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We calculate the interaction induced inhomogeneous broadening of spectral lines in a trapped Bose gas as a
function of the depth of a three-dimensional cubic optical lattice. As observed in recent experiments, we find
that the terraced “wedding-cake” structure of Mott plateaus splits the spectrum into a series of discrete peaks.
The spectra are extremely sensitive to density corrugations and trap anharmonicities. For example, even when
the majority of the cloud is superfluid the spectrum displays discrete peaks.
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I. INTRODUCTION

The study of quantum degenerate atoms confined to peri-
odic potentials forms an important subfield of modern atomic
physics. Research in this area is driven by its connection to
condensed matter physics and quantum information process-
ing �1,2�. A rich set of probes, including optical spectros-
copy, noise spectroscopy, interference, and density profile
measurements �3–8�, have been used to characterize these
systems, with a focus on understanding the interaction driven
superfluid-insulator transition. Here we analyze in detail
what information one gains from inhomogeneous pressure
shifts of spectral lines in a gas of bosons confined to an
optical lattice.

Atomic interactions lead to pressure and density depen-
dent shifts of atomic lines. These “clock shifts” limit the
accuracy of atomic clocks. In an inhomogeneous system they
are spatially dependent, yielding a broadened spectrum
whose structure reveals details about the local atomic corre-
lations. In many situations the clock shift is proportional to
the atomic density, and the spectral line directly gives a his-
togram of the atomic density. As an example of this tech-
nique, Bose-Einstein condensation in spin polarized atomic
hydrogen was detected through the line shape of a two-
photon 1s-2s transition �9�. More recently, Campbell et al.
�8� utilized atomic clock shifts to experimentally probe
bosons trapped in an optical lattice, finding evidence for
Mott insulating shells. Motivated by these latter experiments,
we present a theoretical analysis of the line shapes which
should be found when bosonic atoms in a periodic potential
are confined by a nominally harmonic potential.

In Sec. II we use a local density approximation to calcu-
late the spectrum of a harmonically trapped gas as a function
of the depth of an optical lattice �Fig. 1�. In the deep lattice
limit, the spectral line splits into several distinct peaks, asso-
ciated with the formation of density plateaus. Due to the
sensitivity of these spectra to small density corrugations, this
splitting occurs even when large sections of the cloud are
superfluid. Despite qualitative agreement with experiments,
our calculation severely underestimates the small detuning
spectral weight. In Sec. III we show that these discrepancies

are consistent with trap anharmonicities. We also explore
other mechanisms for enhancing the low detuning spectral
weight.

Experimental details

Since we are largely concerned with the experiment
in Ref. �8�, we give a brief review of the important experi-
mental details. In these experiments, a gas of 87Rb atoms in
the �a�= �F=1, mF=−1� hyperfine state �F the total spin and
mF its z component� was cooled well below the condensation
temperature �10�. By combining optical and magnetic
fields, a three-dimensional periodic potential
Vper=−V0�cos�2�x /d�+cos�2�y /d�+cos�2�z /d�� was su-
perimposed on a trapping potential. The spacing between
lattice sites, d=� /2=532 nm, is one-half of the lattice la-
sers’ wavelength. The lattice depth V0 was tuned from zero to
40Erec where Erec= �2

2m
� 2�

�
�2 is the photon recoil energy. A

microwave and rf field were tuned near resonance for a two
photon transition from the �a� state to an excited hyperfine
state �b�= �F=2, mF=1� �11�. The number of atoms trans-
ferred during a fixed time interval was studied as a function
of the rf frequency.
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FIG. 1. Theoretical spectra showing the number of 87Rb atoms
transferred from hyperfine state �a�= �F=1, mF=−1� to state �b�
= �F=2, mF=1� when excited by light detuned from resonance by
the frequency ��. The N=9�104 atoms are confined by a harmonic
potential with �̄= ��x�y�z�1/3=2��100 Hz and a three-
dimensional periodic potential with lattice depth V0

=5, 10, 25, 35Erec �from top to bottom�.
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II. SPECTRUM OF HARMONICALLY TRAPPED GAS

