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Ratio of shear viscosity to entropy density for trapped fermions in the unitarity limit
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We extract the shear viscosity to entropy density ratio /s of cold fermionic atoms in the unitarity limit from

experimental data on the damping of collective excitations. We find that near the critical temperature 7/s is
roughly equal to 1/2 in units of %/kgz. With the possible exception of the quark gluon plasma, this value is
closer to the conjectured lower bound 1/(47) than any other known liquid.
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I. INTRODUCTION

Strongly correlated quantum systems play an important
role in many different areas of physics. Systems of interest in
atomic, condensed matter, and nuclear physics span many
orders of magnitude in energy scale but exhibit a number of
universal properties. Recently there has been renewed inter-
est in the transport properties of strongly correlated systems.
Experiments at the relativistic heavy ion collider (RHIC) in-
dicate that at temperatures close to the critical temperature 7'
the quark gluon plasma is strongly interacting. The strongly
interacting quark gluon plasma is characterized by a very
small shear viscosity to entropy ratio, a small heavy quark
diffusion coefficient, and a large opacity for high energy jets
[1-5].

From a theoretical point of view not much is known about
transport coefficients of strongly correlated systems. If the
interaction is weak then the mean free path and the shear
viscosity are large. As the strength of the interaction in-
creases the mean free path and the viscosity drop but there
are good reasons to believe that the shear viscosity always
remains finite. Kovtun et al. conjectured that there is a uni-
versal lower bound 7/s="%/(4mkg) [6]. Here, 7 is the shear
viscosity, s is the entropy density, 7 is Planck’s constant, and
kg is the Boltzmann constant. The bound is saturated in the
case of strongly coupled gauge theories that have a dual de-
scription in terms of a gravitational theory.

In this work we test the viscosity bound conjecture by
extracting 7/s from experimental data on the damping of
collective oscillations of a cold atomic gas near a Feshbach
resonance. Cold atomic gases provide an ideal system to test
the conjecture because both the temperature and the interac-
tion can be continuously adjusted. Also, because of univer-
sality, atoms in the unitarity limit are equivalent to other
Fermi liquids with a large scattering length, such as dilute
neutron matter. Collective modes in the atomic system have
been studied in a number of experiments [7-10]. In the weak
coupling regime the frequency and damping constant of col-
lective modes can be understood in terms of the Boltzmann
equation. In the unitarity limit the frequency of collective
modes is well described by ideal hydrodynamics [11-13]. In
the present work we include viscous corrections and use ex-
perimental and quantum Monte Carlo data on the thermody-
namics to extract 7/s. Previous studies of damping near the
unitarity limit can be found in [14-16].
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II. EULER HYDRODYNAMICS

We shall assume that the system is approximately de-
scribed by ideal (Eulerian) fluid dynamics. The equation of
continuity and of momentum conservation are given by
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2LV (n5) =0, (1)
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-

Jv .S = =
mn5+mn(v -V)uv==VP-nVV, (2)

where 7 is the number density, m is the mass of the atoms, 0
is the fluid velocity, P is the pressure and V is the external
potential. The trapping potential is approximately harmonic,

m
= EE w?r?. (3)

In the unitarity limit the equation of state at zero temperature
is a simple polytrope P~n"*! with y=2/3. At finite tem-
perature the equation of state is more complicated, but uni-
versality implies that the isentropic compressibility is unaf-
fected,

JP
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The equilibrium distribution n, can be determined from the
hydrostatic equation VPy=—n,VV. At T=0,

2\ , 2u
(A =nO\ 1-2 5] . K==, (5
i Ri mwi
where p is the chemical potential. In the unitarity limit the
chemical potential is related to the Fermi energy as u=£&Ey,
where ¢ is a universal parameter (§=0.44 according to the
quantum Monte Carlo calculation [17]). The central density
and the total number of particles are

