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We study dynamical and energetic instabilities in the transport properties of Bloch waves for atomic multi-
component Bose-Einstein condensates in optical lattices in the tight-binding limit. We obtain stability criteria
analytically, as a function of superfluid velocities and interaction parameters, in several cases, for two-
component and spinor condensates. In the two-species case we find that the presence of the other condensate
component can stabilize the superfluid flow of an otherwise unstable condensate and that the free space
dynamical miscibility condition of the two species can be reversed by tuning the superfluid flow velocities. In
spin-1 condensates, we find the steady-state Bloch wave solutions and characterize their stability criteria. We
find that generally more regions of dynamical instability arise for the polar than for the ferromagnetic solutions.
In the presence of magnetic Zeeman shifts, we find a richer variety of condensate solutions and find that the
linear Zeeman shift can stabilize the superfluid flow in several cases of interest.
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I. INTRODUCTION

There has been considerable recent interest in the dynami-
cal properties of atomic Bose-Einstein condensates �BECs�
in optical lattice potentials �1–16�. In optical lattices the non-
linear mean-field interaction of the BEC may give rise to
dynamical and energetic instabilities in the transport proper-
ties of the atoms. For a single-component condensate, when
the center-of-mass velocity reaches a critical value, the BEC
dynamics become unstable, resulting in an abrupt stop of the
transport of the atom cloud in the lattice. Such a superfluid to
insulator transition has a classical nature and it can be de-
scribed using the Gross-Pitaevskii �GP� mean-field models
�12–14,16�. In the dynamically unstable regime, small initial
perturbations around a moving solution grow exponentially
in time, resulting in the randomization of the relative phases
between atoms in adjacent lattice sites. The dynamical tran-
sition to inhibited atom transport was experimentally ob-
served in the classical regime �2,5–8� and experimental
methods to characterize both the dynamical and energetic
instabilities of moving condensates have been developed �8�.
Inhibition of transport was also observed in the presence of
large quantum fluctuations using strongly confined narrow
atom tubes �9�. In a confined system with enhanced quantum
fluctuations the sharp classical transition is smeared out
�17–19�, resulting in a gradually increasing friction in the
atom transport. Due to the broadening of the velocity distri-
bution of the atoms, even at low velocities a non-negligible
atom population occupies the dynamically unstable high-
velocity region of the corresponding classical system, gener-
ating the friction in the studied case in the shallow lattice
limit �18,20�.

Despite this work on single-component condensates, there
have been relatively few studies of dynamics of multicom-
ponent BECs in optical lattices. Due to nearly equal trapping
potentials of different Zeeman sublevels �for example, F=1,
mF=−1 and F=2, mF=1 in 23Na and 87Rb�, it is possible to
create long-lived two-component BECs, forming an effective

spin-1 /2 system. These have especially long lifetimes in
87Rb due to a fortuitous cancellation of scattering lengths
�21�. This additional degree of freedom has been utilized to
study an interesting array of effects in both Bose-condensed
and noncondensed cold Bose systems, including phase sepa-
ration �22�, optically induced shock waves �23�, spin waves
�24,25�, overlapping 41K-87Rb BEC mixtures �26�, spin
squeezing �27�, and vector soliton structures �28–30�. Ex-
perimental work on two-component BECs in optical lattices,
from the viewpoint of quantum logic gates, was reported in
�31�. There has also been a recent experimental realization of
a two-species 41K-87Rb Bose mixture in an optical lattice
�32�.

Alternatively, in dipole traps �33� the spin of the atom is
no longer constrained by the magnetic field and, due to the
additional atomic spin degrees of freedom, the BEC exhibits
a richer spinor order parameter structure. The spin of the
optically trapped BECs can generally have significant effects
on the dynamical properties of the BECs �33,34�, give rise to
spin textures �35�, and support highly nontrivial defect struc-
tures �36–39�. Experiments have also explored dynamics in
spinor condensates in harmonic traps �40–43� and optical
lattices �44�, and the application of spinor gases to spatially
resolved magnetometry �45�.

In this paper, we investigate both dynamical and energetic
instabilities in the transport of multicomponent BECs in op-
tical lattices. We first consider magnetically trapped two-
component BECs where the two condensates occupy differ-
ent hyperfine states of the same atom or are formed by
mixtures of two different atoms. Transport properties of two-
component BECs in an optical lattice were studied in Ref.
�46�, and numerical results for dynamical instabilities were
presented for a special case. In particular, dynamical insta-
bilities were shown to arise from the critical velocity as well
as from the phase separation of the two species. In contrast to
that work, we obtain analytic results for the condensate dy-
namical instability points and analyze in detail the complete
phase space of stability criteria for both dynamical and en-
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ergetic instabilities across a broad range of parameters. We
vary the intra- and interspecies interaction strengths, the site
hopping term for each spin component independently, as
well as the velocities of the two BECs, allowing application
of our results to a large variety of experimental systems. In
contrast to Ref. �46�, we find the possibility of a second BEC
component stabilizing the superfluid flow of an otherwise
unstable first BEC component �which exceeds the critical
velocity of a single-component BEC�. In addition, we find
that the free space phase separation criterion, that the square
of the interspecies interaction coefficient exceeds the product
of the intraspecies interaction coefficients �U12

2 �U11U22�,
can be reversed in an optical lattice. This can happen if one
of the BECs has a velocity larger and the other one smaller
than the single-species critical velocity �the effective masses
of the two components exhibit different signs�.

We also analyze transport properties of optically trapped
spin-1 BECs in optical lattices, which have not been experi-
mentally investigated to date. Here we obtain analytic ex-
pressions for both the dynamical and energetic instability
regions of the Bloch wave solutions. In contrast to the two-
component case, spin-changing collisions allow the atom
population of different spin components to adjust to lower
the energy of the system, according to whether the scattering
lengths correspond to polar or ferromagnetic values. Our re-
sults illuminate the different stability properties of the polar
versus ferromagnetic solutions, which, in the absence of Zee-
man shifts, are most apparent for large spin-dependent scat-
tering lengths or when the spin-dependent and spin-
independent scattering lengths exhibit different signs. The
presence of the Zeeman level shifts provides a richer variety
of steady-state Bloch wave solutions, including a new set of
solutions that do not exist for the case of small level shifts.
We find that the quadratic Zeeman shift, due to its role in the
energy conservation of spin-changing collisions, plays an im-
portant role in the stability of various condensate solutions.
However, we also see that linear Zeeman shifts play an im-
portant role in stabilizing many of the solutions. The dynami-
cal instabilities of the spinor BECs can be important, e.g.,
also in the formation of solitons, which have been studied in
the homogeneous case in Ref. �47�.

In Sec. II we introduce the discrete nonlinear Schrödinger
equation and the Bogoliubov–de Gennes approach to study
the stability properties of condensate solutions. This is done
in the context of the two-component case but the same
method is used later for the spinor case. We then derive
expressions for the normal mode energies and discuss the
dynamical and energetic stability of the two-component case.
In Sec. III we apply this method to the spinor case. We first
discuss the polar case, then the ferromagnetic case, and then
finally the effect of the Zeeman shifts. Some experimental
considerations for observation of the effects studied are dis-
cussed in Sec. IV. We summarize our results in Sec. V. The
Bogoliubov–de Gennes matrices are presented explicitly in
Appendix A and the detailed analysis of the stability of the
two-component case when the phase separation condition is
reversed is given in Appendix B.

II. A TWO-COMPONENT CONDENSATE IN AN OPTICAL
LATTICE

A. Two-species system description

Two-component BECs can be prepared in magnetic traps
by simultaneously confining different atomic species in the
same trap. The atoms may occupy two different hyperfine
states of the same atomic species or form a mixture of two
condensates of two different atomic species. For instance,
two BEC components in perfectly overlapping isotropic
magnetic trapping potentials were experimentally realized in
hyperfine spin states of 87Rb, �↑ ���F=2,mf =1� and �↓ �
��F=1,mf =−1�. In this system the inter- �a↑↓� and intraspe-
cies �a↑↑ and a↓↓� interaction strengths are nearly equal, with
a↓↓ :a↑↓ :a↑↑ : :1.024:1 :0.973 �48�. Since the scattering
lengths satisfy a↑↓

2 �a↑↑a↓↓, the two species experience dy-
namical phase separation and can strongly repel each other
�22�. A more strongly repelling two-component system of
different species was created using a 41K-87Rb mixture �26�.
The interatomic interactions of two magnetically trapped
BEC components do not mix the atom population, and the
atom numbers of both species are separately conserved.

