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The traversal times for an electromagnetic pulse traversing a slab of dispersive and dissipative material with
negative dielectric permittivity ��� and magnetic permeability ��� have been calculated by using the average
flow of electromagnetic energy in the medium. The effects of bandwidth of the pulse and dissipation in the
medium have been investigated. While both large bandwidth and large dissipation have similar effects in
smoothening out the resonant features that appear due to Fabry-Pérot resonances, large dissipation can result in
very small or even negative traversal times near the resonant frequencies. We have also investigated the
traversal times and Wigner delay times for obliquely incident pulses and evanescent pulses. The coupling to
slab plasmon-polariton modes in frequency ranges with negative � or � is shown to result in large traversal
times at the resonant conditions. We also find that the group velocity mainly contributes to the delay times for
pulses propagating across a slab with n=−1. We have checked that the traversal times are positive and
subluminal for pulses with sufficiently large bandwidths.
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I. INTRODUCTION

The time for light to traverse through a dispersive me-
dium is interesting and important, both from a fundamental
viewpoint �1,2� and for technological applications such as
designing delay lines or systems for enhanced nonlinear ap-
plications. However, there are a variety of time scales, de-
pending on the physical quantity being measured, that can be
defined for this traversal time �1–4�. A popular measure for
the delay time of pulses is the Wigner delay time �5� ��w

= ��
�� ��=�̄, i.e., the frequency derivative of the phase of the

output wave evaluated at the carrier frequency �̄. The
Wigner delay time, which is based on tracking a feature on
the pulse moving at the group velocity �vg= ��

�k
�, can turn out

to be superluminal or even negative, while at the same time
describing the motion of pulses with narrow bandwidths over
short distances well �6–8�. While there is no contradiction of
causality or of special relativity in these phenomena involv-
ing holomorphic pulses, the Wigner delay time becomes in-
accurate for large pulse bandwidths or when there is a large
deformation in the pulses.

A measure that is based on the flow of electromagnetic
energy for the time of traverse between two points ri, and r f
was proposed by Peatross et al. �9�, which is given by

�t = �t�rf
− �t�ri

, �1�

where

�t�r =

u · �
−�

�

tS�r,t�dt

u · �
−�

�

S�r,t�dt

�2�

represents the arrival time of a pulse at a point r. This time
scale is particularly suitable for pulses with large bandwidths
as the relative contributions due to the propagation at the
group velocity �group delay�, and deformation of the pulse
�reshaping delay� can be identified. Equation �2� can be re-
written exactly as �9�

�t�r =

u · �
−�

�

Re�− i
�E�r,��

�� 	 H��r,���d�

u · �
−�

�

S�r,��d�

, �3�

which is very useful for spectral calculations. This definition
of the traversal time based on the motion of the centroid of
the Poynting vector has been supported by experiments on
dispersive media �10� and even in angularly dispersive sys-
tems �11�. It has also been shown that the arrival times for
pulses measured through the rate of absorption in an ideal
impedance matched detector is equivalent to the above ar-
rival times �12�. We have also shown earlier that the defini-
tions of the group delay times, and the reshaping delay times
get interchanged for evanescent pulses �12�.

Negative refractive index media �NRM� or left handed
media �LHM� simultaneously have Re���
0, and Re���

0 at a given frequency �13� and have captured the imagi-
nation of the physics community by their numerous counter-
intuitive electromagnetic properties �See Ref. �13� for a re-
view of NRM�. In isotropic NRM, the wave vectors k and
the Poynting vector S point in opposite directions. NRMs are
also necessarily dispersive and dissipative in nature, and can
also support surface �plasmon� states on their interfaces with
positive media. Thus the study of the phase velocity �vp= �

k
= c

n
�, the group velocity, and the energy flow in such media is

interesting, and important. In fact in some metamaterials, one
can have all possible combinations of �positive and negative�
phases and group velocities �14�.