A. Hamiltonian and approximations

1. Hamiltonian

Bosons in a sufficiently deep optical lattice are described
by the Bose-Hubbard model �12�, found by projecting the
full Hamiltonian onto the lowest Bloch band. We will work
with a two-internal state Bose-Hubbard Hamiltonian, where
ai and bi annihilate bosons at site i in states �a� and �b�,
respectively. Including an external trapping potential the
Hamiltonian is

H = − ta�
�i,j�

ai
†aj + �

i
	Ua

2
ni,a�ni,a − 1� + Vi,ani,a
 − tb�

�i,j�
bi

†bj

+ �
i
	Ub

2
ni,b�ni,b − 1� + Vi,bni,b
 + Uab�

i

ni,ani,b + H.c.,

�1�

where ni,���i
†�i. The t�’s describe hopping rates and U�	

the interaction where � and 	 label the species ��a� or �b��.
We abbreviate U�=U��. We have absorbed the chemical po-
tentials and hyperfine splittings into the trapping potential,
writing Vi,�=Vi,�+
�

HF−��, where Vi,� is the external poten-
tial at site i for species �, and 
b

HF−
a
HF=�0 is the vacuum

hyperfine splitting. In terms of microscopic quantities, the
Hubbard parameters are t�=−�dr−(Rj−Ri)w�

��r�
��−�2 / �2m���2+Vper�r��w��r�, Vi,�
Vtrap�Ri�, and U�	

= �4��2a�	 /m� �dr�w��r��2�w	�r��2, where m� is the mass
and w� the normalized Wannier function for state �, while
a�	 denotes the �-	 scattering length. For 87Rb, the relevant
scattering lengths are aaa=5.32 nm and aab=5.19 nm �13�.
The �b� atoms will be sufficiently dilute that abb will not
enter our calculation. The competition between the kinetic
and interaction terms drives the Mott insulator to superfluid
phase transition.

In the experiments of interest, the atoms all begin in the
�a� state, and one measures the rate at which atoms are trans-
ferred to the �b� state under the influence of a weak probe of
the form Hprobe
� jbj

†aje
−i��+�b−�a�t+H.c., within the rotating

wave approximation, where � is the frequency of the pho-
tons. �The factors of �b and �a arise from the canonical
transformation which introduces the chemical potential into
the Hamiltonian.� To calculate this response, it is sufficient to
understand the properties of the single-component Bose-
Hubbard model �the terms in Eq. �1� containing only a’s�.

Formally the lack of �b� atoms in the initial state implies
that �b�
�0� where 
�0� is the energy of the k=0 single
particle state. All �zero-temperature� observables will be in-
dependent of �b.

2. Mean-field theory

The ground state of the single component Bose-Hubbard
model is well approximated by the Gutzwiller mean-field
theory �GMF� of Ref. �14�. This approach is exact in infinite
dimensions and in the deep Mott insulator and superfluid
limits. Sophisticated numerical calculations, some with a
trapping potential, have shown that this mean-field theory

yields qualitatively accurate phase diagrams, energies, and
spatial density profiles �15–19�. As a point of reference,
Monte Carlo calculations predict that for unity filling the
three-dimensional Bose-Hubbard model on a cubic lattice
has an insulator-superfluid transition at t /U=0.034 08�2�,
while mean-field theory gives t /U=0.029 �20�. We will work
within this approximation. As will be apparent, one could
extend our results to include fluctuation effects by numeri-
cally calculating the density and compressibility of the ho-
mogeneous system. Within the local density approximation
discussed below these homogeneous quantities are the only
theoretical input needed to determine the spectrum.

The Gutzwiller mean-field approximation to the Bose-
Hubbard model can be developed either from a mean-field or
variational standpoint. As a variational ansatz, GMF corre-
sponds to taking the wave function to be a tensor product of
states at each site: ���= � i��nfn

�i��i ,n�� where �i ,n� is the
state with n particles at the ith site; the fn

�i� are varied. In the
corresponding mean-field language, fluctuations of the anni-
hilation operators from their expectations are assumed not to
affect neighboring sites. Then, assuming translation symme-
try remains unbroken and letting q be the number of nearest
neighbors, one has

HMF = �
i
	− qtai

†�a� + U
ni

2

2
+ Vini + H.c.
 �2�

from which one can find a self-consistent ground state with
�a�=�n

�n+1fn
�fn+1.

