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We apply the general principles of effective field theories to the construction of effective interactions suitable
for few- and many-body calculations in a no-core shell model framework. We calculate the spectrum of
systems with three and four two-component fermions in a harmonic trap. In the unitary limit, we find that
three-particle results are within 10% of known semianalytical values even in small model spaces. The method
is very general, and can be readily extended to other regimes, more particles, different species (e.g., protons
and neutrons in nuclear physics), or more-component fermions (as well as bosons). As an illustration, we
present calculations of the lowest-energy three-fermion states away from the unitary limit and find a possible
inversion of parity in the ground state in the limit of trap size large compared to the scattering length.
Furthermore, we investigate the lowest positive-parity states for four fermions, although we are limited by the

dimensions we can currently handle in this case.
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I. INTRODUCTION

The properties of strongly interacting Fermi gases have
been the object of great interest in recent years. Feshbach
resonances allow the tuning of the interaction between
trapped particles so that one can study the evolution from a
dilute Fermi gas to a Bose-Einstein condensate. In three-
dimensional optical lattices one can reach the low-tunneling
regime where each site is an essentially isolated harmonic
trap occupied by few fermions [1,2]. This opens up a new
window into the study of few-body systems with two-body
scattering lengths a, that are large compared to the range r
of the interaction, |a,|>>rq.

Large-|a,| systems are of particular theoretical interest
when particle momenta Q are small compared to 1/r,, be-
cause then they exhibit universal behavior, that is, the system
properties depend essentially only on a, (and for bosons or
multicomponent fermions, also on a three-body parameter),
but not on the details of the interaction. (For a review, see
Ref. [3].) The presence of a harmonic trap introduces another
parameter: The trap frequency w or, equivalently, the trap
length h=1/Vuw, where u is the reduced mass of two par-
ticles. As long as b>>r, the trapped system should still ex-
hibit universal behavior, which for b=<|a,| could be signifi-
cantly different from that of the untrapped system. In the
unitary limit |a,| — %, the untrapped two-body system has a
bound state at zero energy, and a collection of two-state fer-
mions is characterized purely by the parameter that sets the
size of the system.

While large-|a,| systems have been popular in atomic
physics mainly in the past decade, they have been investi-
gated in nuclear physics since its beginning. The two-
nucleon (NN) system has two S-wave channels where
|as|>>ry: The scattering lengths are about 5 fm and —20 fm
in the 3S, and 'S, channels, respectively, compared with a
range of about 2 fm. Here we combine two methods previ-
ously developed to deal with untrapped particles—effective
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field theory (EFT) and no-core shell model (NCSM)—in or-
der to provide solutions of few-fermion systems in a har-
monic trap.

Since we are interested in the long-range dynamics, we
can approximate the complicated short-range physics as a
series of contact interactions that are delta functions with an
increasing number of derivatives. This can be formulated as
a nonrelativistic EFT where observables are expressed in an
expansion in powers of Qr, (assuming, for simplicity, that
the size of all scattering parameters except for the scattering
length is set by ry). The EFT in the untrapped two-body
sector [4] reproduces the effective-range expansion and is
equivalent to a pseudopotential, but can be extended to
more-body systems [5,6]. It can be shown that in leading
order the Hamiltonian for two-component fermions consists
of a single, nonderivative, two-body contact interaction be-
tween the different components. For systems of identical
bosons or more-component fermions, a nonderivative, three-
body contact interaction is also present at this order. The
EFT for short-range forces and its generalization for the ex-
change of light quanta are reviewed in Ref. [7].

The NCSM is a powerful many-body technique for solv-
ing the Schrodinger equation for A strongly interacting par-
ticles, where the many-body basis states are constructed us-
ing harmonic-oscillator (HO) wave functions. In nuclear
physics, NCSM is used to describe properties of light nuclei
without adjustable parameters [8,9]. Starting from interac-
tions that describe the NN scattering phase shifts and se-
lected few-nucleon properties with high accuracy, a unitary
transformation is used to construct effective interactions in
truncated spaces of a finite number of energy excitations on
top of a minimum configuration. For the two-body problem,
the maximum number of excitations is equivalent to the
number N, of shells included. After a truncation where
higher-body terms in the effective interaction are
neglected—the so-called cluster approximation—numerical
diagonalization allows a good description of nuclear energy
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spectra and other properties. Unfortunately, there is no a pri-
ori justification for the cluster approximation in the context
of phenomenological interactions.