In this paper, we study the times for pulse traversal
through slabs of dissipative media with negative material
parameters ��
0, �
0� using the average energy flow in
the media given by Ref. �9�. Pulse propagation in NRM has
been principally studied with a focus on negative refraction
at interfaces �15–17� and nonlinear effects �18–20�. The
Wigner delay time has been studied for pulses at normal
incidence on slabs of NRM in the limit of zero dissipation
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�21�. Earlier we investigated the traversal times based on the
energy flow in infinitely extended NRM, and for normally
incident pulses in semi-infinite NRM �12�. There the geom-
etry was chosen such that the traversal times were affected
by only the intrinsic dispersion of the medium parameters
and avoided the effects of other resonances such as slab reso-
nances �by using infinite or semi-infinite media�, and surface
plasmon resonances �by normal incidence of the pulses�.
Here we will consider these effects of resonances on the
traversal times for the transport of narrowband and broad-
band pulses through slabs of causal NRM. We also show that
finite levels of dissipation qualitatively change the nature of
the traversal times near the resonances. Coupling to the slab
plasmon polaritons will be shown to give rise to large delay
times. We find that for pulses with large enough frequency
bandwidth, the traversal times are positive and subluminal.

II. TRAVERSAL TIME ACROSS A DISPERSIVE
SLAB

We calculate the propagation times for electromagnetic
pulses across a dispersive slab. The relative dielectric permit-
tivity and the magnetic permeability of the slab are consid-
ered to be plasmalike and Lorentz dispersive in nature, and
given by

���� = 1 −
�p

2

��� + i�p�
, �4�

���� =
�2 − �b

2 + i��m

�2 − �0
2 + i��m

. �5�

Here �p,b,o=2�fp,b,o with fp, fb, and f0 taken to be 12, 6, and
4 GHz, respectively. We note that the above expressions of �
and � are causal and they obey the Kramers-Kronig rela-
tions. The slab behaves as a positive refractive index medium
�PRM� or right handed medium �RHM� ��0, �0� when
��p, a negative refractive index medium �NRM or LHM�
��
0, �
0� within �0
�
�b and as a barrier ��
0, �
0� elsewhere. Here we note that the expressions of � and �
are similar to those given by Ref. �21� with the main differ-
ence arising due to the introduction of finite amounts of
damping in the medium.

For convenience, we take the source of radiation to be
placed in vacuum just outside one boundary of the slab and
the detector just outside the other one �Fig. 1�. We have taken
same medium �vacuum� on either sides of the slab �i.e., re-
gions 1 and 3�. So here �1=�1=�3=�3=1. �2, and �2 have
same forms, respectively, given by Eqs. �4� and �5�. We take
our initial pulse form to be Gaussian in time which is repre-
sented by

E�ri = 0,t� = x̂E0exp	−
t2

�2
exp�− i�̄t� . �6�

Hence the Fourier transform of the pulse is given by

E�ri,�� = x̂
E0

2�2
�e−

�� − �̄�2

4
�2

, �7�

where �̄ is the carrier frequency and � is the pulse duration.
The magnetic field is simply obtained using the Maxwell’s
equations

H�ri,�� = ŷ
E0

2�2

kz1

��1�0
�e−

�� − �̄�2

4
�2

, �8�

where kz1 represents the wave vector in the first medium. We
consider P-polarized light for normal incidence. It should be
noted that for normal incidence, the results are independent
of the state of polarization of radiation, whereas they are
dependent in the case of oblique incidence. Hence for the
latter case, we will deal with both the S and the P polariza-
tions separately. For the P polarization, the magnetic field at
the detector is related to that at the source via the transmis-
sion coefficient across the slab. The final magnetic and the
electric fields at the detector are given by