As a mean-field theory, this approach cannot accurately
determine some of the properties of the system near the criti-
cal point at the tip of the Mott lobe. Furthermore, it treats the
Mott state as inert, neglecting small, but finite, density fluc-
tuations. Given the smallness of these fluctuations in three
dimensions �25�, we do not believe that they play an impor-
tant role in the experiments. Furthermore, whatever role they
do play will likely be obscured by the trap.

3. Local density approximation

We use a local density �or Thomas-Fermi� approximation
�LDA� to calculate the spatial dependence of thermodynamic
quantities: All physical quantities at location r are taken to be
those of a homogeneous system at a chemical potential �
−V�r�. This is expected to be valid when the spatial correla-
tion length of the homogeneous system is much smaller than
the length scale of the trapping potential �21�. The validity of
the GMF+LDA is discussed in Refs. �15–19�.

B. Homogeneous clock shifts

The clock shift is a density-dependent shift in the energy
splitting � for driving a transition from internal atomic states
�a� to states �b� due to the interparticle interactions. In this
section we review the known results for the clock shift of a
homogeneous system in terms of local correlations, and spe-
cialize to the case of atoms in a periodic potential.

We will assume that ta= tb and Vi,b=Vi,a. These assump-
tions are justified in the recent experiments, where the polar-
izabilities of the two internal states are nearly indistinguish-
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able. In linear response, the average clock-shift energy of the
homogeneous system, is then

�E2 = �Uab − U��

��
i

ai
†ai

†aiai�
��

i

ai
†ai� , �3�

where the expectation is in the initial, all-�a� state �22,23�.
This expression can be rewritten in a somewhat more famil-
iar form by defining the local second-order correlation func-
tion g2��ai

†ai
†aiai� / �ai

†ai�2, so that we obtain

�E2 = �Uab − U��g2�n� . �4�

Special cases of the clock-shift formula: Dilute superfluid, Mott
insulator, and normal fluid.

For a dilute superfluid, the initial state is a coherent state,
and Eq. �3� gives a shift proportional to the occupation of
each site,

�ESF = �Uab − Ua�n . �5�

Deep within the Mott insulating phase, the initial state is a
number eigenstate and

�EMI = �Uab − Ua��n − 1� .

This latter formula has an intuitive explanation. In a Mott
insulator with filling of one particle per site, the atoms are
isolated so there is no interaction between particles. Hence
�EMI must vanish when n=1. Figure 2 illustrates how the
clock-shift energy evolves from being proportional to n to
n−1 by juxtaposing the contours of fixed �E2 and those of
fixed density.

If one raises the temperature the system becomes a nor-
mal fluid, even at weak interactions. In the absence of inter-
actions, the normal fluid statistical factor g2 appearing in Eq.
�4� is g2=2 �24�, so that the clock-shift energy is 2 times as
large as in the superfluid,

�ENF = 2�Uab − Ua�n . �6�

Given that there is no phase transition between the zero tem-
perature Mott insulator and the normal gas, it is interesting
that the clock-shift energy changes from 2�Uab−Ua�n in the
normal fluid to �Uab−Ua��n−1� in the Mott insulator. A
quantitative understanding of this crossover would require
calculating the temperature dependence of the pair correla-
tions in the strongly interacting limit.

C. Calculation of spectrum in a trap

To calculate the spectrum we assume that the gas can be
treated as locally homogeneous, and we can independently
sum the spectrum from each region in the cloud. The number
of atoms of atoms transferred to the �b� state will be

Nb��� 
� d3rn�r�Ir��� 
 � d3rn�r��1/�„��r� − �… , �7�

where Ir��� is the spectrum of a homogeneous system with
chemical potential ��r�=�0−Vtrap�r� appropriate to position
r in the trap. Averaging over the trap will wash out all of the
structure in Ir���, so we make the simplifying approximation
of replacing it with a broadened � function �1/�(�−��r�),
where the peak location, ��r�, is given by the mean clock
shift of a homogeneous system with chemical potential
��r�=�0−Vtrap�r�. We will model �����= �1 /��� / ��2+�2� as
a Lorentzian of width �, and use �=1 /�=100 ms, corre-
sponding to the finite probe duration in the experiments.