The dynamics of the BECs follow from the coupled
Gross-Pitaevskii equation �GPE�

i�
�� j

�t
= �−

�2

2mj
�2 + Vj�r� + 	

k

� jk��k�2
� j . �1�

Here we have defined the interaction coefficients �ii
�4��2aii /mi and �ij �2��2aij /� �i� j�, where the wave
functions are normalized to Nj, N=N1+N2 is the total atom
number, mj is the atomic mass of BEC component �j�, and
�=m1m2 / �m1+m2� is the reduced mass. The intraspecies and
interspecies scattering lengths are denoted by aii and aij �i
� j�, respectively. The external potential is generally a super-
position of a harmonic trapping potential VH

�j��r�=m�� jx
2 x2

+� jy
2 y2+� jz

2 z2� /2 and the periodic optical lattice potential
VL

�j��r�=V0
�j� sin2��x /a+	 j�, Vj�r�=VH

�j��r�+VL
�j��r�, where a

denotes the lattice spacing. In the following we ignore the
effect of the harmonic trapping potential along the lattice and
consider the system as translationally invariant. We also ne-
glect density fluctuations orthogonal to the optical lattice and
consider the dynamics as effectively one dimensional �1D�.

We write the GPE in the tight-binding approximation by
expanding the BEC wave functions on the basis of the Wan-
nier functions and only keep the lowest vibrational states in
each lattice site 
, so that � j�r�=	
c


�j�� j
�r� �49�. We ob-
tain discrete nonlinear Schrödinger equations �DNLSEs�:

i�
dc


�j�

dt
= − Jj�c
+1

�j� + c
−1
�j� � + 	

k

Ujk�c

�k��2c


�j�. �2�

With similar assumptions, we have the hopping amplitude
Jj�0 for the atoms between adjacent lattice sites:

Jj � −� d3r� �2

2mj
� � j


* · �� j,
+1 + � j

* VL

�j�� j,
+1
 . �3�

The nonlinearities are given by Ujk�� jkd3r�� j
�2��k
�2.
The two BEC species may generally experience different lat-
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tice potentials �31� and so the interspecies coupling coeffi-
cient U12 may be varied by displacing the two lattice poten-
tials with respect to each other �to modify the overlap
integral between the wave functions�, even when the values
of the scattering lengths remain constant �Fig. 1�.

B. Dynamical stability of two species

1. Collective two-component excitations

We study the stability of plane wave solutions to Eq. �2�
by investigating the effect of small perturbations around the
carrier wave. Our treatment is analogous to the approach in
Ref. �13� to analyze single-component BECs. For the con-
stant atom density along the lattice, the Bloch waves c


�j�

=�nj exp�i�kja
−� jt�� that satisfy Eq. �2� exhibit the fre-

quency � j =	iniUji−2Jj cos�kja�, where nj = �c

�j��2 denotes the

constant atom population in spin state j at each site. The
perturbed carrier wave can be written as a Bogoliubov ex-
pansion:

c

�j� = ��nj + uje

iqa
 − v j
*e−iqa
�ei�kja
−�jt�. �4�

Here the kj represent the potentially nonzero velocities of the
condensate in each component j. The stability of such states
in a single-component BEC has been studied experimentally
in Refs. �7,8� by dynamically moving the lattice potential.
Substituting this expansion into Eq. �2� and linearizing the
equations in u1, v1, u2, and v2 yield a system of four equa-
tions

i
d

dt
x = M�q�x, x =�

u1

v1

u2

v2

�,  = �z 0

0 z

 , �5�

where z denotes the 2�2 Pauli spin matrix. The elements
of the 4�4 matrix M�q� follow from the linearization pro-
cedure as in the single-component BEC case. We write out
this matrix explicitly in Appendix A. The eigenvalue prob-
lem for the matrix M�q� can be solved analytically. In
order to preserve the symmetry properties of the Bogoliubov
equations and to obtain simple analytic expressions for the
normal mode energies we require that the atom currents of
the two BECs are equal, i.e., J1 sin�k1a�=J2 sin�k2a�.

The eigenvalues represent the normal mode energies and
read

�q = 2J1 sin�k1a�sin�qa� ±�1

2
��1,q

2 + �2,q
2 � ±

1

2
���1,q

2 − �2,q
2 �2 + 16�1,q cos�k1a��2,q cos�k2a�n1n2U12

2 . �6�

The four eigenvalues correspond to all permutations of the �
signs. Only two of the eigenvalues are independent. The first
term in Eq. �6� represents the Doppler shift of the excitation
energies due to the superfluid current. Here � j,q denotes the
single-condensate normal mode energies �without the Dop-
pler shift term�

� j,q
2 = � j,q cos�kja��� j,q cos�kja� + 2njUjj� , �7�

and

� j,q = 4Jj sin2�qa

2

 �8�

is the spectrum of an ideal, nonmoving BEC.
For the case of positive definite M�q� all the eigenvalues

�q of M�q� are real. In that case the physical solutions of
the corresponding eigenvectors y exhibit positive normaliza-
tion y†y=1 �the � sign in the front of the first square root�
and unphysical eigenvectors negative normalization y†y=
−1 �the � sign in the front of the first square root�. The

eigenvalues �q with a nonvanishing imaginary part are asso-
ciated with eigenvectors satisfying y†y=0. The BEC sys-
tem becomes dynamically unstable when the normal mode
frequencies in Eq. �6� exhibit nonvanishing imaginary parts,
indicating perturbations that grow exponentially in time.
Such modulational instabilities occur in a closed system due
to the nonlinear dynamics and do not require energy dissipa-
tion. The rate at which the instability sets in depends on the
magnitude of the imaginary part of the eigenfrequency.

For small momenta, qa�1, � j,q�Jjq
2a2=�2q2 /2mj

*,
where we introduced the effective mass of a noninteracting
BEC as mj

*=�2 / �2Jja
2�. Similarly, we obtain

2J1 sin�k1a�sin�qa��2J1k1qa2=�2k1q /m1
* reinforcing the in-

terpretation of the first term in Eq. �6� as the Doppler shift
contribution.

If we set U12=0 in Eq. �6�, we obtain independently the
decoupled normal mode energies of the two BECs �q
=2J1 sin�k1a�sin�qa�+ ��1,q� and �q=2J1 sin�k1a�sin�qa�
+ ��2,q�, analogously to the single-condensate normal modes
obtained in Ref. �13�.

FIG. 1. �Color online� The two BECs may experience different
optical lattice potentials that can be shifted with respect to each
other. The interspecies interaction strength U12 is proportional to the
overlap integral of the two lattice site mode functions and it can be
adjusted by shifting the lattices. Moreover, the kinetic energy hop-
ping amplitude of the two species J1 ,J2 may be independently
modified by changing the barrier height between the neighboring
sites.

DYNAMICAL AND ENERGETIC INSTABILITIES IN… PHYSICAL REVIEW A 76, 063607 �2007�

063607-3



The intraspecies interaction U12 mixes the normal modes
of the two BECs. In the experimentally interesting regime
njUjj�Jj, if U12

2 �U11U22, one of the frequencies ap-
proaches zero indicating an instability similar to the uniform

two-component BEC system. Specifically, for k1=k2=0, we
obtain in that case �q,+

2 ��1,q
2 +�2,q

2 and �q,−
2 ��1,q

2 ,�2,q
2 .

By expanding �q for small q in Eq. �6� with k1=k2=0, we
obtain �q��sq where s is the speed of sound

s± =
a

�
�J1n1U11 + J2n2U22 ± ��J1n1U11 − J2n2U22�2 + 4J1J2n1n2U12

2 . �9�

The long wavelength excitations are unstable when one of
the solutions for the speed of sound has an imaginary part.

If we do not assume that the two BEC currents are equal,
J1 sin�k1a��J2 sin�k2a�, the Doppler shifts for the two BECs
are different and the usual symmetry properties between the
positive and the negative energy Bogoliubov eigenfunctions
are lost. We still find analytic solutions for the eigenenergies
�q, but these no longer have simple compact expressions as
in Eq. �6�. The basic formalism may be used to generate
stability diagrams in these cases numerically, for instance,
even if the two BECs have velocities in the opposite direc-
tions. In the following we concentrate on analyzing the gen-
eral features of the two-component system that may already
be obtained from Eq. �6�.

2. Stability with equal signs for cos„k1a… and cos„k2a…

We first analyze the dynamical stability of the two-
component system, given in Eq. �6� for J1 sin�k1a�
=J2 sin�k2a�, for the case that cos�k1a� and cos�k2a� exhibit
equal sign. We find two different inequalities can cause in-
stabilities in this case.