H�r f,�� = ŷ
E0

2�2

kz1

��1�0
�e−

�� − �̄�2

4
�2

T��� �9�

and

E�r f,�� = x̂
E0

2�2

kz1kz3

�2�1�3
c2�e−

�� − �̄�2

4
�2

T��� , �10�

where kz3 represents the wave vector in the third medium.
Here T��� represents the transmission coefficient across

the slab which is given by

T��� =
tt�eikz2�r

1 − r�2e2ikz2�r , �11�

where �r represents the slab thickness and kz2 represents the
wave vector inside the dispersive slab. t, t�, and r�, respec-
tively, represent the Fresnel coefficients of transmission and
reflection by the slab interfaces and are given by

� �
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
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FIG. 1. A dispersive slab having thickness �r �region 2� sur-
rounded by vacuum �regions 1 and 3�. The shaded circle in region 1
just outside the slab represents the source of radiation. The shaded
screen in region 3 just outside the slab boundary represents the
detector.
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t =
2

kz1

�1

kz1

�1
+

kz2

�2

, t� =
2

kz2

�2

kz2

�2
+

kz3

�3

, r� =

kz2

�2
−

kz3

�3

kz2

�2
+

kz3

�3

.

Here the unprimed and primed coefficients stand, respec-
tively, for the coefficients across the first and the second
boundaries. For S polarization, in the expressions of the
Fresnel coefficients, the �’s are simply replaced by �’s. Also,
the Fresnel coefficients relate the electric fields across the
interface rather than the magnetic fields. Suffixes 1, 2, and 3,
respectively, represent the parameters at the source, slab, and
the detector sides as described earlier. For convenience we
later substitute equal material parameters on both �source
and detector� sides of the slab. We calculate the delay times
for different bandwidths of the pulses. For this we use the
same notation for the broad and the narrowband pulses as
discussed in our earlier paper �12�. The pulse has a broad-
band when �̄�=10 or less and it has a narrowband when
�̄�=100 or more.

The Wigner delay time was calculated using Eq. �11� and
is given by

�� =
��

��
=

�p
�� tan�kz2�r� + p sec2�kz2�r�

�kz2

�� �r

1 + p2 tan2�kz2�r�
, �12�

where

p =

kz1�2

kz2�1
+

kz2�1

kz1�2

2
�13�

for P polarization and

p =

kz1�2

kz2�1
+

kz2�1

kz1�2

2
�14�

for S polarization. Throughout our calculations �both for nor-
mal and oblique incidence�, we have checked that the Wigner
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FIG. 2. �Color online� Scaled total delay time of a pulse with
different bandwidths ��̄�� plotted as a function of the carrier fre-
quency �f� across a dispersive slab with large thickness ��r
=10 cm�. �a� Solid and dashed lines show delay times, respectively,
for a narrowband pulse and a broadband pulse across a nondissipa-
tive slab of RHM. �b� Same as �a�, but across a slab of LHM. �c�
Delay time for a narrowband pulse across a moderately dissipative
��p=0.01�p, �m=0.01�b� slab �solid line� and a highly dissipative
��p=0.1�p, �m=0.1�b� slab �dashed line� of RHM. �d� Same as �c�,
but across a slab of LHM.
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FIG. 3. �Color online� �a� Scaled total delay time as a function
of the carrier frequency �f� for a narrowband pulse �solid line� and
a broadband pulse �dashed line� across a highly dissipative ��p

=0.1�p, �m=0.1�b� slab of LHM and large thickness ��r
=10 cm�. �b� Same as �a�, but with a small slab thickness ��r
=1 cm�.
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FIG. 4. �Color online� �a� Scaled total delay time of a broadband
pulse as a function of the carrier frequency �f� across a nondissipa-
tive slab which behaves as a plasma medium with different thick-
nesses shown by dashed line ��r=5 cm�, solid line ��r=10 cm�,
and dotted line ��r=20 cm�. �b� Same as �a�, but the pulse has a
narrow bandwidth. �c� Same as �a�, but the slab is highly dissipative
��p=0.1�p, �m=0.1�b�. �d� Fabry-Pérot resonance structures near
resonance frequency in the delay time graph for a broadband pulse
across a slab with large thickness ��r=10 cm�. Dotted, solid, and
the dashed lines indicated by numbers 1, 2, and 3, respectively,
show the features across slabs of nondissipative ��p=0, �m=0�,
moderately dissipative ��p=0.01�p, �m=0.01�b�, and highly dissi-
pative ��p=0.1�p, �m=0.1�b� media.
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delay time yields the same result as the traversal time for
narrowband pulses with the average energy flow method.