We have recently proposed [10] a combination of NCSM
and EFT in which the cluster approximation is seen as a
consequence of the EFT power counting. Instead of perform-
ing a unitary transformation on phenomenological interac-
tions, we simply solve the EFT within the truncated space.
We determine its parameters from some binding energies and
then predict other bound-state properties by extrapolation to
the limits w— 0 and N, — . We have successfully applied
the method in leading order to systems with A =6. However,
application beyond leading order becomes cumbersome be-
cause of the increased number of parameters that would have
to be adjusted to properties of light nuclei. This motivates us
to devise a more flexible approach, which will allow us to
determine two-body parameters from two-body data.

In this paper, we present the new method and apply it to
the case of two-component fermions in a harmonic trap. The
two- [11] and three- [12,13] body systems with a pseudopo-
tential in a trap have already been studied. We provide an
alternative, explicit solution for these systems in a NCSM
basis where w is kept fixed but N,,, is made large. This
allows us to test the accuracy of our approach in a nontrivial
system. In addition, we present a first solution of the four-
body system. The paper is organized as follows. We intro-
duce our approach to the renormalization of the many-body
problem in Sec. II, and present our results in Sec. III. Con-
clusions and perspectives for future applications are dis-
cussed in Sec. IV.

II. MANY-BODY PROBLEM AND RENORMALIZATION
OF THE INTERACTION

Here we consider a system of A identical two-component
fermions of mass m, where the two-body scattering length a,
is large compared to the range r, of the interaction, |a,|>> r.
This system is assumed to be trapped in a harmonic potential
of frequency w, whose length parameter is also sufficiently
large, b>>r,. We allow various values of the ratio b/a, rang-
ing from the unitary limit b/|a,| —0 to the untrapped case
b/|a,|— . (Note that we use units such that i=c=1.)

Under these conditions, details of the interparticle poten-
tial are irrelevant, and in leading order can be replaced by a
nonderivative two-body contact interaction between different
components. Without loss of generality we can refer to the
two components as spin-1/2 states, in which case the contact
interaction acts only in the 'S, channel. We denote its inter-
action strength by C,. We start with the Hamiltonian for
trapped particles,

A 2
| o
HA=E<p—l+—mw2ri2)+C02 5(3)(;",-—}’-), (1)
= \2m 2 = J
i=1 [i<j]
where 7; and p; represent the position and momentum, re-
spectively, of particle i, and [i <] denotes a pair of particles
with opposite spin. This Hamiltonian can be written as a sum
of relative and center-of-mass (c.m.) motion, so that the en-
ergy of the system is the sum of internal (E) and c.m. (E_, )
terms:
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Ey=E.m +E. (2)

The c.m. motion is that of a simple HO, so in the following
we focus on the relative motion.

The internal Hamiltonian is not well defined as it stands,
since the delta function is singular. Renormalization is nec-
essary: After a truncation of the Hilbert space with a cutoff in
energy or momentum, Cj is taken to depend on the cutoff in
such a way that finite, cutoff-independent results are ob-
tained for observables. The contact interaction thus repre-
sents high-energy physics not incorporated explicitly within
the space where the Hamiltonian is diagonalized. Note that
part of the effect of the high-energy physics comes from its
interference with low-energy physics. Here, it is simply that
we need to account for high HO levels, so in addition to the
high-energy cutoff C, also depends on w. Because w is an
energy scale much below the cutoff energy, we expect a mild
dependence on w, which we observed in Ref. [10]. The role
of w resembles that of the pion mass in chiral EFT [7]: They
set the scale of the corresponding long-range potentials and,
through renormalization, contaminate all short-distance pa-
rameters. The many-body problem cannot in general be
solved analytically, but renormalization can be incorporated
easily in numerical calculations, which are formulated from
the outset within a finite space.

These issues can be made explicit in the two-body system,
where the relative motion of two particles of opposite spin is
described by

2
Hy= 2| b+ % +2uCob? 8 (F) (3)

in terms of the relative coordinate 7 and the reduced mass
pm=m/2.