The first occurs when �1,q
2 +�2,q

2 �0, which makes the ex-
pression inside the square root in Eq. �6� negative �for any
values of U12�. Physically, this corresponds to the situation
where the two-component dynamical instability is driven by
the instabilities of the individual single-component BEC ex-
citations �7�. We have �1,q

2 +�2,q
2 �0, for some values of q, if

sin2�qa

2

� −

D11 + D22

2�J1
2 cos2�k1a� + J2

2 cos2�k2a��
, �10�

where

Dij = Ji cos�kia�njUjj . �11�

The inequality is most easily satisfied for excitations in
the long-wavelength limit q→0, and is satisfied when the
right-hand side is positive, i.e., for

D11 + D22 � 0. �12�

In particular, for U11,U22�0 we find that, according to Eq.
�12�, the modes are unstable if k1a ,k2a�� /2. In this case,
the instability is analogous to the high-velocity instability
seen in the single-component case �12�.

A second kind of instability occurs for some particular
values of U12 when �1,q

2 +�2,q
2 �0. We find that this instabil-

ity corresponds to the phase separation phenomena which
occur in the two-component free space case �22�. In particu-
lar, the two-component system in Eq. �6� is always dynami-
cally unstable �for the case that cos�k1a� and cos�k2a� exhibit
equal sign� if

U12
2 � U11U22, �13�

as the expression in the outer square root in Eq. �6� becomes
negative. The particular unstable q modes are those that sat-
isfy �when �1,q

2 +�2,q
2 �0�

sin2�qa

2

� − �D12 + D21� + ��D12 − D21�2 + 4J1 cos�k1a�J2 cos�k2a�n1n2U12

2

4J1 cos�k1a�J2 cos�k2a�
. �14�

While the unstable dynamics for U12
2 �U11U22 correspond to

the analogous instability in the free space, one should em-
phasize that the value of U12 is determined not only by the
interspecies scattering length, but also by the spatial overlap
integral of the lattice site wave functions for the two species;
see the definition of Uij below Eq. �3�. By means of shifting
the relative position of the two BEC lattice potentials, one
may easily reduce the value of U12.

Thus the two-component system must satisfy
J1 cos�k1a�n1U11+J2 cos�k2a�n2U22�0 and U12

2 �U11U22 to

be dynamically stable. In the case that cos�k1a� and cos�k2a�
exhibit the same sign, the first condition implies k1a ,k2a
�� /2 for U11,U22�0 or k1a ,k2a�� /2 for U11,U22�0. In
this case if U11,U22 exhibit the opposite signs, the system is
unstable even if Eq. �12� is not satisfied, since U12

2

�U11U22.
Phase space diagrams of the dynamical instability

strengths as a function of the excitation wavelength q and
condensate wave number k are shown in Fig. 2. In Fig. 2�a�
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we see that the system is stable for the case ncU12=8J1,
n1U11=n2U22=10J1 �defining nc=�n1n2� when ka�0.5�,
and then becomes unstable for ka�0.5�, in accordance with
Eq. �12�. The strengths of the instabilities �the largest imagi-
nary part of the eigenvalues� are linear in q �for the slope, see
Eq. �9�� until they saturate approximately at a value Im��q�
��−16ncU12J1 cos�k1a�, which is �11J1 at ka=� in Fig.
2�a�. The strongest instability at ka=� represents period
doubling that drives the system away from the Bloch state.
The behavior is qualitatively similar for all ncU12�n1U11
=n2U22 and also for smaller values of J1 and J2. However,
for ncU12�n1U11 �Fig. 2�b��, we see that the predicted phase
separation instability arises in the ka�0.5� region. It is in-
teresting to note that this instability is markedly weaker than
the high-velocity instability �ka�0.5��, as its maximum
value �occurring for k=0, qa=�� scales as Im��q�
��8�ncU12−n1U11�J1 �in the limit that ncU12−n1U11�J1�.
In the case plotted in Fig. 2�b�, the value saturates at �3J1,
whereas the instability strength in the ka�0.5� region
reaches �13J1.

Figures 3�a� and 3�b� compare the phase separation insta-
bility versus ncU12 for k1a=k2a=0 and k1a=k2a=0.4�. Gen-
erally speaking, the largest imaginary value reaches a maxi-
mum value Im��q���8�ncU12−n1U11�J1. The dependence
on the sign of U11,U22 is shown in Fig. 4. We see in Fig. 4�a�
that, for ncU12�n1U11=n2U22 and cos�k1a��0, the instabil-
ity is restricted to the attractive cases U11�0. Figure 4�b�
demonstrates that this instability switches to the repulsive
case for cos�k1a��0. Again these instabilities reach
strengths Im��q���16n1U11J1. However, for the cos�k1a�
�0 case, there occurs also a much weaker instability for
attractive interactions with strength Im��q�
��8�ncU12−n1U11�J1.

3. Stability with different signs for cos„k1a… and cos„k2a…

The case that cos k1a and cos k2a have different signs
represents a configuration where the velocities of the two
BECs are located on the opposite sides of the deflection
point in the ideal, single-particle BEC excitation spectrum
�8� �the effective masses of the two components exhibit dif-
ferent signs� and is presented in detail in Appendix B. In that

situation, we also always find a dynamical instability when
�1,q

2 +�2,q
2 �0, resulting in the relation similar to Eq. �12�. In

this case, however, the high-velocity instability condition is
highly nontrivial, depending on the values of the hopping
amplitudes, interaction strengths, atom numbers, and veloci-
ties: One of the BECs that reaches the single-component
critical velocity k1a�� /2 may, or may not, destabilize the
two-component BEC system, depending on the parameter
values. Moreover, for �1,q

2 +�2,q
2 �0, the dynamical stability

condition due to the phase separation of the nonmoving sys-
tem, U12

2 �U11U22, is reversed, so that the entire dynamically
stable region occurs, when U12

2 �U11U22. In particular, as
shown in Appendix B, we find there is a band of values for
U12 where the system is dynamically stable, defined by either
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FIG. 2. �a� Largest imaginary part of the eigenvalues Eq. �6� as
function of k�k1=k2 and q for the case n1U11=n2U22, ncU12

=8J1, and J2=J1. We define nc��n1n2. Gray scale goes from 0
�black� to 5J1 �white�. �b� Same plot with ncU12=13J1 �phase sepa-
ration regime�.

6 8 10 12 14
0

0.2

0.4

0.6

0.8

6 8 10 12 14
0

0.2

0.4

0.6

0.8
a b

q
a

/�

k a= 01 k a=2 k a= 0.41 �k a=2

ncU /J12 1ncU /J12 1

27 27.5 28 28.5 29 29.5 30

0

0.2

0.4

0.6

0.8

1

6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

k a=0.0952 �

c

k a=0.81 �

q
a

/�

n U /Jc 12 1

k a=0.42 �

d

k a=0.61 �

n U /Jc 12 1

FIG. 3. �a�,�b� Imaginary part of the eigenvalues versus ncU12

�again nc=�n1n2�, holding n1U11=n2U22=10J1 for the indicated
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U11U22�U12
2 ��1 or U11U22��2�U12

2 ��1, depending on
the value of U11. Here �1 and �2 are defined in Eqs. �B4� and
�B9�. Interestingly, this also represents a situation where the
other condensate component can stabilize the superfluid flow
of an otherwise unstable condensate �exceeding the single-
component critical velocity�. Moreover, the two-component
system may be dynamically stable even for U11�0 and
U22�0, since in that case U11U22�U12

2 .
Figures 3�c� and 3�d� show cases with cos�k1a� and

cos�k2a� of different signs �but satisfying the condition
J1 sin�k1a�=J2 sin�k2a��. For the parameters of Fig. 3�c�
there is a range of ncU12 for which the system is dynamically
stable. In this case n1U11 satisfies Eq. �B7� and the dynami-
cally stable region, according to Eq. �B8�, is �2�U12

2 ��1.
The relevant quantities are nc

��2=11.5J1 and nc
��1=12.5J1

for this example. Note that the dynamical instabilities tend to
be much weaker on the large-U12 side of this stability range.
In Fig. 3�c� we have different hopping amplitudes J1�J2.
Figure 3�d� shows a case with a smaller range of stable ncU12
but with J1=J2. In this case n1U11 satisfies Eq. �B5� and the
dynamically stable region, according to Eq. �B6�, is for
U11U22�U12

2 ��1. Here nc
�U11U22=28.46J1 and nc

��1
=28.50J1.

C. Energetic stability

The energetic stability of the superfluid flow of the homo-
geneous two-component mixture depends on the properties
of the energy functional. The second-order variations of the
energy for small perturbations in the carrier wave are deter-
mined by the matrix M�q� and the system is energetically
stable if M�q� is positive definite. If any of the eigenvalues
of M�q� are negative, the system may relax to a state with
lower energy by means of dissipative coupling to the envi-
ronment. The rate at which such relaxation happens depends
on the strength of the coupling, e.g., on the number of ther-
mal atoms interacting with the condensate.