A. Traversal times for normal incidence

In this case, the parallel component of the wave vector is
zero and the pulse is normally incident on the slab. So there
is no coupling with the slab plasmon polaritons. Since kx
=0, the Maxwell’s equations can be combined to give

kz
2 =

�2��

c2 . �15�

This is independent of whether the slab is of a RHM or a
LHM. In Fig. 2, we plot the delay times scaled with the free
space propagation � �r

c
� versus the carrier frequency for both

broadband ��̄�=10� and narrowband ��̄�=1000� pulses. For
narrowband pulses, we refer to Ref. �21�, where the Wigner
delay times were calculated for a nondissipative slab and it
was shown that resonant features appear in the delay time

behaviors due to presence of the poles of the transmission
coefficient �Fabry-Pérot resonances�. We have taken ��r
=10 cm� as large thickness and ��r=1 cm� as small thick-
ness of the slab relative to the wavelength �2.5 cm� of the
pulse at the electrical plasma frequency �fp�.

First we compute the results for the traversal times of
broadband and narrowband pulses through a nondissipative
slab which is achieved by substituting �p=�m=0 in the ex-
pression of � and �. Figures 2�a� and 2�b�, respectively,
show the traversal times for pulse propagation inside slabs
with positive and negative refractive indices. In both figures
it can be observed that the features due to the slab resonances
get smoothened with an increase in the pulse bandwidth. So
it is expected that for extremely broadband light, these fea-
tures might completely disappear. Here we note that the re-
sults for the narrowband pulses in Figs. 2�a� and 2�b� are
exactly the same as those for the Wigner delay times given in
Ref. �21�. We see that the strength of oscillations occurring
in the delay time is large at the electric plasma frequency �fp�
and it decreases with the increase in frequency in a slab of

FIG. 5. �Color online� Total delay time of an extremely narrowband pulse ��̄�=5000� plotted versus scaled carrier frequency �f / fp� and

scaled parallel wave vector �qx=
kxc

�
� for P polarization across a moderately dissipative ��p=0.01�p, �m=0.01�b� slab with small thickness

��r=
�p

5
�. �b� Same as �a�, but across a slab of highly dissipative ��p=0.1�p, �m=0.1�b� material and large thickness ��r=2�p�. �c�

Fabry-Pérot resonance structures in the delay time plotted versus scaled carrier frequency and scaled parallel wave vector across a moder-
ately dissipative ��p=0.01�p, �m=0.01�b� slab with large thickness ��r=2�p�. �d� Same as �c�, but the slab is highly dissipative ��p

=0.1�p, �m=0.1�b�.

LIPSA NANDA AND S. ANANTHA RAMAKRISHNA PHYSICAL REVIEW A 76, 063807 �2007�

063807-4



PRM �Fig. 2�a��. This is due to the impedance mismatch as
�=0 at fp. Inside a slab of NRM, the same explanation is
valid for the increase in the amplitude of oscillations at the
magnetic plasma frequency �fb�, where �=0 �Fig. 2�b��. The
large value of � at the magnetic resonant frequency �f0�
again gives rise to a large impedance mismatch, which con-
sequently gives rise to the large amplitude of oscillations in
the delay time. The oscillation frequency increases very rap-
idly as we approach f0 because the optical path length
����d

c →� at f0 in a nondispersive slab. Next we study the
traversal times for narrowband pulses propagating through
dissipative slabs of both RHM and LHM �Figs. 2�c� and
2�d��. To include moderate levels of dissipation in the me-
dium, we use �p=0.01�p and �m=0.01�b and for high levels
of dissipation, we use �p=0.1�p and �m=0.1�b, respectively,
in Eqs. �4� and �5�. We see that when a small amount of
dissipation is introduced in the medium, the time taken for
transmission through the slab is less than that taken for the
nondissipative case. With increased dissipation in the slab,
one can also clearly observe that the slab resonant features
disappear.