In the conventional NCSM approach, one chooses the
model space by truncating in the number of shells included
in the calculation. More precisely, one considers only HO
states with the principal quantum number N=2n+/ smaller
than a given value N,,,. The effective Hamiltonian is then
constructed via a unitary transformation U (H;’“:UHZUT),
designed so that the lowest D eigenvalues of H, are exactly
reproduced by HS" (D is the dimension of the model space).
Of course, the transformed Hamiltonian no longer has the
form of the initial interaction and, in particular, additional
nonlocal terms are induced even if one starts with a contact
interaction.

The alternative approach proposed in Ref. [10] is based
on principles of EFT, and it constructs the interaction be-
tween particles making use of power counting. Thus, in each
model space one preserves the form of the interaction, as
dictated by the power counting, and one determines the
strength of each interaction strength as a function of N,
and w so that some observables are exactly reproduced. For
example, one can fix Cy=Cy(N,,, @) such that the two-body
ground-state energy is fixed.

In this paper we propose an intermediate approach. Thus,
as in Ref. [10], we consider only the terms dictated by power
counting, but instead of adjusting their strength to reproduce
observables in the few-body system, we reproduce the
w-dependent energies of two-body states, as in the conven-
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tional NCSM approach. The number of states whose energies
are to be reproduced is fixed by the number of coupling
constants to be adjusted, and not by the dimension of the
model space, as in the conventional approach involving a
unitary transformation. We note that, according to the gen-
eral principles of EFT, even if initially we start with only a
contact interaction, each truncation is going to induce addi-
tional correction terms. Effectively, the truncation of the
space induces effective range, shape, and other parameters,
which can be adjusted to the appropriate values as more de-
rivatives of delta functions are included.

To renormalize the interaction, we consider the relative
Hamiltonian (3) and solve the corresponding Schrédinger
equation,

2
P+ S 2GS0 [N =2, @)

in a finite model space defined by 0=2n=N_,,. Since the
delta function acts only on S waves, we consider here only
those waves. The solution #{r) can be expanded in the com-
plete set of HO wave functions

N,

max/2

Y= 2 Ar), (5)
n=0

with ¢,(r) the S-state solutions of the unperturbed HO,

1 2n! 2, P
- - 267 (U2)( 2 6
alr) \’477<b31"(n+3/2)) ¢ "o\ p? ©

in terms of generalized Laguerre polynomials. One can eas-
ily verify that the eigenvalues of Eq. (4) are given by the
consistency condition

2mh ~ iNmax/Z Lill/z)(o) (7)
wCo(Npar @) 2 2 (2n+3/2) - Elo’

At this point, the coupling constant Cy(N.x,®) is undeter-
mined. We can fix the value of Cy(Np,x, ) at each N, by

requiring that we reproduce a given measured level E(w) of
two trapped fermions [2]. However, neglecting range correc-
tions, such a level is determined by the two-body scattering
length, a,. The dimensionless interaction strength

m
YO(Nmax’ b/a2) = CO(Nmax’ (1)) (8)
27h

can only depend on w via the dimensionless ratio b/a,. In
fact, the experimental energy values are very close to the
theoretical prediction of a pseudopotential, given [11] by the
transcendental equation

[(3/4-ERw) b

= . 9
I'(1/4-ERw) 2a, ©

[For discussions about the limits of applicability of Eq. (9),
see Ref [14].] The solutions of Eq. (9) come in levels, and
we can use any of the low-energy states to fix the value of
Co(Npax » ). Here we use the most natural choice, the ground
state. In Fig. 1 we plot the running of yy(N,.«,b/a,) with Ab
for several values of the b/a, ratio, where
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FIG. 1. (Color online) Running of the scaled interaction strength
Abyy=uACy/2 with the inverse of the ultraviolet cutoff (in units
of the HO length) 1/Ab, for selected values of the ratio b/a,.

-
A= \2u(Npax +3/2) @ (10)

is the ultraviolet momentum cutoff defined in Ref. [10]. As
the cutoff increases at fixed b, Aby,=uACy/2 approaches
—ar/2 at a rate that depends on a,, just as in the continuum
case [4].