The eigenvalues of M�q� can also be evaluated analyti-
cally but the full solutions are rather lengthy. In Fig. 5 we
show the energetically unstable regions of the two-
component dynamics. Note that positive definite M�q� im-
plies real eigenvalues �q of M�q� in Eq. �6�, so the dy-
namically unstable region always forms a subset of the
energetically unstable region. Figures 5�a� and 5�b� show
cases with ncU12�n1U11 and ncU12�n1U11, respectively. In
the latter case there are regions of instability for some q at all
condensate wave numbers k. In the former case, there are is
a band of k with all q modes energetically stable, with a
width proportional to �2J1�n1U11−ncU12�, which determines
the speed of sound for the spin wave; see Eq. �9� with
n1U11=n2U22, J1=J2. This is analogous to the single-
component case �12� where there is a band of energetically
stable k with a width proportional to the speed of sound
proportional to �2J1n1U11. In Figs. 5�c� and 5�d� we show
the dependence on U12. It is seen that at k=0 instability
occurs only for U12�U11 while for finite k the condition for
stability becomes more stringent. For ka�0.5� the entire
region is unstable. We also calculated that the specific pa-
rameter regimes corresponding to dynamical stability with

two different condensate wave numbers k1 ,k2 �Figs. 3�c� and
3�d�� are energetically unstable at all q.

III. A SPIN-1 CONDENSATE IN AN OPTICAL LATTICE

A. Spinor Gross-Pitaevskii equations

We now consider a BEC of spin-1 atoms. In the absence
of a magnetic trapping potential, the macroscopic BEC wave
function is determined by a spinor wave function � with
three complex components �50�. The Hamiltonian density of
the classical GP mean-field theory for this system reads:

H =
�2

2m
����2 + V� +

c0

2
�2 +

c2�
2

2
��F��2 + g1�B · F��

+ g2��B · F�2�� . �15�

In Eq. �15�, F is the vector formed by the three components
of the 3�3 Pauli spin-1 matrices �50�, �F�=�† ·F ·� /� de-
notes the average spin, and ��r�= ���r��2 the total atom den-
sity. The weak external magnetic field is denoted by B and is
assumed to point along the z axis. The magnetic field pro-
duces linear and quadratic Zeeman level shifts whose effect
is described by the last two terms in Eq. �15�. As in the
two-component case, the external potential V is the sum of
the harmonic part VH �in this case due to the optical dipole
trap� and the optical lattice potential VL: V�r�=VH�r�
+VL�r�. In the following, we ignore the harmonic potential
and, for simplicity, assume that the lattice potential is the
same for all the spinor components. Thus the Wannier basis
functions �
 of our discrete basis no longer depend on the
internal state j. Here c0 and c2 are the spin-independent and
spin-dependent two-body interaction coefficients. In terms of
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FIG. 5. �a�, �b� Regions of energetic stability �white� and insta-
bility �black� versus k1 and q for the cases indicated. We choose
n1U11=n2U22=10J1, J2=J1, and k2=k1. �c�, �d� Energetic stability
regions versus ncU12 for stationary and moving condensate cases.
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the s-wave scattering lengths a0 and a2, for the channels with
total angular momentum zero and 2, they are c0
�4��2�2a2+a0� /3m and c2�4��2�a2−a0� /3m. For 23Na,
�a2−a0� /3�2aB and �2a2+a0� /3�50aB, where aB

=0.0529 nm is the Bohr radius �50�, indicating c2 /c0�0.04.
In contrast to the two-component case, in which the atom
numbers in the two components do not mix, in the spinor
case a homogeneous condensate wave function can adjust
itself by varying the relative atom populations. From Eq.
�15� in the absence of the external magnetic field we imme-
diately observe that, since c2�0 for 23Na, corresponding to
the polar phase, the energy is minimized by setting �F�=0
throughout the BEC for the case of a uniform order param-
eter field. Alternatively, for 87Rb we have c2 /c0�−0.0036
�51�. The parameter values for 87Rb correspond to the ferro-
magnetic phase, since c2�0, and the energy in Eq. �15� in
the absence of the external magnetic field is minimized when
��F��=1 throughout the BEC for the case of a uniform spin
distribution.

Again using the lowest band of the Wannier state basis,
the DNLSEs are written

i�
�c


�+�

�t
= − J�c
+1

�+� + c
−1
�+� � + �+c


�+� + U0 	
�=+,0,−

�c

����2c


�+�

+ U2��c

�+��2 − �c


�−��2 + �c

�0��2�c


�+� + U2c

�−�*c


�0�2,

i�
�c


�−�

�t
= − J�c
+1

�−� + c
−1
�−� � + �−c


�−� + U0 	
�=+,0,−

�c

����2c


�−�

+ U2��c

�−��2 − �c


�+��2 + �c

�0��2�c


�−� + U2c

�+�*c


�0�2,

i�
�c


�0�

�t
= − J�c
+1

�0� + c
−1
�0� � + U0 	

�=+,0,−
�c


����2c

�0� + U2��c


�+��2

+ �c

�−��2�c


�0� + 2U2c

�+�c


�−�c

�0�*. �16�

Here J is defined as before �3�, but with no dependence on
the internal state j �52� and U0,2�c0,2d3r��
�4. The primary
qualitative difference with the two-component case, seen in
the last term of each of these equations, is the allowance of
spin exchange collisions. The additional energy shift terms
�+ ,�− account for Zeeman shifts �with respect to the level
mF=0� due to an external magnetic field B. For simplicity,
we ignore any effects of magnetic field gradients.

We study the stability of moving Bloch wave solutions to
the DNLSEs �16�. In order to find the low-energy stationary
solutions, we substitute

�c

�+�

c

�0�

c

�−� � = ��+

�0

�−
��n exp�i�ka
 − �t�� . �17�

Here � is the chemical potential and n=	�=+,0,−�c

����2 is the

total condensate density that is assumed to be constant along

the lattice. The spinor wave function ��†= ��+
* ,�0

* ,�−
*� satisfies

the normalization condition ��† ·�� =1. We concentrate on so-

lutions for which �� is constant along the lattice.

We substitute the same Bogoliubov expansion as in Eq.
�4� for the linearized fluctuations around the carrier wave
solution �17� in the DNLSEs �16�. This yields a 6�6 matrix
M, analogous to Eq. �5� �in this case with  having three
z Pauli matrices in the diagonal�, governing the dynamical
stability of the system. The matrix M is given explicitly by
Eq. �A2� in Appendix A.

As in the two-component BEC case, negative eigenvalues
of the matrix M indicate the regions of energetic instability,
while the eigenvalues of M yield the normal mode fre-
quencies. The imaginary parts of these normal mode fre-
quencies represent the strength of dynamical instabilities.

B. Stability in the polar case

1. Dynamical stability

In the polar case �that is energetically favored for U2�0�,
we consider uniform spin profiles with the average spin
value zero, and assume no Zeeman shifts for the time being
�+=�−=0. All the degenerate, physically distinguishable,
ground state solutions for U2�0 may then be determined by
means of the macroscopic BEC phase 	 and a real unit vec-
tor d defining the quantization axis of the spin. The spinor
wave function reads:

��+

�0

�−
� =

ei	

�2�− dx + idy

�2dz

dx + idy
� . �18�

As in the similar polar phase of superfluid 3He-A �53�, the
states �d ,	� and �−d ,	+�� are identical. This can be con-
veniently taken into account by considering the d field to
define unoriented axes rather than vectors.

The solution �17� with Eq. �18� has a chemical potential
value �=−2J cos�ka�+U0n for any choice of �d ,	�. Since
also the excitations are the same for any values of �d ,	�, we
may choose the simplest form of the matrix M in Eq. �A2�,
which is obtained by choosing d to point along the z axis and
	=0.

By calculating the eigenvalues of M with this particular
choice of the BEC wave function we obtain analytic expres-
sions for the normal mode energies

�1±�q� = Cq,k ± ��q cos�ka���q cos�ka� + 2nU0� ,

�2±�q� = Cq,k ± ��q cos�ka���q cos�ka� + 2nU2� , �19�

where �2± are each doubly degenerate. The physical solu-
tions correspond to the � sign in the front of the square root.
Here again �q denotes the spectrum of an ideal, nonmoving
BEC

�q = 4J sin2�qa

2

 , �20�

and the Doppler shift term in the energy is given by

Cq,k = 2J sin�qa�sin�ka� . �21�

It is clear from Eq. �19� that, for U2�U0 and U0�0, �1+�q�
drives the instability. The �1+�q� modes are unstable when

DYNAMICAL AND ENERGETIC INSTABILITIES IN… PHYSICAL REVIEW A 76, 063607 �2007�

063607-7



the expression inside the square root is negative, which hap-
pens for q values that satisfy

sin2�qa

2

� −

nU0

2J cos�ka�
. �22�

At least some modes are unstable whenever ka�� /2 and all
the q modes are unstable when −nU0 / �2J��cos�ka��0.
Figure 6�a� plots the largest imaginary part of the mode fre-
quencies Eq. �19� versus q and k for the case nU0 /J=100
and nU2 /J=4 �corresponding to 23Na�. As in the two-
component case, one sees the system is stable for ka�� /2,
while for ka�� /2 one has an instability with a growth rate
linear in q in the long-wavelength limit before saturating at a
maximum value ��−8nU0J cos�ka��27J. Figure 6�b� plots
a case with a much smaller nonlinearity �nU0 /J=1 and
nU2 /J=0.04�. While ka�� /2 is still the condition for sta-
bility of all the modes, one sees that for higher values of k
there exists only a band of low unstable modes in the lower-
q region. This is due to the fact that the right-hand side
�RHS� of �22� becomes less than unity and thus can be ex-
ceeded by the LHS for large q.