Note that the replacement of Ir��� by �1/�(�−��r�) is a
severe approximation. The homogeneous spectrum can have
important structure, even displaying bimodality in a narrow
parameter range. However, inhomogeneous broadening ob-
scures this structure, and we believe that one can adequately
model the experiment via Eq. �7�.

We calculate the integral in Eq. �7� within the Gutzwiller
mean-field approximation to the Bose-Hubbard model. As
illustrated in Fig. 2, both the density n and the clock shift �
can be expressed as functions of the parameters � /U and
t /U. Within the local density approximation, t is constant
throughout the trap, and � varies in space, taking its maxi-
mal value �0 at the center of the trap.

For extreme values of t /U �either large or small� we can
analytically calculate the contours in Fig. 2�a�. Generically,
however we must rely on numerical methods.

Our results are shown in Fig. 1 for a harmonic trap
Vtrap�r�=m�x

2x2 /2+m�y
2y2 /2+m�z

2z2 /2. One sees that in the
deep Mott limit, the spectrum displays sharp peaks, while in
the deep superfluid limit, the line shape is smooth. The peaks
are due to the stepwise variation of ���� �illustrated in Fig.
2�a�� which lead to large regions of the trap where ��r� takes
on discrete values. Compared with the experiments in Ref.
�8�, our spectral lines have severely reduced small detuning
spectral weight. In Sec. III we show that trap anharmonicities
can account for this difference.

Note that within the local density approximation, the
spectrum is independent of trap anisotropies, as long as the
trap is harmonic. This generic feature of the LDA is seen by
examining an integral of the form I=�d3rf���=�d3rf��0
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FIG. 2. �a� Gutzwiller mean-field phase diagram with constant
density contours. The vertical dashed lines show the spatial depen-
dence of the chemical potential for a trapped gas in the LDA: from
left-to-right these correspond to the deep Mott limit, the “corrugated
superfluid” situation appropriate to Fig. 4�b�, and the dilute
superfluid. �b� Phase diagram with contours of constant
�n�g2= �n�n−1�� / �n�. Contours are spaced by 0.1, with additional
lines at m±0.01, for integer m, to emphasize the Mott regions.
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−m�x
2x2 /2−m�y

2y2 /2−m�z
2z2 /2�. Rescaling the coordinates

so that m�x
2x2 /2=�0x̄2 �and similarly for y and z�, this inte-

gral becomes I=�8�0
3 /m3�x

2�y
2�z

24��dr̄r̄2f��0−�0r̄2�,
where r̄=�x̄2+ ȳ2+ z̄2. From this analysis it is clear that apart
from an overall scale factor, the spectral line shape is only a
function of the central chemical potential �0.

Experimental parameters

The experimental control parameters are the optical lattice
depth V0, the number of particles N, and the trap frequencies
��. The natural theoretical parameters are t, U, and �0. To
compare our results to experiment, we use a noninteracting
band structure calculation to relate t and U to V0 �12�. To
relate �0 to experimental parameters we note that within the
LDA the number of trapped atoms N is only a function of
t /U, and �0 /��̄, where �̄3=�x�y�z. For each value of t /U
we compute N��0 /��̄�, for several values of �0, then invert
the function to get �0 as a function of N. We then have the
ability to select the value of �0 corresponding to the number
of particles used in the experiment.

Campbell et al. �8� do not report the number of particles
in the experiment. For Fig. 1, we choose N=9�104 so that
the maximum site filling for V0=35Erec and V0=25Erec is n
=5, as is observed in the experiment.