Once we adjust the strength of the two-body term for each
Npax Value (and, in general, w), we can perform few- and
many-body calculations. The many-body model spaces for
A>?2 are chosen so that the two-body truncation is included
consistently in relative coordinates [8]. Note that if one
wants negative-parity states, one has to truncate the many-
body space to odd N, In this case, we use a two-body
interaction that is adjusted to the largest even number below
Niax» that is, N —1.

Results for the energies of few-fermion systems are in
general complicated functions of N, and w. In the unitary
regime the dependence on w gets simpler. When b/|a,| — 0,
the two-body spectrum of Eq. (9) is given by E,/w=1/2
+2n, where n=0,1,.... We see in Fig. 1 that for a large
range of ultraviolet cutoffs Ab7y, remains flat, so
Yo(Nmax>0) ==7/22N,.x. Since both w and b disappear
from Eq. (3) upon a rescaling r— bp (with p a dimensionless
variable), the energy can only be proportional to w. More
generally, rescaling all coordinates in Eq. (1) will ensure that
o exactly factors out in all the many-body eigenenergies.
This was to be expected, given that for |a,|— the only
energy parameter is w, which also sets the size of the system.
It has been argued [15] that the proportionality constant be-
tween E and o is related to the short-distance scaling expo-
nent y of the wave function. The three-fermion spectrum has
been solved semianalytically in Ref. [13], while the ground-
state energies for A=2— 22 have recently been calculated in
the case of a short-range potential [16].

In the opposite limit b/|a,|—, the trap is removed.
Equation (9) gives expected results. There is a single two-
body bound state of energy Ej=-1/ 2,ua%, if the two-body
interaction is sufficiently strong, b/a,— . All other states
have energies E,/w=-1/2+2n, where n=1,2,..., and cor-
respond to scattering states. When b/a, — —ce, the interaction
is weak and the spectra of all few-body systems are expected
to approach those of noninteracting fermions in a HO. This
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can be seen from Eq. (7): As b/a,——x the two-body
ground-state energy approaches 3w/2, leading to a diver-
gence from the n=0 contribution and to Cy(Nyx, @) — 0. In
this limit all few-body energies should be set by occupation
of HO levels. For example, all other two-body levels are
given by the poles in the right-hand side of Eq. (7). Whether
few-body bound states exist when the interaction is suffi-
ciently attractive will be discussed below.

In any case, at the end of the calculation we extrapolate to
the limit N,,,—%. As we show in the next section, this
extrapolation is relatively smooth. Our approach can be
straightforwardly extended to higher orders. At the two-body
level, we add to Eq. (1) interactions proportional to deriva-
tives of the delta function, starting with an S-wave range
correction of relative order O(Qry) [4]. A P-wave interaction
(the most important between like components) appears at
O((Qry)?). For spin-1/2 fermions contact three- and more-
body forces act in P and higher waves, so these forces are of
relative order O((Qr,)’) or higher [5]. Many-body properties
are thus to a high degree determined by two-body forces
alone. The two-body parameters can be determined from an
extension of Eq. (9) to non-negligible-range interactions

[14].

III. RESULTS

In this section, we apply the method introduced in the
preceding section to the description of systems of three and
four identical fermions in a harmonic trap. We consider the
unitary regime (|a,|— ) as well as a general nonvanishing
b/a, value, for both positive and negative scattering lengths.

In the three-body calculation, we have employed two nu-
merical methods. In the first stage, we have used the three-
body code in relative coordinates employed in Ref. [10].
Thus, to handle three identical fermions of spin-1/2, we al-
low interaction only in the 'S, channel, calculating the iso-
spin T=3/2 solution. In a second stage, we have developed a
program that can handle fermions of arbitrary spin, dropping
the isospin from the possible quantum numbers. Both codes
produce the same results for fermions of spin-1/2, but the
latter can be extended to larger N,,,.. We should point out
that in order to correctly antisymmetrize the three-body sys-
tem, we include all possible / states in each model space.
Therefore, although we show below only results for the lev-
els that are affected by the contact interaction, we also obtain
energy levels that are left unchanged. (For example, states
with j7= %* can be obtained from addition of two /=1 rela-
tive angular momenta and total spin-1/2 or -3/2; however, in
such channels the contact interaction is not present since it
appears only for [=0.)