Just as we saw in the two-component case �see Fig. 4�,
these conditions are somewhat reversed for attractive inter-
actions U0�0, as then some excitations of �1+�q� are un-
stable whenever ka�� /2 and all the q modes are unstable
when 0�cos�ka��−nU0 / �2J�. The dependence on the inter-
action coefficient U0 is shown in Fig. 7. In these plots, we
kept U2n /J=2 constant. For ka=0.2� �Fig. 7�a�� unstable
modes occur for negative U0, while for ka=0.7� �Fig. 7�b��,
this instability occurs for repulsive interactions U0�0. Also,
as in the two-component case, there is an additional, weaker
instability in the attractive case U0�0 with ka�� /2. This
instability is driven by �2+�q� and has the same condition for
instability �22� with U0 replaced by U2. The magnitude gen-
erally reaches ��8nU2J for nU2�J. In the case plotted in
Fig. 7�b�, it has a maximum magnitude �2J.

The equivalence of the mode energy dependence on U2
and U0 in Eq. �19� implies that whenever U0 and U2 are of
opposite sign and much larger than J, at least one of the
eigenvalues will be imaginary at any k. In the previous para-
graph we discussed how this resulted in an instability for
attractive condensates U0�0 with polar spin-dependent scat-

tering lengths U2�0. Another implication of this is that po-
larlike condensate solutions �18� with U0�0 are unstable for
ferromagnetic spin-dependent scattering lengths U2�0.
Only when both are positive or both are negative is there a
region of k with dynamical stability.

2. Energetic stability

Turning now to the energetic instabilities, we also obtain
analytic results for the eigevalues of M and look for nega-
tive eigenvalues. We find

�1±�q� = �q cos�ka� + nU0 ± �Cq,k
2 + n2U0

2,

�2±�q� = �q cos�ka� + nU2 ± �Cq,k
2 + n2U2

2. �23�

For U2�U0 , �2− drives the instability. Figure 8 plots the re-
gions of energetic instability. There exist unstable modes for
cos�ka� /sin2�ka��2J /nU2. For small velocities, ka�1, this
condition is approximately equal to �k /m*��nU2 /m*,
where m*=�2 / �2Ja2� is the effective mass of a noninteract-
ing BEC. This energetic instability threshold demonstrates
the Landau criterion that the velocity becomes larger than the
speed of sound �of spin waves� a�2JnU2 /�=�nU2 /m*. For
U2�U0 the instability driven by �1− and the condition is the
same, but replacing U2→U0. When U0 becomes negative,
there is an additional instability, as shown in Fig. 8�b�.
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C. Stability in the ferromagnetic case

1. Dynamical stability

In the ferromagnetic case �which is energetically favored
for U2�0�, we consider uniform spin profiles for which the
magnitude of the spin is maximized, ��F��=1, which mini-
mizes the mean-field energy �15�. We again assume no mag-
netic Zeeman shifts �+=�−=0. As in analogous states for
superfluid liquid helium-3 �53�, the rotations of the spinor
axes can be used to couple physically distinguishable ground
states. Here all the degenerate states are related by spatial
rotations of the atomic spin axes and we may parametrize the
spin wave function as

��+

�0

�−
� = ei��e−i� cos2��/2�

sin���/�2

ei� sin2��/2�
� , �24�

where � ,� ,� are the Euler angles. The solution �17� with
Eq. �24� has a chemical potential �=−2J cos�ka�+ �U0

+U2�n for any chosen ground state in Eq. �24�. The simplest
form of the Bogoliubov–de Gennes matrix M may be ob-
tained by choosing �=�=�=0 and substituting Eq. �24� into
Eq. �A2� in Appendix A.

The mode energies are found to be

�1±�q� = Cq,k ± �q cos�ka� ,

�2±�q� = Cq,k ± �q cos�ka� � 2nU2,

�3±�q� = Cq,k ± ��q cos�ka���q cos�ka� + 2n�U0 + U2�� .

�25�

The dynamical instabilities are driven entirely by �3+ and the
only difference with the polar case Eq. �19� is the replace-
ment U0 and U2 individually by the sum U0+U2. This de-
pendence can be understood from the fact that with ��F��=1
the total nonlinearity is proportional to U0+U2 and so this
quantity determines the attractive or repulsive character of
the condensate. Thus for U0�0 and �U2�� �U0�, the instabil-
ity diagrams qualitatively similar to Fig. 6.

Differences between the ferromagnetic and polar cases
become clear when one examines the instability dependence
on U0. This is shown for the ferromagnetic case in Fig. 9,

where we keep nU2=−2J constant, and should be contrasted
with the polar case, Fig. 7. For ka�� /2 �the figure shows
ka=0.2��, an instability occurs for U0�−U2 and increases
with greater �U0� while for ka�� /2 �the figure shows ka
=0.7��, the instability occurs for U0�−U2. An important
difference from the polar case is that, for ka�� /2, there is
no instability for U0�0. In addition, the instability border
occurs at U0=−U2 rather than at U0=0. Finally, from Eq.
�25�, we note that a ferromagnetic BEC solution �24� with
U0�0 and a polar spin-dependent scattering length U2�0
can be dynamically stable, in contrast to a polar solution with
ferromagnetic scattering length, as discussed above.

2. Energetic stability

The energy eigenvalues in the ferromagnetic case are

�1±�q� = �q cos�ka� ± Cq,k,

�2±�q� = �q cos�ka� − 2nU2 ± Cq,k,

�3±�q� = �q cos�ka� + n�U0 + U2� ± �Cq,k
2 + n2�U0 + U2�2.

�26�

Unlike the polar case, there is one energy eigenvalue �1−
corresponding to a pure �Doppler-shifted� kinetic energy.
This gives rise to energetic instabilities for
sin2�qa /2� /sin�qa�� tan�ka�, as plotted in Fig. 10�a�.
Though no dynamic instability exists except for much higher
k, ferromagnetic spinor BECs are subject to this energetic
instability in the presence of thermal excitation for any non-
zero k. We note that for ka�0.5� all q modes are unstable.

Finally, for attractive condensates �U0+U2�0� there are
additional regions of energetic instability from �3−. Figures
10�b� and 10�c� shows the dependence versus U0. For k=0
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there are unstable modes for all attractive condensate scatter-
ing length cases. A moving condensate �ka=0.2� is shown in
Fig. 10�c�� increases the region of unstable q modes for at-
tractive condensates. The band of energetic instability at low
q for U0�0 in Fig. 10�c� is simply the Doppler-induced
energetic instability discussed above.

D. Effects of Zeeman splitting

When Zeeman splittings due an external magnetic field �
�± in Eq. �16�� are nonzero, the symmetry of the polar and
ferromagnetic solutions, Eqs. �18� and �24�, breaks down and
we find a new set of steady-state solutions. Here we examine
these solutions and again calculate the dynamic stability of
these various solutions, particularly noting how the stability
varies with the linear and quadratic Zeeman shifts, which

we denote, respectively, as �̃= ��+−�−� /2 and �̄= ��++�−� /2.

The linear Zeeman shifts are �̃=2gF�BB
=2��2��1.4 MHz /G�B, where gF is the Landé factor, and is
−1 /2 for the ground-state F=1 manifold of 87Rb and 23Na.
For Zeeman shifts substantially smaller than the hyperfine

splitting, which is our interest here, the quadratic shifts �̄ are
typically smaller than the linear shifts and can be extracted
from the Breit-Rabi formula �54�. For alkali-metal atoms, the
quadratic shift is positive, but it can generally be of either
sign. The level shifts in a spin-1 BEC may also be engi-
neered in other ways, e.g., by using off-resonant microwave
fields that generate electromagnetically induced level split-
tings �55�, allowing essentially arbitrary experimentally pre-

pared level shifts for �̃ and �̄. Note that the linear Zeeman
shift does not affect the energy conservation of a spin-
changing collision �mF=0,mF=0�↔ �mF= +1,mF=−1�,
while the quadratic Zeeman shift does, and thus plays an
important role in the stability properties.