_ L (2mp)” _L<E>3
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where @=(w;w,w3)"”. Consider small oscillations n=n,
+ 6n. From the linearized continuity and Euler equation we
obtain [11]
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where we have dropped terms of the form V,V ]17 that involve
higher derivatives of the velocity. Using a scaling ansatz v,
=ax; exp(iot) (no sum over i) we obtain

(2(1)]2» - wz)aj + ya)jz»z a;=0. (8)
k

This is a simple linear equation of the form Ma=0. Non-
trivial solutions correspond to det(M)=0. In the case of a
trapping potential with axial symmetry, w;=w,=w,, 3
=\wy, We obtain w2=2w% and [11-13]
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In the unitarity limit (y=2/3) and for a very asymmetric
trap, A—0, the eigenfrequencies are w2=2w% and o’
=(10/3)w(2). The mode w2=(10/3)w8 is a radial breathing
mode with a=(a,a,0) and the mode w2=2wé corresponds to
a radial quadrupole a=(a,-a,0).

III. VISCOUS CORRECTIONS

The energy dissipated due to viscous effects is
S N 2 :
E=- 2 &xn(x)\ dp;+ dp; - g@jékvk
- f d3x§(x)(<9l-vi)2, (10)

where 7 is the shear viscosity and ¢ is the bulk viscosity. In
the unitarity limit the system is scale invariant and the bulk
viscosity in the normal phase vanishes. The situation is more
complicated in the superfluid phase. In this case the normal
and superfluid components can flow independently and in
addition to the shear viscosity there are three bulk viscosities
;. Two of the three bulk viscosities, {; and {5, can be shown
to vanish as a consequence of scale invariance [19]. The
third bulk viscosity, {3, only contributes to dissipation if the
normal components are moving relative to the superfluid
[20]. In the following we shall consider modes in which the
two components move in phase and ignore bulk viscosity.
We will also assume that the viscosity only depends on x
through the local density and temperature. This is valid if the
density and temperature are varying slowly, and is consistent
with the local density approximation for the density profile.
We note that in this approximation the equation of state and
the transport coefficients reflect the conformal invariance of
the microscopic dynamics, even though scale invariance is
broken by the external potential.
For the radial scaling flows given in Eq. (9) we have
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where E is a time average. The damping rate is determined
by the ratio of the energy dissipated to the total energy of the
collective mode. The kinetic energy is

- N
Eyn= %f Exn(x)o’ = %(ai + a§)<x2>. (12)

At T=0 we find (x*)=R* /8, where R is the transverse size
of the cloud. At nonzero temperature we can use the Virial
theorem [21] to relate (x?) to the total energy of the equilib-
rium state, (x?)/{x*);_o=E/Er_,. The damping rate is [15,22]

n &
1E 2 af + a% - a,a, f )
2E 3 mN{(x?)

13
I (13)

Note that the second factor on the right-hand side is 1/2 for
the radial breathing mode and 3/2 for the radial quadrupole
mode. If this dependence could be demonstrated experimen-
tally, it would confirm that the damping is indeed dominated
by shear stress. Another possibility is to compare the breath-
ing mode with a scissors mode. The scissors mode is char-
acterized by the velocity field v=aV(xy). The frequency is
w2=w3+ w% and the second factor in Eq. (13) is 6.

For the unitary Fermi gas the ratio of the shear viscosity
to the entropy density is given by a universal function that
depends only on the ratio T/Ty, 7(u,T)=a(T/Tk)s(u,T).
Here, the Fermi temperature 1is given by T
=(372n)*3/(2m). In the local density approximation this im-
plies that 7(x)=a(T/Tk(x))s(x), where Tx(x) is the local
Fermi temperature. We shall assume that « is a smooth func-
tion and replace Tp(x) by its value at the center of the trap.
This approximation can be checked a posteriori. We note
that since the flow profile has a simple scaling form the
damping rate is proportional to the volume integral of the
shear viscosity. If 7~ s then the damping rate scales with the
total entropy. The kinetic energy, on the other hand, is pro-
portional to the number of particles. The shear viscosity to
entropy density ratio extracted from the radial breathing

mode is
7_3.n 1,3<5)_F>(£><E)
S—4§ (3N) 2 NEL)\s) (14)

where I'/ @ | =1/(7w,) is the dimensionless damping rate.