We have also studied the delay times for a highly dissipa-
tive slab of LHM for both narrow and broadband pulses
�Figs. 3�a� and 3�b��. Figure 3�a� shows the results for a slab
with large thickness �10 cm� and Fig. 3�b� shows the corre-

sponding results for a slab with a small thickness �1 cm�. It
can be clearly seen that the delay time is very small near the
magnetic resonance frequency. Then it rapidly increases for
large frequencies, and after passing through a peak, it gradu-
ally decreases. For narrowband pulses, the total delay time
near the resonance frequency ��0� even becomes largely
negative. Even for broadband pulses, with small thickness of
the slab, this negativity in the delay time appears near �0
although to a smaller and smaller extent with increasing
thickness of the slab. The anomalous dispersion of the refrac-
tive index of a medium with a high amount of dissipation
leads to small/negative delay times for broadband/
narrowband pulses near the resonance frequency. It can be
seen that for narrowband pulses and large thickness of the
slab, the delay time bends down near �b, where the value of
� becomes 0. For the broadband pulse, the traversal time
remains unaffected at �b.

Next we investigate the delay times within the frequency
range ��b
�
�p�, where the medium behaves as a plasma
and as a consequence, most of the wave components are
evanescent. We study the traversal times for both broadband
and narrowband pulses. We find that for different slab thick-
nesses ��r=5 cm, �r=10 cm, �r=20 cm� involved and re-
gardless of the amount of dissipation in the slab material, the
traversal time remains the same for almost all frequencies
except at the edges of the stop bands �Figs. 4�a�–4�c��. Such

FIG. 6. �Color online� �a� Total delay time of an extremely broadband pulse ��̄�=1� plotted versus scaled carrier frequency �f / fp�, and

scaled parallel wave vector �qx=
kxc

�
� across a moderately dissipative ��p=0.01�p, �m=0.01�b� slab with small thickness ��r=

�p

5
�, and P

polarization. �b� Same as �a�, but the slab is highly dissipative ��p=0.1�p, �m=0.1�b�. �c� Same as �b�, with large slab thickness ��r
=2�p�. �d� Same as �a�, but for S polarization.
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an independent behavior of the traversal time with distance
as well as dissipation is the famous Hartman effect �22�. We
also see Fabry-Pérot resonancelike structures with large
peaks appearing near the edges of the stop band frequencies
for broadband pulses with large thickness and nondissipative
slab material �Fig. 4�d��. Such resonant features do not ap-
pear if the slab thickness is reduced or, interestingly, if the
bandwidth of the pulse is small. We can understand this sur-
prising resonant effect for broadband pulses by noting that
the plasma acts as a spectral filter. Consider a pulse with a
large bandwidth and the carrier frequency within the stop
band but near the lower edge. In transmission, most of the
spectral components within the stop band are almost com-
pletely attenuated while the spectral components in the pass
band at lower frequencies will get transmitted. If the band-
width of these propagating spectral subcomponents is small,
then the behavior of the transmission as a function of fre-
quency will be modulated by Fabry-Pérot resonances. Note
that the impedance mismatch between the slab and vacuum
will be much larger at �b, thus emphasizing the resonant
effects. Such resonant effects disappear for small slab thick-
ness because there the bulk of the spectral components
within the stop band are not attenuated enough for the Fabry-
Pérot resonances to dominate. Increasing dissipation also ob-
viously destroys the contribution of these resonances to the
phenomena. It should be noted that the transmitted pulses
will be significantly stretched or deformed as their band-
width will be substantially smaller. We have not studied this
aspect via the deviation ����2 of the delay time here.