Figure 2 presents the main results of our investigation of
the unitary regime. We show the dependence of the lowest-
energy levels (labeled by their spin and parity, j7) in units of
w as function of the ultraviolet cutoff N,,,,. We have verified
numerically that, indeed, w factorizes, as we have argued in
the preceding section. The running of the low-lying energies
is fairly smooth when one increases the ultraviolet cutoff,
and allows an extrapolation to the limit N,,,, — . However,
we find that the running depends on the state considered. In
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FIG. 2. (Color online) Dependence on the ultraviolet cutoff N,
of selected low-lying energies (in units of the HO frequency) of
three harmonically trapped fermions of spin-1/2 in the unitary re-
gime (b/a,=0). We present the lowest three states of j7= %‘ (con-
tinuous curves), j7= %J' (dotted curves), and j™= %* (dashed curves).

order to qualify this statement, we assume a running of the
form

£ (11)

EF=E . +——m—,
(Npax + 3/2)¢

with E, E,, and « fitting parameters. In a previous publica-
tion [10], we assumed a running for the energy of the many-
body system of the form Ey+E,/A. This was motivated by
the running in the continuum two-body system. Here we
carry out a more detailed investigation of the running of the
three-body solution with the ultraviolet cutoff. Allowing a to
vary in the fit, we find values between 0.5 and 2.0. We find
that, in general, the values of E., are not very sensitive to the
value of a, but can depend on the features of the running and
the values of N,,,, included in the fit. For example, while in
Fig. 2 the first j7= %‘ excited state appears to be smooth, a
closer examination reveals some structure, as shown in Fig.
3. In this figure we exhibit also three possibilities for fitting,
where we include all points, only points with N, =15, or
only points with N, =21. Since Eq. (11) is valid for large
Npax our best guess for « is obtained in the case when we
consider only N,,,,=21. In this case we find @=1.474, and
the extrapolated value for the energy of the state is E../w
=4.83.

4.94 |-

FIG. 3. (Color online) Running of the first excited state

1
2
(circles), and three fits with the functional form in Eq. (11) taking
into account all points (dotted line), only points with N, =15
(dashed line), and only points with N, =21 (dot-dashed line).
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In Tables I-III we present our estimates for E. for the
states shown in Fig. 2. In our approach, there are two sources
of errors: On one hand, we neglect higher-order terms in the
expansion of the interaction (terms involving derivatives of
contact interactions) and, on the other hand, we perform a fit
of the form of Eq. (11) to obtain the large-N,,,, limit. The
variation with N,,,, allows us to estimate errors associated
with missing terms; thus, for low-lying states, even fairly
small values of N, produce results within about 10% of the
extrapolated values. On the other hand, we find that, in gen-
eral, the extrapolation errors coming from fits to large values
of N.x are very small. For the levels shown in Tables I-III
these extrapolation errors are beyond the last digit shown,
except for second level in Table I, where the error is 2 in the
last digit.

In the limit N, — %, we should recover the semianalyti-
cal solutions obtained in Ref. [13] under the assumption of a
two-body pseudopotential:

E
—=1+s+2gq, (12)
»

where g=0,1,... and s=1.77 is the (real) solution of a tran-
scendental equation. The agreement between our numerical
method and the semianalytical values, also shown in Tables
I-II1, is remarkable and provides a confirmation of the reli-
ability of our method. As a side result, we note that the
short-range scaling exponent [15] we obtain for three par-
ticles is y=-0.24. (While the virial theorem [15] is not sat-
isfied necessarily in each model space, we expect it to be
satisfied in the large-N,,,, limit.)

The successful test in the unitary regime encourages us to
extend the application of our method for arbitrary values of
the b/a, ratio. Experimentally, one can vary the scattering
length of trapped particles by means of a magnetic field and,
in principle, obtain a large range of ratios b/a,. Thus, for
illustration, we have considered a range of b/a, values, and
fixed the coupling constant in each model space so that the
ground-state energy given by Eq. (9) is always exactly repro-
duced.