D. Analytic results

1. Dilute superfluid

Having numerically calculated the spectra, we now spe-
cialize to the dilute superfluid limit where the line shape can
be calculated analytically. The clock-shift energy in this limit
is �= �Uab−Ua��n�, and within the local density approxima-
tion the site filling at position r is the greater of zero and

n�r� = ��0 − 
�0� − Vtrap�r��/Ua, �8�

where as previously stated, Vtrap�r�=m�xx
2 /2+m�y

2 /2
+m�zz

2 /2 is the trapping potential, �0 is the central chemi-
cal potential. In the tight binding limit, the energy of the
single-particle k=0 state is 
�0�=−qt, where q is the number
of nearest neighbors. Substituting this result into Eq. �7�, and
neglecting the broadening one finds

Nb���� 
 ����Uab − Ua�n�0� − �� , �9�

where n�0�= ��0−
�0�� /Ua is the central density. Similar ex-
pressions were obtained in Ref. �26�.

At fixed central chemical potential �equivalently, fixed
central density� the width of the spectrum is proportional to
Uab−Ua, and hence U. Given a fixed number of particles, the
central density varies as n�0��1 /U3/5, so the width of the
spectral line instead varies as Un�0��U2/5.

2. Deep Mott limit

Now we analytically calculate the spectrum in the deep
Mott insulator limit, where the density of the homogeneous
system with chemical potential � equals the smallest integer
exceeding � /U, denoted �� /U� �12,19�. In the local density
approximation the density jumps from density n−1 to n as

one moves through the location in space where local chemi-
cal potential is given by �̃=Ua�n−1�. Each plateau of fixed
n gives a �broadened� �-function contribution to the line
shape at detuning ��n= �n−1��Uab−Ua�. The magnitude of
the � function is proportional to the number of particles in
the plateau, leading to a spectrum

Nb���� 
 �
n=1

n̄

An�1/���� − ��n� ,

An̄ = ��0 − Ua�n̄ − 1��3/2n̄ ,

An�n̄ = ���0 − Ua�n − 1��3/2 − ��0 − Uan�3/2�n , �10�

where n̄= ��0 /Ua� is the central density.
The deep superfluid and deep Mott insulator spectra are

plotted in Fig. 3 using Eqs. �9� and �10�. Note the envelope
of the spikes seen in the insulating state has the same shape
as the superfluid spectrum. This can be understood from not-
ing that in both cases the density is proportional to � or
�� /U�, resulting in similar coarse grained �.

E. Intermediate coupling

Finally, let us consider how the spectrum evolves as one
increases t /U from zero. For nonzero t /U, superfluid shells
form between Mott plateaus. These regions make the density
continuous. Consequently, in the spectra, the areas of zero
signal between peaks begin to fill in. Using our numerics, we
find that the peaks remain visible until the system is well into
the superfluid regime. An example is shown in Fig. 4�b�,
corresponding to the chemical potential trajectory at t /Ua
=0.018 shown in Fig. 2�a�. Note that although the only Mott
lobe crossed is at n=1, six peaks are clearly visible. Clearly
one must be cautious about using such spectra to distinguish
superfluid and Mott insulating states.

The source of the peaks for t /Ua=0.018 is weak density
corrugations which arise in the superfluid state near the Mott
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FIG. 3. Analytically calculated spectra for the harmonically
trapped system in the deep Mott limit �solid line�, plotted as a
function of �� / �Uab−Ua�. Superimposed is the spectrum of the
superfluid �dashed line� with the same parameters, but horizontally
shifted to the left by −��� /2��Uab−Ua�. The central density is
ns�0�= ��0−
�0�� /Ua=5.8. This illustrates that the envelope of the
spectral line in the Mott insulating state has the same shape as the
superfluid spectrum, shifted horizontally.
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boundaries. These corrugations can be inferred from the un-
equal spacing of the isodensity contours in Fig. 2. The spec-
trum is a powerful amplifier of these corrugations, as they
are hardly prominent in the real-space density shown in Fig.
4�a�.

III. REFINEMENTS

As seen previously, GMF+LDA captures the main fea-
tures of the experimental spectra: Sharp peaks occur in the
Mott insulator limit, a smooth distribution in the deep super-
fluid limit. Furthermore, the overall energy scales of our
spectra are consistent with those found experimentally. We
caution however that we have treated the harmonic trapping
frequency as independent of the lattice depth, while experi-
mentally the harmonic confinement varies in an uncharacter-
ized manner when the optical lattice intensity is changed.
This systematic variation makes quantitative comparison
difficult.