B. Traversal times for oblique incidence

Next, we study the traversal time of a pulse when it is
obliquely incident on a slab, i.e., the parallel wave vector �kx�
is nonzero. For this case, the Maxwell equations give

kz =��2��

c2 − kx
2 =

�

c
��� − qx

2, �16�

where kx=qx
�
c .

We consider the incident pulses with either S or P polar-
izations. For convenience, we have scaled all the frequencies
with respect to the plasma frequency. So here fp=1, f0
=0.33, and fb=0.5. The thicknesses of the slab used are �r

=
�p

5 �small thickness�, for which kp�r=0.4� and �r=2�p
�large thickness�, for which kp�r=4�. The thicknesses are
relative to the wavelength ��p� at the plasma frequency. This
is important to note that, here for narrowband pulses, we use
�̄�=5000 �extremely narrowband case� and for broadband
pulses �̄�=1 �extremely broadband case�.

1. Propagating waves

Here we discuss the pulses for which the wave vector is
real or, in other words, the waves are propagating. First of
all, we present the results for an extremely narrowband pulse
��̄�=5000� with moderate amounts of dissipation in the slab
material. The delay time is plotted versus both the frequency,
and the parallel wave vector �Figs. 5�a�–5�d��. From the
graphs, it can be clearly observed that violent dispersion of
the delay time occurs at the magnetic resonant frequency
�f0�. For P polarization, a small dip in the delay time also
occurs at the electric plasma frequency �fp� for small thick-
ness of the slab �Fig. 5�a��, and at both the fp, and magnetic
plasma frequency �fb� for large thickness of the slab. We
have seen that for S polarization, this additional small dis-
persion in the delay time curve, apart from the violent dis-
persion at f0, occurs only at fb, whereas it becomes smooth at
fp for all thicknesses of the slab. This arises because the
Fresnel coefficients for S-polarized waves do not depend on
the dielectric constants ��� as strongly as the magnetic per-
meability ���. When there is a high amount of dissipation in
the material of the slab, it is seen that the scale of the delay
time axis as well as the sharpness of the dispersion at the
resonant frequency decrease simultaneously with the broad-
ening of the peaks for both the polarizations. Here we should
note that the traversal times for narrowband pulses across
slabs with large thickness and a high amount of dissipation,
give exactly the same features with the same scales for both
the S and P polarizations �see Fig. 5�b� for P polarization�.

The delay time results are analyzed for narrowband pulses
and large thickness of the slab in the frequency range which
causes a positive refractive index. After introducing a mod-
erate amount of dissipation in the medium, one can see
Fabry-Pérot resonance structures appearing beyond fp �Fig.
5�c��. Such resonant structures �ripples� disappear with in-
crease in dissipation in the medium �Fig. 5�d��.

Next we study the traversal times for an extremely broad-
band pulse ��̄�=1�. It can be seen that the delay times are
large at frequencies close to f0 and large wave vectors �Figs.
6�a�–6�c� for P polarization and Fig. 6�d� for S polarization�.
This happens for all thicknesses of the slab with any amount
of dissipation in the material. In the delay time graph for S
polarization �Fig. 6�d��, a large peak can be seen at a fre-
quency close to f0 and large wave vector. This occurs due to
the large dispersion in � at the magnetic resonance and the
magnetic plasma frequencies. The delay time decreases with
the increase in dissipation in the medium. It can be observed
that the graph becomes flat for small thickness of the slab,
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�
�
�
�
�
�
�
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�

21 3 4 5

r∆d d

Source of Detector
Radiation

FIG. 7. A layered structure consisting of five slabs used to study
the tunneling of pulses. Region 3 is the dispersive slab with thick-
ness �r with �3 and �3, respectively given by Eqs. �4� and �5�.
Regions 2 and 4 are air slabs ��2=�2=1�, and with thickness d.
Regions 1 and 5 are semi-infinite slabs with �1=�5=25 and �1

=�5=1. The shaded circle in region 1 just outside the boundary of
slab 2 represents the source and the shaded screen in region 5 out-
side slab 4 represents the detector.
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whereas for large slab thickness the delay time increases rap-
idly at frequencies close to f0 and large wave vectors. For
large thicknesses of the slab with a high amount of dissipa-
tion in the material, both polarizations give similar features
with equal scales �see Fig. 6�c� for P polarization�. We
should note that for broadband pulses, the total time taken
for traversal is positive and subluminal for all the parameters
studied here.

2. Evanescent waves

Here we consider pulses for which most of the wave vec-
tors are imaginary making the incident wave evanescent.
This is achieved by making the second term in Eq. �16�
under the square root larger than the first term. We calculated
both the Wigner delay time and the Energy delay time for
such pulses most of whose components are evanescent.
While the Wigner delay time can be easily calculated using
the phase shifts, calculating the traversal time via the energy
flow for evanescent pulses is a nontrivial problem. This is
because the energy flow associated with a single evanescent
wave in vacuum is zero. Thus the Poynting vector for pulse
with all spectral components having evanescent wave vectors
is zero at the detection point in vacuum. Hence it is not
possible to compute the energy traversal time for evanescent

pulses if the slab is embedded in vacuum. One needs to
couple the energy in these systems out to measure the pulses.
This is related to the measurement of tunneling quantum
particles whereby one needs to raise the particles with nega-
tive energy �evanescent waves� above the barrier before de-
tection. Similarly, we make an arrangement with layered
slabs where the evanescent waves are out-coupled to propa-
gating modes in high-index media.

In this arrangement, we have taken two nondispersive
slabs of different parameters kept symmetrically on either
sides of the dispersive slab making a layered slab structure
�Fig. 7�. The first and fifth slabs have semi-infinite extent
with large relative dielectric permittivity ��=25� and relative
magnetic permeability ��=1�. The second and fourth slabs
consist of vacuum with �=1 and �=1 and large slab thick-
ness �d� with corresponding kpd equal to �4��. The third or
the middle dispersive slab has � and �, respectively, given by
Eqs. �4� and �5� and small slab thickness ��r� with corre-
sponding kp�r equal to �0.4��. The source is present in the
first medium just outside the boundary of the second slab and
the detector is placed in the fifth medium just outside the
boundary of the fourth slab. The value of qx in Eq. �16� is
chosen in such a manner that the wave vector is real, making
the pulse propagating in first and fifth slabs, and imaginary

FIG. 8. �Color online� �a� The Wigner delay times for pulse traversal with P polarization as a function of scaled carrier frequency �f / fp�
and scaled parallel wave vector �qx=

kxc

�
� across a moderately dissipative ��p=0.01�p, �m=0.01�b� slab with small thickness ��r=

�p

5
�. �b�

Same as �a�, but for a highly dissipative ��p=0.1�p, �m=0.1�b� slab. �c�The traversal times obtained by the energy transport method across
the layered slab structure where the middle dispersive slab is moderately dissipative ��p=0.01�p, �m=0.01�b� in nature with small thickness
��r=