One of the steady-state solutions in the presence of the
Zeeman splitting has the chemical potential �=�0=
−2J cos�ka�+nU0 and reads

�� = ei	�0

1

0
� . �27�

This solution forms a subset of the polar solutions �18� in the
absence of the magnetic splitting, with the d pointing along
the z direction.

The stability is again analyzed by substituting the steady-
state solution �Eq. �27�� into Eq. �A2�. By calculating the
eigenvalues of M we obtain analytic expressions for the
normal mode energies, as in Eq. �19�. Here �1±�q� remains
unchanged in the presence of the Zeeman splitting and

�2±�q� = Cq,k ± �̃ ± Pq,k,

�3±�q� = Cq,k � �̃ ± Pq,k,

Pq,k = ���q cos�ka� + �̄���q cos�ka� + 2nU2 + �̄� . �28�

The linear splitting lifts the degeneracy between �2±�q� and
�3±�q� in Eq. �19� and the quadratic splitting introduces an

energy gap �̄ in the single-particle phonon mode spectrum
�q cos�ka� in �2±�q� and �3±�q�.

The dynamical stability will then be governed by the sign
of the square root argument of Pq,k and is seen to be unaf-
fected by the linear Zeeman shift. The condition for the ex-

istence of unstable modes is −�q cos�ka�−2nU2��̄�

−�q cos�ka� for U2�0, and −�q cos�ka���̄�−�q cos�ka�
−2nU2 for U2�0. If U2�0 and ka�� /2, Eq. �28� predicts

dynamical stability for positive quadratic shift �̄�0, and in-

stability at some q for �̄�0. As in previous cases, we find
much larger instabilities when ka�� /2 �for U0�0� from
�1±.

Similarly, we obtain the eigenvalues of M as in Eq. �23�.
Here �1±�q� is unchanged and

�2±�q� = �q cos�ka� + nU2 + �̄ ± ��Cq,k + �̃�2 + n2U2
2,

�3±�q� = �q cos�ka� + nU2 + �̄ ± ��Cq,k − �̃�2 + n2U2
2.

�29�

We find another steady-state solution to the DNLSEs �16�
with the chemical potential �=�0+ �̄ that reads

�� =
ei	

�2�e−i �1 − �̃/nU2

0

ei �1 + �̃/nU2

� . �30�

This solution only exists for sufficiently small linear Zeeman

shifts ��̃�� �nU2�. For �̃=0, Eq. �30� coincides with the subset

of solutions to Eq. �18�. Although for small �̃�0 the solution
�30� is still close to the polar state of Eq. �18�, the spin

expectation value is no longer zero, �F�=−�̃ / �nU2�ẑ, with d
restricted on the xy plane and the induced �F� pointing along
the z axis �56�. At the boundary of the validity of Eq. �18�,
�̃= ±nU2, we obtain �F�=� ẑ, as in a ferromagnetic state, so
that Eq. �30� in fact interpolates between the polar and the
ferromagnetic solutions. Moreover, we again find analytic
solutions for the normal mode energies:

�1±�q� = Cq,k ± ��q cos�ka���q cos�ka� + 2nU2 − 2�̄� + �̃2 + �̄2 − 2nU2�̄ ,

�2±�q� = Cq,k ± ��q cos�ka���q cos�ka� + n�U0 + U2�� + Lq,k,

�3±�q� = Cq,k ± ��q cos�ka���q cos�ka� + n�U0 + U2�� − Lq,k,
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Lq,k = ��q
2 cos2�ka��n2�U0 − U2�2 + 4�̃2U0/U2� . �31�

For U0 ,U2�0 and ka�� /2, whenever the solution �30�
exists �i.e., when �nU2�� ��̃��, the dynamical instabilities are
solely driven by �1±�q�. Moreover, under these conditions
the mode �1±�q� is dynamically stable when Eq. �30� is en-

ergetically favorable to Eq. �27� �i.e., when �̄�0�. In Fig. 11
we show some stability diagrams for the parameters of 23Na.
The instability dependence on the quadratic Zeeman shift for
a particular linear Zeeman shift is shown in Fig. 11�a�. This
diagram may be understood by noting that the mode �1±�q�
exhibits a nonvanishing imaginary part, if

c− � �̄ � c+,

c± � �q cos�ka� + nU2 ± �n2U2
2 − �̃2. �32�

This forms an instability stripe with a width 2�n2U2
2− �̃2�1/2 in

Fig. 11�a� and for larger values of �̄ the system stabilizes

again. We observe the stripe position shift in �̄ by 4J from
the qa=0 to qa=�. We also calculated the energetic stability
of Eq. �30� and found that in Fig. 11�a� the region to the left
of the stripe is energetically stable, while the entire region to

the right of the stripe �i.e., large �̄� is energetically unstable.
While not obvious in Fig. 11�a� there is a small region of

stability for positive �̄. This is seen more easily by plotting
the instability versus the linear Zeeman shift. In Figs.
11�b�–11�d� we plot this for the entire range of validity of

Eq. �30� ���̃�� �nU2�� for various �̄. For small quadratic Zee-
man shift, there exists a range of linear Zeeman shifts which
stabilize the system, as it approaches the ferromagnetic state.
For larger quadratic shifts this range shrinks, until eventually

the system is unstable at all possible �̃, as in Fig. 11�b�.
The effect of larger k is generally simply to stretch the

region of instability to larger ranges of q for each case, as the
effect of the �q shift in Eq. �32� vanishes. For ka�0.5�
�with U0�0� the usual, and much larger, instability for large
k, seen in previous cases, dominates the stability diagram.
Such a case is plotted in Fig. 11�d�.

In the absence of the Zeeman splitting the polar state �18�
is always dynamically unstable for U2�0. For the state �30�,
even close to the polar state, this is no longer the case. For
U0�0 and U2�0, Eq. �32� represents the entire unstable

region, provided that 4�̃2�U0 /U2��n2�U0−U2�2 and �U0�
� �U2�.

In the presence of the Zeeman splitting the ferromagnetic
state �24� is modified to

�� = ei��1

0

0
� , �33�

with the chemical potential �=�0+nU2+�+, or to an analo-
gous ferromagnetic state with ��+ ,�+� interchanged with

��− ,�−�. Although Eq. �33� is a steady-state solution to the

DNLSEs �16� for any values of �̃, we also find that the so-
lution �30� has the limit Eq. �33� at the boundary of the

validity region �̃=−nU2. At the other limit of the validity of

Eq. �30� �at �̃=nU2� we recover the other ferromagnetic
state, defined by ��− ,�−�. Moreover, the solution �33� is en-
ergetically favorable to Eq. �27� when nU2 /2+�+�0 and to

Eq. �30� when nU2 /2+ �̃�0.
We find that the normal mode energies and the eigenval-

ues of M corresponding to Eq. �33� are obtained from the
non-Zeeman-shifted mode frequencies, Eqs. �25� and �26�,
by shifting the single-particle excitation energies:
�q cos�ka�→�q cos�ka�−�+ in �1±�q� and �1±�q�; and

�q cos�ka�→�q cos�ka�−2�̃ in �2±�q� and �2±�q�. The ener-
gies �3±�q� and �3±�q� are unchanged. Because it is �3± that
drives the dynamical instability, the stability diagram is un-
changed from that of Eq. �25�.

We find an additional ferromagneticlike steady-state solu-

tion to the DNLSEs �16� with �=�0+nU2+ ��̄2− �̃2� /2�̄,
which reads

�± = ei ±���2nU2�̄ + �̄2 − �̃2

8nU2�̄
3

,

�0 = ei� ++ −�/2�1 − ��+�2 − ��−�2. �34�

This solution exists only if the expressions inside the square
roots of Eq. �34� are positive, i.e.,

0 �
2nU2�̄ + �̄2 − �̃2

8nU2�̄
3

�
1

2��̃2 + �̄2�
. �35�

This condition gives rise to a ranges of validity for U2 in

terms of two parameters �−= ��̃2− �̄2� /2�̄ and �+= ��̃2

+ �̄2� /2�̄. In the most common case that the linear Zeeman

shift is larger in magnitude ���̃�� ��̄�� these inequalities give a

finite range: �−�nU2��+ for �̄�0 and �+�nU2��− for

�̄�0.

If ��̃�� ��̄�, the inequalities change direction, giving in-
stead an intermediate range of U2 where �34� is not valid. In

particular, the requirement for validity for �̄�0 is nU2��−

or nU2��+, while for �̄�0 it is nU2��+ or nU2��−.
At the lower limit of Eq. �35� �nU2=�−� the solution �34�

coincides with the polar solution �27� with �F�=0, while at
the upper limit �nU2=�+� it equals Eq. �30�. In general, the
spin for the solution �34� is nonvanishing
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��F��2 =
2�̄2��̃2 + 2n2U2

2� − �̄4 − �̃4

4�̄2n2U2
2

. �36�

This condensate solution �34� is energetically favorable to

�33� for positive quadratic shifts �̄�0, the opposite relation-
ship of solution �30� to �27�.