Despite the qualitative similarities between theory and ex-
periment, serious discrepancies remain. In particular, the ex-
periment finds much more spectral weight at small detunings
than theory predicts. Here we explore possible sources of this
discrepancy. Our primary result is that the discrepancies are
consistent with trap anharmonicities.

In Sec. III A we give an analysis of trap anharmonicities.
In the following sections we briefly discuss several other
possible explanations of the discrepancies: Nonequilibrium
effects and nonlinearities in the transfer rate. Although these
latter two effects could distort the spectrum in a manner
qualitatively consistent with experiment, we find that neither
of them plays a significant role in these particular
experiments.

A. Anharmonicity

The trap used in the experiments of Ref. �8� is a combi-
nation of an Ioffe-Pritchard magnetic trap, which is roughly
harmonic, and an optical trap, which provide highly aniso-
tropic Gaussian confinement. This results in a trap with
“soft” anharmonicities, increasing the number of particles in

the low-density tails of the cloud. This will accentuate the
small �� peaks in the spectrum. The presence of anharmo-
nicities is clear in Fig. 4 of Ref. �8�, where the spatial distri-
bution of the Mott insulator shells is far from elliptical.

We model the trapping potential as

Vtrap�x,y,z� =
m�a

2

2
x2 +

m�r
2

2
�y2 + z2� + Ia�1 − e−x2/�2�2��

+ Ir�1 − e−�y2+z2�/�2�2�� , �11�

where x lies in the soft “axial” direction while y and z con-
stitute the “radial” directions. The 1 /e2 beam waist is quoted
as 70 �m, corresponding to �=35 �m, however we find
spatial profiles closer to experiment from the slightly smaller
�=28 �m and use this value throughout. The explicit har-
monic terms come from the magnetic trap. The anharmonic
Gaussian part has two contributions, Io,j from the optical trap
and � jV0 from the optical lattice inducing a further trapping
potential, for some constants � j, with Ij = Io,j +� jV0. The pa-
rameters �a, �r, �a, and �r are determined from Io,a, Io,r and
the quadratic trap frequencies � j,V0

at V0=0 and V0=40Erec

by matching the quadratic terms of Eq. �11�, giving

� j =
m�2

40Erec
�� j,40

2 − � j,0
2 � ,

� j
2 = � j,0

2 −
Io,j

m�2 .

The quadratic trap frequencies � j,V0
are given in Ref. �8� as

�r,0=2��70 Hz, �r,40=2��110 Hz, �a,0=2��20 Hz,
and �a,40=2��30 Hz. The remaining unknown parameter
Io is chosen to be Io,a=1.17Erec so that the spatial density
profile appears similar to that in the experiment. We take
Io,r= Io,a though Io,r has little effect on the spatial density
profiles. This yields �a=4.8 Hz, �r=67 Hz, �a=0.039Erec

−1 ,
and �r=0.56Erec

−1 to completely characterize the trapping po-
tential of Eq. �11�. Note, that while we have chosen values to
mimic the experimental observations, we have not attempted
to produce a quantitative “fit” to the experimental data. Fig-
ure 5�b� shows the isopotential lines of our model trap.

For numerical efficiency, we produce spectra from a
spherically symmetric model with parameters equal to those
of the axial direction, which somewhat exaggerates the an-
harmonic effects. As shown in Fig. 5�c� the small detuning
spectral weight is greatly enhanced by the anharmonicity,
producing spectra which are consistent with experiments.

B. Alternative explanations of enhanced low-density spectral
weight

Here we examine alternative sources of the enhancement
of the small detuning spectral weight observed in experi-
ments. We make no claim that this is comprehensive. Rather,
this is an examination of the most plausible factors possibly
present in the experiments of Ref. �8�.