In Fig. 4 we show the running of the lowest j”:%‘
(ground state) energy of the trapped three-fermion system for
b/a,==*1 in comparison with the unitary limit. We obtain
different shifts of the energy level with respect to the unitary
solution depending on the sign of a,. If a,>0, the level is
pushed downward in energy with respect to the unitary
value, while if a,<<O the level is pushed upward. This be-
havior is a reflection of the same type of behavior in the
two-body system: While in the unitary limit the two-body

TABLE I. Comparison between the results of the present ap-
proach (E.,/w) and of the semianalytical formula from Ref. [13]
[Eq. (12)], for j™= %".
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FIG. 4. (Color online) Ground-state energies (in units of the HO
frequency) of the three-fermion system in a harmonic trap as func-
tion of the cutoff Ny, for b/a,=0 (circles), b/a,=—1 (squares),
and b/a,=1 (diamonds).

ground state is Ey/w=1/2, the corresponding energy for
b/ay=1 decreases to Ey/ w=-0.34, and for b/a,=-1 in-
creases to Ey/ w=0.9.

In Fig. 5 we consider both j7= %‘ and j7= %* states, and
plot the lowest-energy level in each case as a function of
b/a,. We show only the extrapolated values E., obtained by
means of Eq. (11), taking into account only the points with
Npax =21 to reduce fitting errors. For b/a, =< 1.5, the ground
state is the same as in the unitary limit. However, we observe
a tendency for an inversion of the parity of the ground state
for b/a,=1.5, although the positive- and negative-parity
levels are nearly degenerate. Note that in the region with
a, >0 we might have larger errors from the fitting procedure,
because the interaction strength increases with increasing
values of the ratio b/a,.

As discussed in the preceding section, for weak two-body
attraction the spectrum should approach that of three nonin-
teracting fermions in a HO trap—which is itself wide. In the
limit b/a,— —%, the lowest state is a configuration with two
particles in the first S state and the third in the first P level.
Figure 5 indeed suggests the asymptotic value 4w (5w) for
the energy of the negative (positive) -parity state.

On the other hand, for strong two-body attraction the rela-
tive effect of the contact interaction increases. In order to
understand the possible parity inversion, we fit the a,>0
results for £/w in Fig. 5 to a quadratic function of b/a,
(dashed line). In the untrapped b/a,— 0 limit we find that
the lowest positive- and negative-parity levels are very close,
and their energy is

1
2,ua% '

E= (13)

Thus, within errors, the system of three fermions is at the
threshold for the scattering of one particle on the bound state

TABLE II. Same as in Table I, but for j7= %*.

n [ q s Eq. (12) E./® n [ q s Eq. (12) E./®
0 1 0 1.77 2.77 2.76 0 0 0 2.17 3.17 3.17
0 1 1 1.77 4.77 4.83 0 0 1 2.17 5.17 5.13
1 1 0 4.36 5.36 5.39 1 0 0 5.13 6.13 6.15
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FIG. 5. (Color online) Lowest (extrapolated) energy levels for
j”:%‘ (circles) and j”:%+ (squares) states of the three-fermion
system in a harmonic trap as function of the ratio b/a,. Around
bla,~ 1.5, we observe an inversion of the parity of the system’s
ground state. The dashed line is a fit of the positive-parity points by
a quadratic form.

of the other two (dimer): The system is not bound, or very
weakly bound, and can be viewed as composed of a dimer
and an additional particle. The lack of a deep three-body
bound state follows in fact from a very naive argument. The
existence of a shallow two-body bound state is a conse-
quence of a balance between the renormalized delta-function
attraction and the kinetic repulsion. The addition of a third
spin-1/2 fermion roughly doubles both, so we do not expect
a collapse of the three-body system—as one does when the
number of pair interactions grows faster than the number of
particles, e.g., for identical bosons and multicomponent fer-
mions.

The parity inversion of the ground state is therefore plau-
sible. In the b/a,— o0 limit, the positive-parity state likely
represents the untrapped S-wave particle-dimer scattering
state that one expects to dominate sufficiently close to
threshold. This is consistent with results [17] for near-
threshold particle-dimer scattering.