We computed the dynamical and energetic stability of this
solution. Figures 12�a�–12�c� show the dynamical instability
strengths as a function linear Zeeman shift for several qua-
dratic shifts and 87Rb scattering length �U2=−0.0036U0�.
The hatched areas and all ��̃� larger than the range of these
plots are regions where the condensate solution �34� is not

valid. For �̄�0 �Fig. 12�a�� we see that the valid regions

where the solution exists are dynamically stable. For �̄�0
�Figs. 12�b� and 12�c�� there are always some unstable
modes q. However, note the interesting behavior that for

large ��̃� there exist only small bands of unstable q and weak
instability �note the range of the plots in the caption�. The
system is energetically unstable for q in the regions overlap-
ping and below the small dynamical instability bands.

In Fig. 12�d� we plot the instability strength versus U2
over its range of validity, which in this case is 1.5J�nU2
�2.5J. Here we see a weak band of instability for low q in
the range of U2 where the solution exists.

IV. EXPERIMENTAL CONSIDERATIONS

In the experimental realizations of optical lattice systems,
ultracold atoms have been trapped in a combined optical

lattice and a harmonic trap. The transport properties may
then be studied by suddenly displacing the harmonic trap,
e.g., by using a magnetic field gradient. This excites dipolar
oscillations of atoms along the lattice direction with the
maximum velocity proportional to the harmonic trap dis-
placement �2,9�. The other alternative is to use a moving-
standing wave, so that the atoms are trapped close to the
harmonic trap minimum and experience a moving optical
lattice potential �7,8�. The advantage of the latter technique
is that the velocity of the atoms with respect to the lattice is
constant. In such transport experiments the dynamical insta-
bilities may typically be observed on much shorter time
scales than the energetic ones and the rate of the energetic
instability to have an observable effect can be controlled by
increasing the size of the thermal atom cloud �8�.

A two-component ultracold 87Rb vapor has also been
trapped in a spin-dependent lattice using two counterpropa-
gating laser beams with linear polarizations �31�. The two
species experience different + and − polarized optical lat-
tices where the separation between the lattice potentials can
be controlled by changing the angle between the linear po-
larization vectors.

The techniques developed for investigating dynamical and
energetic instabilities in a single component case could be
adapted to our proposed two-component BEC studies. A
spin-dependent lattice potential may be used to control the
value of the intraspecies interaction strength U12 by modify-
ing the spatial overlap integral between the lattice site wave

q
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a b �/J=0.5

�/J
~

�/J
~

q
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/�

�/J

�/J
~

�/J=8
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�/J=0.5

ka=0.55�

�/J=2
~

FIG. 11. Largest imaginary parts of the normal mode energies
for the polarlike solution Eq. �30�. In all plots, U0=100J and U2

=0.04U0 �corresponding to 23Na�. Plots are on a gray scale of 0 to

3J. �a� Dynamic instability versus �̄ for linear Zeeman shift �̃=2J

and k=0. �b�, �c� Versus linear shift �̃ for quadratic Zeeman shifts

�̄=0.5J and 8J, with k=0. �d� Versus �̃ with ka=0.55�.
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FIG. 12. Largest imaginary parts of the normal mode energies
for the solution Eq. �34�. In all plots, nU0=100J. Hatched areas
represent regions where the condensate solution is not valid. �a�–�c�
Dynamic instability versus linear Zeeman shift and q for U2=
−0.0036U0 �corresponding to 87Rb�. Gray scale runs from �a� 0 to
0.3J, �b� 0 to 0.3J, and �c� 0 to 0.2J. In �a� we emphasize that there

is a range of �̃, on each side of the instability region, stable for all
q. �d� Dynamic instability versus spin-dependent scattering length

U2 for �̃=2J and �̄=J. Gray scale from 0 to 0.2J.
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functions of the two species. Moreover, the various intra- and
interspecies scattering lengths and the two-species Feshbach
resonances �57� in two-component BEC systems make them
a very rich area for experimental exploration. In addition to
the two-component 87Rb vapor �31�, two-component BECs
have been experimentally realized in optical lattices using a
41K-87Rb mixture �32�.

Different superfluid velocities for the two species can be
realized in such a system by moving the two lattice poten-
tials at different speeds. The disadvantage of this scheme is
that it would make the intraspecies interaction strength U12
time dependent. Displacing the harmonic trapping potentials
of the two BECs different distances, in such a way that at the
end the traps are perfectly overlapping, could be used to
realize two BECs undergoing dipolar oscillations in phase
with different amplitudes. Perhaps the easiest method to
measure the reversed phase separation instability in a two-
species BEC, as discussed in Sec. II B 3 and Appendix B, is
to move the lattice potentials of the both species at the same
speed and to use light-stimulated coherent Bragg diffraction
�58� to change the velocity of one of the BECs. For suffi-
ciently small velocities of the Bragg-diffracted BEC, the
atomic clouds of the two BECs overlap long enough for the
dynamical instabilities to have an observable effect.

Atomic 87Rb spin-1 gases have also been loaded to optical
lattices �44�. In such a system the linear and quadratic Zee-
man shifts could be modified, e.g., by using off-resonant mi-
crowave field-induced level shifts �55�. This would allow the
studies of the stability properties of different steady-state so-
lutions presented here.

V. CONCLUSIONS

We studied the transport properties of two-component and
spinor atomic BECs in optical lattices using the discrete non-
linear Schrödinger equations, obtained in the tight-binding
approximation to the lattice system. The classical GP theory
is valid in optical lattices at low temperatures if the effective
1D nonlinearity is not too large, the atom number not too
small, or the lattice potential not too deep �59�. In particular,
we studied both the dynamical and energetic stability of ho-
mogenous Bloch wave solutions to the DNLSEs for the con-
densates by analyzing the linearized perturbations around the
carrier wave. In the case of the dynamical instabilities this
involved finding the eigenvalues �normal mode energies� of
the corresponding Bogoliubov–de Gennes equations �the ma-
trix M in Eq. �5�� and in the case of energetic instabilities
finding the eigenvalues of the second-order perturbations in
the energy functional �the matrix M�. Our steady-state
Bloch wave ansatz allowed for magnetic Zeeman level shifts
and even for two different velocities of the condensates in
the two-component case. Our study discusses a large number
of cases and points out how the spin degree of freedom can
affect the stability properties.

In the two-component case we analyzed and fully charac-
terized the dynamical and energetic instabilities for the gen-
eral case of the two BECs exhibiting arbitrary hopping am-
plitudes, interaction strengths, superfluid velocities, and
spatial overlap. Simple analytic expressions for the normal

mode energies �Eq. �6�� and the dynamical stability criteria
were obtained in the important case of the two BECs having
the same atom current �even when the velocities may differ�.

For the case that cos�k1a� and cos�k2a� exhibit equal sign
for the two BEC carrier wavenumbers k1 ,k2 �see Sec. II B 2�,
we found that the instability diagram contains contributions
from �1� the high-velocity instability, determined by Eq. �12�
�which is analogous to that of a single-component BEC in a
lattice�, and �2� a weaker phase separation instability �Eq.
�13��, which occurs when U12

2 �U11U22. However, as shown
in Appendix B and in Sec. II B 3, an interesting case arises
when one allows different condensate velocities of the two
components, so that cos�k1a� and cos�k2a� exhibit different
signs �the effective masses of the two components exhibit
different signs�. First, the high-velocity instability conditions
�which depends on the velocities, hopping amplitudes, atom
numbers, and interaction strengths of the two BECs� indicate
that the presence of the other condensate component can sta-
bilize the superfluid flow of an otherwise unstable conden-
sate �that exceeds the critical velocity of a single-component
BEC�. Second, the phase separation stability criteria can be
reversed for particular sets of parameters and the entire dy-
namically stable regime exists for U12

2 �U11U22; see Appen-
dix B and Figs. 3�c� and 3�d�.

For the spin-1 BEC case, we also obtained analytic ex-
pressions for the dynamical and energetic instabilities in sev-
eral cases of interest. In the absence of the Zeeman level
shifts the normal mode energies in the polar and ferromag-
netic ground state manifolds are simplified and the two cases
differ when U0�0 and for relatively large spin-dependent
interactions �U2���U0�. In particular, the polar case tends to
exhibit more regions of instability as U0 and U2 separately
contribute �see Eq. �19��, while in the ferromagnetic case, it
is the sum U0+U2 which is important; see Eq. �25�. This
allows for dynamical stability of ferromagnetic solutions for
U0�0, and even for polar spin-dependent scattering lengths
�U2�0�. Also, we found that, unlike the polar case, the fer-
romagnetic solution will have some energetic instability for
any finite BEC velocity due to the existence of a pure kinetic
energy eigenvalue �1± �Eq. �26��.