�p

5
�. �d� Same as �c�, but for a highly dissipative ��p=0.1�p, �m=0.1�b� slab. The dispersion of the slab plasmon-polariton modes of

the slab stand out clearly and the resonant conditions for these modes are characterized by large energy delay times.
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making the pulse evanescent in second and fourth slabs.
First, we plot the Wigner delay time versus both the fre-

quency and the wave vector in a moderately dissipative slab.
In a rather uniform landscape of delay times, the resonant
conditions for the slab surface plasmon polaritons �SPPs�
stand out in stark contrast where the magnitude of the delay
times are comparatively very large. Thus the entire disper-
sion of the SPPs can be traced out �Fig. 8�. There are two
distinct plasmon modes corresponding to the symmetric and
antisymmetric modes whose frequencies tend to

fp
�2

at large
wave vectors. Similarly two modes also appear below the
magnetic resonant frequency. For highly dissipative slabs,
such plasmon modes are also seen for evanescent waves, but
with large broadening of the dispersion curves �Fig. 8�b��.
The surface plasmon features are lost when the thickness of
the slab is larger than �p. We have seen that the features of
the plasmon modes for the S polarization is different from
the P polarization as in that case, these modes of magnetic
character occur between f0 �magnetic resonant frequency�
and fb �magnetic plasma frequency� when �
0, and super-
pose at

fb
�2

.
Then we studied the traversal times for evanescent pulses

having narrow bandwidth ��̄�=5000� using the energy trans-
port method with our new arrangement of the layered slab
structure �Fig. 7�. For this arrangement, we plotted the delay
times for narrowband pulses versus both the frequency and
the wave vector, and analyzed the results for moderate and
large dissipative slabs with both P polarization �Figs. 8�c�
and 8�d�� and S polarization. We see that Figs. 8�c� and 8�d�
look almost same as Figs. 8�a� and 8�b�. Thus, the energy
traversal times are also significantly affected at the surface
plasmon-polariton frequencies. It is worth noting that the tra-
versal times are large at the resonant conditions.

3. Propagation through a slab with n=−1

Finally, we consider a slab having unit negative refractive
index �n=−1� and surrounded by vacuum �n= +1�. Negative

refractive index of unit magnitude can be achieved at a
single frequency for a nondissipative slab. The properties of
such a slab with �n=−1� are very interesting due to the pos-
sibility of designing a perfect lens �13,23� By choosing fp

=1, f0=0.33, fb=0.5, we get n=−1 at f =
fp
�2

��=−1, �=−1�.
With propagation inside the medium, the propagation dis-
tance increases by a factor of 1

cos � . Here due to perfect im-
pedance matching, no multiple reflections take place. Using
the expression for group velocity �vg= ��

�k
�, the group delay

along the direction of propagation is given by Gd= �r
vg cos �

= �r
c cos �

�n+�
�n
��

�. For the particular frequency f =
fp
�2

, the sec-
ond term within the bracket in the above expression gives a
value equal to 32

7 . We plot both the Wigner delay time and
the group delay time versus qx for propagating pulses for the
particular frequency mode described above �Fig. 9�. From
the graph, it can be observed that the delay time gradually
increases with qx until qx=1 �where it becomes infinity�. It
can be seen that the graph feature of the group delay time is
very similar to the Wigner delay time. Hence it is inferred
that the group delay mainly contributes to the total delay
occurring during the propagation of a pulse inside a slab with
n=−1.

III. CONCLUSIONS

In summary, we have demonstrated the manifold implica-
tions of dissipation on the traversal time of a pulse across a
dispersive slab. Throughout our calculations, we have used
average energy flow method �9� to obtain the delay time of a
pulse, and have checked numerically that the results obtained
using the Wigner delay time method, and those using the
average energy flow method are exactly the same for very
narrow bandwidth pulses. In our results we have shown that
a high amount of dissipation in the slab material, along with
large pulse bandwidth, smoothen out the resonant features.

We have analyzed the reason behind the occurrence of
small and negative delay times near the magnetic resonant
frequency which is a consequence of anomalous dispersion
of the refractive index of the slab medium. We have shown
that large slab thickness, along with high material dissipation
give rise to same features for both S and P polarizations in
the case of oblique incidence. We have also shown that the
group delay mainly contributes to the total delay across a
slab with unit negative refractive index and surrounded by
vacuum. We have checked that the total time taken is usually
positive, and subluminal for large enough bandwidth of the
pulse.
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