We have also solved the four-fermion problem in the trap.
For now, we are limited to smaller model spaces than for
three fermions because we use the REDSTICK Slater determi-
nant code [ 18] that preserves only the third component of the
angular-momentum projection, mixing states with good an-
gular momentum. The dimension of the many-body basis
thus increases significantly. Because we truncate the many-
body configurations allowing only a maximum number of
excitations on top of the minimum solution, we can eliminate
spurious c.m. contributions when we compute the spectrum
of the intrinsic motion. (The calculations in relative coordi-
nates and in a properly truncated Slater determinant basis
are, in fact, equivalent.) Moreover, because the Hamiltonian
is rotationally invariant, we obtain eigenstates with good an-

TABLE III. Same as in Table I, but for j7= %*.

n [ q s Eq. (12) E./w
0 2 0 3.10 4.10 4.11
1 2 0 4.79 5.79 5.81
0 2 1 3.10 6.10 6.07
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FIG. 6. (Color online) Same as Fig. 4 but for the j7=07 states of
the four-fermion system.

gular momentum (for four particles, the lowest positive-
parity state has j=0), even though most of the individual
Slater determinants that compose the many-body basis do
not have good ;.

Figure 6 exhibits the running of the lowest positive-parity
levels of four harmonically trapped spin-1/2 fermions, with
the same parameters as in Fig. 4, b/a,=0, = 1. Because of
the present limitation to just a few values of N, for the
four-body system, our fitting procedure is likely to be subject
to larger extrapolation errors, although Fig. 6 shows small
variation with the ultraviolet cutoff. Thus, in the unitary
limit, if in Eq. (11) we use a=1/2, we estimate E./w
~3.58, while if we use a=1, we obtain E,./w~3.85. (The
small number of points does not allow us to obtain « reliably
from the fit.) Both values are in line with previous calcula-
tions of the four-body system in the unitary limit [16,19].
From these results we can estimate the short-range scaling
coefficient y [15] for four particles between —0.65 and
-0.92.

At nonvanishing b/a, we observe the same type of dis-
placement in the lowest positive-parity level as for two- and
three-fermion systems. However, our technical limitations in
the four-body system do not allow us yet to make a more
detailed investigation of a large range of ratios b/a,. As ex-
pected, the system goes to the noninteracting case in the limit
b/a,— —; that is, the internal four-fermion ground-state en-
ergy is 13w/2. As for three particles, we can extrapolate to
the other limit b/a, — % with a quadratic form in b/a,>0.
We find the binding energy in this limit to be about 40%
below the threshold of scattering of two dimers. However,
because our results are subject to large errors, we leave a
more thorough analysis of four-body spectra in different re-
gimes for future work using relative coordinates, when it
should be possible to achieve larger ultraviolet cutoffs.

IV. CONCLUSIONS AND OUTLOOK

We have presented a first application of the NCSM to the
description of three- and four-fermion systems in a harmonic
trap. Based on the general principles of EFT, we have pro-
posed a method to renormalize the two-body interaction to
be used for few- and many-body calculations in finite model
spaces. Tests of our results against semianalytical calcula-
tions in the unitary regime suggest good accuracy in estima-
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tion of the energy levels of the three-fermion system. More-
over, we have extended the application of our method to
arbitrary b/a, ratios.

There are, of course, ways to improve our results. In prin-
ciple, even if a pseudopotential is a good approximation, in
finite model spaces we can add a range correction to the
contact term. This should improve the running of observ-
ables with the ultraviolet cutoff. Although in many cases the
running is quite small, we could improve the calculations for
a,>0, where the interaction is stronger and requires larger
model spaces to converge. (In the four-nucleon system we
can follow the evolution of the contribution of different con-
figurations. We find that the components with the lowest-
energy configuration dominate for a,<<0, while other con-
figurations reshuffle small contributions in each model space.
However, this situation changes, with a larger contribution of
the higher shells, for a stronger interaction such as for a,
>(. This is not surprising since a stronger interaction be-
comes more important across shells.) Adding higher-order
terms should decrease the magnitude of E, in Eq. (11),
thereby allowing for a more precise determination of observ-
ables in few- and many-body systems.

In principle, we could extend our method even further.
First, we can perform similar calculations of other observ-
ables (e.g., rms radii), with more particles, as well as for
fermions of different spin. Especially for the latter it will be
interesting to investigate the ability of the method to predict
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Efimov states in a finite model space. In the case of un-
trapped multistate fermions, the EFT power counting re-
quires a contact three-body force to prevent the collapse of
the three-body system [5].

Finally, the same type of approach can be considered in
nuclear physics, where addition of a c.m. harmonic term to
the intrinsic Hamiltonian produces effectively the same type
of two-body relative Hamiltonian as in Eq. (3) [20].
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