IV. BREAKDOWN OF HYDRODYNAMICS

Near the edge of the cloud the mean free path is compa-
rable to the characteristic length scale over which the veloc-
ity field varies and the hydrodynamic description breaks
down. In this regime the density is low and the mean free
path can be estimated using kinetic theory. In the limit
n< (mT)*? the mean free path is given by [16]
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FIG. 1. Temperature dependence of the damping rate for the
radial breathing mode of a trapped °Li gas near the Feshbach reso-
nance at 840 G, from Kinast ef al. [8]. Here 7is the damping time
and w, is the radial trap frequency. We have used the calibration

curve in [18] to convert the T scale of [8] to T/T.

lngp = (n0) ™", (15)
Following [22] we can define a surface ry(6) by the condition
that a particle incident from the exterior of the cloud has a
chance of no larger than 1/e of colliding with another par-
ticle

“ ds
1=J . (16)
ro(6) lmfp(;)

Here, 6 denotes the angle between ds and the z axis. Ideally,
the hydrodynamic description inside the surface ry(6) should
be coupled to kinetic theory outside this surface. In this work
we shall be less ambitious and use Eq. (16) in order to esti-
mate the systematic uncertainty in our determination of 7/s.

For this purpose we compute the contribution to E in Eq.
(13) that comes from atoms outside ry(#) and treat it as a
systematic error in the damping rate.

V. THERMODYNAMICS

Experimental results for I'/ w are shown in Fig. 1. In order
to extract n/s we also need information on the entropy per
particle. In the unitarity limit there are only two energy
scales in the problem, the chemical potential u and the ther-
mal energy kzT (in the following we will set kg to 1). The
associated density scales are ndu) and 7\}3, where n/(u)
=(2mu)*?/(37) is the density of a free Fermi gas and \;
=(2mmT)~"? is the thermal wavelength. All thermodynamic
quantities can be expressed as suitable powers of either ()
or )\37 times a function of the dimensionless quantity y
=T/ u. For example, we can write the pressure as [24]

2 2
P(pT) = SpndwG0) = GWOT, - (17)

where the first form is more useful at small 7" and the second
at high 7. Using standard thermodynamic identities one can
show that
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n(u,T) =nlw) F(y), (18)

ST = )G, (19)

where n is the density, s is the entropy density, and F(y)
=G(y)-2yG'(y)/5. At T=0 the function G(y) is related to the
parameter ¢ introduced above, G(0)=&32. The functions
G(y), F(y) refer to the bulk system. Trapped systems can be
described using the local density approximation. Experi-
ments typically involve 10°—10° atoms and the local density
approximation is very accurate. The density of the trapped
system is

no(x) = n(u = V(x),1), (20)

where V(x) is the trapping potential. Similar relations hold
for the energy and entropy density. For T=0, Eq. (20) re-
duces to Eq. (5).

The function G(y) can be extracted from quantum Monte
Carlo data or from calorimetric experiments with trapped
fermions. A number of Monte Carlo calculations have ap-
peared over the last couple of years [25-27], but there are
still significant disagreements between the results. Burovski
et al. find T./Tr=0.152(7) and a critical entropy per particle
S/N=0.16(2) [26]. Bulgac et al. quote T./Tr=0.23(2) and
S/N=1.1 [27]. Using the local density approximation the
results of Bulgac et al. correspond to a critical entropy per
particle of S/N==2.1 for the trapped system. The reason that
the entropy per particle is larger in a trapped system is that
the density near the edges is smaller, and therefore the di-
mensionless temperature m7/n*? is larger.

