lines (blue line), V points (white points at far field and pink
points at beam waist), and L surfaces (yellow dashed lines).

The present polarization singularities are explored based
on the paraxial approximation in which the longitudinal elec-
tric field is neglected. For a rigorous point of view, it is more
appropriate to analyze the experimental polarization singu-
larities with the full 3D electric field. Recently, Berry [18]
has confirmed that the separations between two singularities
obtained with the paraxial approximation and the full 3D
fields are generally much smaller than the wavelength.
Therefore, the present findings are almost not affected by
neglecting the longitudinal field.

IV. CONCLUSION

In conclusion, we have used an isotropic microchip laser
to generate the propagation-dependent polarization vector
fields with the longitudinal-transverse coupling and the en-
tanglement of the polarization states. It is found that the ex-
perimental 3D coherent vector fields can be reconstructed by
the orthogonal circularly polarized vortex mode which is
made up of two Laguerre-Gaussian (LG) modes with differ-
ent order. With the analytical representation, the general
structures for the singularities of the C lines, V points, and L
surfaces can be systematically analyzed. In general, there are
2p+1 solutions of the radius which the C lines and V points
are symmetrically embedded in and the theoretical solutions
of the radius can be represented analytically for the cases p
=0-3. Importantly, the theoretical analyses reveal that the
trajectories of the C lines projected on the transverse plane
displays the intriguing petal structures. Furthermore, the po-
larization states of the experimental LG vector fields under
propagation can be clearly demonstrated. The generalized
structures of the polarization singularities in coherent vector
fields may provide some useful insights into the nature of the
waves.
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