In the presence of the linear and quadratic Zeeman level
shifts we find a new set of steady-state Bloch wave solutions,
describing the superfluid flow in spin-1 BECs. While the
polarlike solution �27� and the ferromagneticlike solution
�33� form subsets of the corresponding solutions in the ab-
sence of the Zeeman splitting, this is not the case for the
steady-state solutions �30� and �34�. The solution �30� exhib-
its a nonvanishing spin vector �F� pointing along the mag-
netic field and interpolates between the polar and the ferro-
magnetic solutions. The solution �34� only exists in the
presence of sufficiently large Zeeman shifts and in this sense
represents an entirely novel state.

We analyzed the stability conditions for all spin-1 Bloch
wave states. For condensate solutions unique to the presence
of Zeeman shift, Eqs. �30� and �34�, the stability diagrams
were presented in Figs. 11 and 12, respectively. For the pa-
rameters of 23Na at low velocities we found the solution Eq.
�30� to be dynamically stable for negative quadratic shifts.
Even for positive quadratic shift, a sufficiently large linear
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shift can stabilize it. Moreover, the solution �30� can be
stable for ferromagnetic scattering coefficients �U2�0�,
even close to the polar state. For the parameters of 87Rb the
solution Eq. �34� can be energetically and dynamically stable
for positive quadratic Zeeman shifts and sufficiently large
linear Zeeman shifts.

The phenomena discussed in this paper should be appli-
cable to current and future experiments with multiple-
component BECs in optical lattices, and we discussed some
of the important considerations for the experimental realiza-
tion. We concentrated on the stability studies of moving
Bloch wave solutions in the lattice. An interesting theoretical
extension of this work is to consider inhomogenous conden-
sate solutions, such as solitonlike structures in spinor BECs
�47�. One could also investigate the effect of spin-dependent
lattice potentials with spatially inhomogeneous profiles for
the hopping amplitude, for instance dimerization, along the
lattice �60�.
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APPENDIX A: BOGOLIUBOV–DE GENNES MATRICES

In the two-component case, the Bogoliubov–de Gennes
equation, upon substitution of the the ansatz �4� into �2�, we
get �5� with

M =�
K1+ + Ū1 − Ū1 Ū12 − Ū12

− Ū1 K1− + Ū1 − Ū12 Ū12

Ū12 − Ū12 K2+ + Ū2 − Ū2

− Ū12 Ū12 − Ū2 K2− + Ū2

�
�A1�

where

Kj± = �4Jj/��sin2�qa/2�cos�kja� ± �2Jj/��sin�qa�sin�kja� ,

Ūj =Ujjnj /�, and Ū12=U12
�n1n2 /�.

In the general spinor case, we obtain the M for the spinor
wave function and the Bogoliubov expansion �4�, and sub-
stitute into the DNLSEs �16�:

M =�
M−

�+� w++ f0+
0− w0+ r−+ g−+

0

�w++�* M+
�+� �w0+�* �f0+

0−�* �g−+
0 �* �r−+�*

�f0+
0−�* w0+ M−

�0� h0
−+ �f0−

0+�* w0−

�w0+�* f0+
0− �h0

−+�* M+
�0� �w0−�* f0−

0+

�r−+�* g−+
0 f0−

0+ w0− M−
�−� w−−

�g−+
0 �* r−+ �w0−�* �f0−

0+�* �w−−�* M+
�−�

� ,

�A2�

M±
�+� = K± + Ū�1 + ��+�2� + Ũ�2��+�2 + ��0�2 − ��−�2� + �+,

�A3�

M±
�0� = K± + Ū�1 + ��0�2� + Ũ���+�2 + ��−�2� , �A4�

M±
�−� = K± + Ū�1 + ��−�2� + Ũ�− ��+�2 + ��0�2 + 2��−�2� + �−,

�A5�

fkl
mn = �Ū + Ũ��k

*�l + 2Ũ�m�n
*, �A6�

gkl
m = �Ũ − Ū��k�l − Ũ�m

2 , �A7�

hk
lm = − Ū�k

2 − 2Ũ�l�m, �A8�

wkl = − �Ū + Ũ��k�l, �A9�

rkl = �Ū − Ũ��k
*�l. �A10�

Here Ū=nU0 /�, Ũ=nU2 /�, and

K± = − 2�J/��cos�ka�

+ �4J/��sin2�qa/2�cos�ka� ± �2J/��sin�qa�sin�ka� − � .

�A11�

APPENDIX B: DYNAMICAL STABILITY FOR k1a�� Õ2,
k2a�� Õ2

In this section we analyze the dynamical stability of the
two-component BEC system with equal atom currents
J1 sin�k1a�=J2 sin�k2a�, when cos�k1a� and cos�k2a� exhibit
different signs. Setting the atom currents to be equal allows
us to obtain simple analytic expressions for the stability con-
ditions. The different signs of cos�k1a� and cos�k2a� repre-
sent the situation where the velocities of the two BECs are
located on the opposite sides of the deflection point in the
ideal, single-particle BEC excitation spectrum �8� �the effec-
tive masses of the two components exhibit different signs�.
Without loss of generality we assume in the following that
cos�k1a��0 and cos�k2a��0. The situation where when
cos�k1a� and cos�k2a� have the equal sign is covered in Sec.
II B.

The analytic result for the normal mode energies is given
by Eq. �6�. Similarly to the case when cos�k1a� and cos�k2a�
have the same sign, the system is always dynamically un-
stable if �1,q

2 +�2,q
2 �0 and we have the same condition as in

Eq. �12�:

D11 + D22 � 0, �B1�

where Dij is defined in Eq. �11�,

Dij = Ji cos�kia�njUjj . �B2�

Since k1a�� /2, k2a�� /2, and J1 ,J2�0, the inequality
may even be satisfied for some values for which U11,U22
�0. In this case only one of the BECs reaches the �single-
component� critical velocity ka=� /2, destabilizing the entire
two-component BEC system.

Next we assume �1,q
2 +�2,q

2 �0 and find the additional un-
stable regions of the parameter space. When cos�k1a� and
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cos�k2a� have different signs, the expression inside the inner
square root in Eq. �6� may become negative, resulting in a
dynamical instability. In particular, this happens at least for
some values of q, if

U12
2 � �1, �B3�

where

�1 = −
�D11 − D22�2

4n1n2J1 cos�k1a�J2 cos�k2a�
, �B4�

where Dij is defined in Eq. �11�.
Also the expression inside the outer square root may be-

come negative. If

n1U11 � n2U22 min�� J2 cos�k2a�
J1 cos�k1a�

�,� J1 cos�k1a�
J2 cos�k2a�

�
 ,

�B5�

this happens at least for some values of q, if U11U22�U12
2 .

Combining this with Eq. �B3�, we find that the system is
stable for the values of U11 that satisfy Eq. �B5�, if

U11U22 � U12
2 � �1. �B6�

Similarly, for the values of U11 satisfying

n1U11 � n2U22� J1 cos�k1a�
J2 cos�k2a�

� − 4J1 cos�k1a� ,

n1U11 � n2U22� J2 cos�k2a�
J1 cos�k1a�

� , �B7�

we find that a dynamically stable system exists if

�2 � U12
2 � �1, �B8�

where

�2 = U11U22 + 4J1 cos�k1a�J2 cos�k2a�/�n1n2�

+ 2�J1 cos�k1a�U22/n1 + J2 cos�k2a�U11/n2� . �B9�

When U11 satisfies Eq. �B7�, �2 is always larger than U11U22
and for the dynamically stable region we have U11U22��2
�U12

2 ��1. If �2��1, no stable region exists.
Note that the entire stable region in both Eqs. �B6� and

�B8� corresponds to the values of the nonlinearities satisfy-
ing U11U22�U12

2 that is normally associated with the dy-
namically unstable phase separation condition.

The two-component system is therefore dynamically
stable if D11+D22�0 and U12 satisfies either Eq. �B6� or Eq.
�B8�, for U11 defined by Eq. �B5� or Eq. �B7�, respectively.
Interestingly, we find a regime where the other condensate
component can stabilize the superfluid flow of an otherwise
unstable condensate. The inequalities �B5� or �B7� can be
satisfied for U11,U22�0 when the component �1 exceeds the
critical velocity of the single-component BEC, with k1a
�� /2, so that �1,q

2 �0 in Eq. �7�. The two-component BEC
dynamics, nevertheless, is stable if U12 satisfies either Eq.
�B6� or Eq. �B8�, respectively.

Note also that we may have, e.g., U11�0, U22�0, but
�1,q

2 +�2,q
2 �0 �i.e., D11+D22�0�. Such a two-component

system can be dynamically stable since U12
2 �U11U22.
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