The Duke group has performed a series of calorimetric
measurements [18,23]. Kinast et al. [18] provide a simple
parametrization of the energy of the trapped system as a
function of t=T/Tf. The result is

1+97.387, t<t,
Ol 1+4.98:'8, 1>t

with Ey=0.53E; and T,/Tp=0.29(2). Luo et al. [23] give a
similar parametrization of the entropy,

4.6(e — ey)0, e<e,,
S/N:{ (e=ep)

21

22

4.0(e —ex)"®, e>e,, (22)
where e=FE/Ep. The critical entropy per particle is S/N
=2.7, roughly compatible with the Monte Carlo results of
Bulgac et al., but significantly larger than the results of Bu-
rovski et al.

VI. RESULTS AND CONCLUSIONS

In Fig. 2 we show 7/s extracted using both the damping
data and the calorimetry from the Duke group. We observe
that /s is small (~0.5) near T, and slowly grows with
temperature for 7>T,. The value of #/s near T, is about 6
times larger than the conjectured viscosity bound and consis-
tent with the picture of a very strongly correlated liquid.
Indeed, the extracted value 7/s~ 0.5 is smaller than the pre-
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FIG. 2. (Color online) Viscosity to entropy density ratio of a
cold atomic gas in the unitarity limit. This plot is based on the
damping data presented in [8] and the thermodynamic data in
[18,23]. The dashed line shows the conjectured viscosity bound
n/s=1/(4m). The shaded band is a systematic error estimate based
on the contribution to E from atoms outside a surface at optical
depth one.

viously known minimum for all other liquids, 7/s~0.7 for
liquid helium near the lambda point [6]. Even smaller values
of /s have been reported for the quark gluon plasma pro-
duced at RHIC, but the uncertainties remain large [2,28]. We
note that the systematic uncertainty near the minimum is
small, but that it increases as a function of temperature.

There are a number of issues that need to be addressed in
more detail. We argued that it is important to establish that
shear viscosity is indeed the dominant damping mechanism.
This can be done either by studying the dependence of the
damping time on the type of collective mode, or by studying
the dependence on system size. Kinast et al. collected some
data on system size dependence below 7. and found that
I'/w, is roughly independent of the number of particles [8].
This is not consistent with the scaling in Eq. (14). Data on
system size dependence can also be used to determine at
what point hydrodynamics is breaking down.
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It is also important to understand the damping mechanism
below T in more detail. The data show a very simple linear

behavior in the variable 7~ (T/Ty)*?. The natural frame-
work for understanding the damping mechanism in the re-
gime below T, is superfluid (two-fluid) hydrodynamics [20].
There are several sound modes in superfluid hydrodynamics.
First sound is an excitation in which the superfluid and nor-
mal components move together, whereas second sound cor-
responds to an oscillation of the superfluid component
against the normal one. The damping of first sound is gov-
erned by the shear stress of the normal component. It is
likely that the collective excitations that have been observed
experimentally are ordinary (first) sound modes, but it is not

obvious why the damping constant is linear in T. We should
note that a linear behavior was observed in trapped Bose
gases [29], where it was attributed to Landau damping by
normal excitations [30].

Finally, there are a number of technical aspects of our
analysis that should be improved. We have assumed that the
quantity a=7/s is only weakly temperature dependent. Near
the minimum of #/s this is a good approximation, but at
higher temperature the uncertainty inherent in this approxi-
mation grows, as does the uncertainty related to the break-
down of hydrodynamics near the surface of the cloud. In this
regime a Boltzmann description should be used. In the
present work we have neglected dissipation due to tempera-
ture gradients and thermal conductivity. This is expected to
be a good approximation for scaling flows because oscilla-
tions in density are proportional to the equilibrium density
on(x) ~ ng(x). For isentropic oscillations 8T~ (&n/n)T and to
leading order no temperature gradients are present.
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