1. Losses

First, we explore the possibility that three-body collisions
drive the cloud out of equilibrium. Atoms are removed pref-
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FIG. 4. �a� The density as a function of distance from the trap
center for a harmonic trap in units of the Thomas-Fermi radius �TF,
defined as �TF����0−
0� / �m�2 /2�. The density profile
corresponds to the LDA contour at t /Ua=0.018 of Fig. 2�a�. The
corrugation of the density is observable, but not dramatic; it would
be particularly difficult to image in experiments looking at column
integrated densities. �b� The hyperfine spectra arising from the den-
sity plotted in �a�.
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erentially from high-density sites, ostensibly enhancing the
small-detuning spectral weight. The time scale for decay
from the n=5 Mott insulator state is 200 ms �8�. A charac-
teristic equilibration time is the trap period, �10 ms. Given
the separation of time scales it is extremely unlikely that the
system is far out of equilibrium. Furthermore, the loss rate is
effectively zero for one- and two-particle site fillings and
hence losses are unable to explain the experimentally ob-
served enhancement of the n=1 peak relative to the n=2
peak.

2. Nonlinearities in transfer rate

Nonlinearities in transfer rate. The probes used to mea-
sure the spectrum may possibly drive the system out of the
linear regime where the transfer rate is proportional to the
density. For example, if the transition becomes saturated in
the high-density regions of the cloud, then the observed
spectral weight will be reduced at large detunings. However,
the density dependence of these saturation effects is slow,
making it unlikely that they could not be responsible for the
dramatic suppression of the ratio of the spectral weight in the
n=2 and n=1 peaks. A model calculation in the deep Mott
regime, where the sites decouple, confirms this result.

3. Nonequilibrium effect

Another possible mechanism for distorting the spectrum
would be that the relatively short lattice ramp time might
drive the system out of thermal equilibrium. Modeling these
nonequilibrium effects is nontrivial, however we can put an
upper bound on the size of the distortion by considering the
“sudden limit,” where the lattice intensity is quickly in-
creased, quenching the superfluid into the Mott state. After
the quench, each decoupled site will be in a quantum super-
position of different particle numbers, with a Poisson prob-
ability distribution. The spectrum will then consist of a series
of discrete peaks with the intensity of the peak at detuning
�m= �m−1��Uab−Ua� given by Im=�d3r n�r�me−n�r� / �m−1�!,
where m=1,2 , . . . and n�r�=max���0−
�0�−Vtrap�r�� /Ua ,0�
is the density in the superfluid in the Thomas-Fermi approxi-
mation. While this nonequilibrium spectrum is significantly
different from the equilibrium spectrum, no strong peak at
m=1 appears when the central density is much larger than 1.

Moreover, since the characteristic equilibration time is of
order of the trap period, �10 ms, while the lattice is
changed with a characteristic time scale of 40 ms, we expect
the system to be very near equilibrium �8�, and any nonequi-
librium effects should be much reduced compared to those
predicted by the sudden approximation.

IV. SUMMARY

We calculate the hyperfine spectra of trapped bosonic at-
oms in an optical lattice. We consider the cases of harmonic
and model anharmonic traps. We show that a harmonic trap
produces a spectrum which shares qualitative features with
the experimental spectra measured by Campbell et al. �8�: In
the deep superfluid limit one has a smooth peak, while in the
deep Mott limit, one sees several discrete peaks. To repro-
duce the small-detuning spectral weights, however, trap an-
harmonicities are necessary. While the qualitative features
are understood, we still lack full quantitative understanding
of the experimental spectra.

We find the spectra are extremely sensitive to density cor-
rugation. As an example, the mild density corrugations
which are found in the superfluid near the Mott insulator
boundary are sufficient to produce a pronounced splitting of
the spectral line. Consequently, the spectra are continuous
across the superfluid to Mott insulator transition. Such con-
tinuity is characteristic of a second-order phase transition,
and makes identifying the superfluid transition difficult.
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FIG. 5. �a� A slice of the anharmonic potential Vtrap�r� similar to
the one found in experiments. �b� Contour lines of constant density
in the x-y plane for n=1,2 , . . . ,5 in the anharmonic trap at V0

=35Erec. �c� Corresponding spectra �using the “spherical trap
model” discussed in the text� for V0=5, 10, 25, 35Erec with N
=1.4�107 particles.
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