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Nonlinear transport of Bose-Einstein condensates through mesoscopic waveguides
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We study the coherent flow of interacting Bose-condensed atoms in mesoscopic waveguide geometries.
Analytical and numerical methods, based on the mean-field description of the condensate, are developed to
study both stationary as well as time-dependent propagation processes. We apply these methods to the propa-
gation of a condensate through an atomic quantum dot in a waveguide, discuss the nonlinear transmission
spectrum and show that resonant transport is generally suppressed due to an interaction-induced bistability

phenomenon. Finally, we establish a link between the nonlinear features of the transmission spectrum and the

self-consistent quasibound states of the quantum dot.
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I. INTRODUCTION

The development of microscopic trapping potentials for
ultracold atoms has lead to a number of fascinating experi-
ments probing the behavior of Bose-Einstein condensates on
mesoscopic length scales. Examples include the realization
of a Josephson weak link between two condensates in a
double-well potential [1], the measurement of interference
and phase coherence between two spatially separate conden-
sates [2,3], as well as the diffraction of a condensate from a
magnetic lattice [4]. A convenient setup for such experiments
is provided by “atom chips” [5], where microscopic confine-
ment potentials are created with the magnetic field that is
induced by current-carrying electric wires mounted on top of
the chip surface. This technique does not only allow one to
produce microtraps, but also to create waveguide geometries
for cold atoms that can be rather flexible, and thereby opens
the way to explore transport properties of cold atomic gases.
Early experiments on atom chips did indeed focus on the
propagation of a Bose-Einstein condensate along such a
magnetic waveguide, where the condensate was transported
in a controlled way by means of time-dependent magnetic
fields [6] or accelerated along the guide by means of a field
gradient [7].

The possibility to create such waveguides for cold atoms
have stimulated a number of theoretical investigations on the
transport physics of interacting matter waves, with particular
emphasis on possible analogies with mesoscopic phenomena
in the electronic context. This started with the attempt to
define an atomic analog of Landauer’s quantization of the
conductance [8], and was continued by the generalization of
the “Coulomb blockade” phenomenon to cold bosonic atoms
propagating through a quantum-dot-like potential [9,10].
More recent studies, which are based on an elaborate frame-
work for the description of scattering processes of Bose-
Einstein condensates (to be described in this paper), include
the nonlinear resonant transport of a condensate through
atomic quantum dots [11,12], the manifestation or absence of
Anderson localization in the transport through disorder po-
tentials [13,14], as well as the transport of solitons through
disorder [15]. For their experimental realization, these trans-
port processes would require a coherent quasistationary flow
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of Bose-Einstein condensed atoms in the waveguide, which
was recently realized in the context of optical guides [16]
using the principle of “atom lasers” [17].

From the theoretical point of view, the main complication
in the description of a quasistationary scattering process of a
Bose-Einstein condensate obviously comes from the pres-
ence of the atom-atom interaction. In leading order, the effect
of this interaction is included in a nonlinear term in the
Schrodinger-like Gross-Pitaevskii equation for the conden-
sate wave function. In the presence of a waveguide potential,
providing a harmonic confinement in two (transverse) spatial
dimensions and permitting free motion along the third (lon-
gitudinal) dimension, an adiabatic treatment of the transverse
degrees of freedom allows one to describe the evolution of
the condensate by means of an effective one-dimensional
Gross-Pitaevskii equation as long as the confinement of the
waveguide is sufficiently strong (such that the condition for
the “one-dimensional mean-field regime” is satisfied [18]).
This one-dimensional (ID) nonlinear wave equation does
permit stationary solutions corresponding to condensates that
propagate with finite velocity along the axis of the guide
[19]. As was shown by Leboeuf and Pavloff, these solutions
can then be used in order to construct scattering wave func-
tions of the condensate (with the appropriate outgoing
boundary condition) in the presence of finite-range perturba-
tion potentials in the waveguide [20].

In contrast to the linear Schrodinger equation, the knowl-
edge of stationary scattering states alone does not necessarily
permit the prediction of the outcome of a given propagation
experiment with Bose-Einstein condensates. This is not only
the case for the propagation of finite wave packets (which
obviously cannot be decomposed into individual scattering
eigenstates, due to the absence of the superposition principle
in the Gross-Pitaevskii equation), but applies also to adia-
batic injection processes as performed in Ref. [16], where the
waveguide is gradually filled with matter waves. Clearly, if
such an adiabatic process leads to a quasistationary flow of
the condensate (which actually need not be the case, as we
pointed out in Ref. [13]), the corresponding scattering state
necessarily satisfies the stationary Gross-Pitaevskii equation.
However, not every scattering eigenstate of this nonlinear
Schrodinger equation can eventually be populated in this
way: due to the nonlinearity, the eigenstates in the waveguide

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.76.063605

PAUL et al.

can be dynamically unstable, which means that they would
disintegrate in the course of time evolution as a consequence
of small deviations. Such dynamical stability properties can-
not easily be inferred from the stationary Gross-Pitaevskii
equation. Another nontrivial problem is, as we shall explain
below, the determination of the incident flux of atoms that is
associated with a given stationary scattering state. This infor-
mation is required in order to establish the connection to a
given propagation experiment (where the incident current is
typically under much better control than the net current dur-
ing the propagation) and to determine the transmission coef-
ficient of the scattering state.

In view of these complications, it seems advisable to
study waveguide scattering of Bose-Einstein condensates
within the framework of the time-dependent Gross-Pitaevskii
equation. While the straightforward numerical simulation of
wave-packet propagation processes is hardly feasible in the
limit of spatially broad and energetically narrow wave pack-
ets (which would be required, e.g., for studying the energy-
resolved transmission through atomic quantum dots), it is
possible to directly simulate the quasistationary injection
process from an external reservoir of Bose-Einstein con-
densed atoms into the waveguide, as it was experimentally
performed in Ref. [16]. Assuming that this reservoir is suffi-
ciently large such that the effect of the back action from the
waveguide can be neglected, the dynamics in the waveguide
is effectively described by an inhomogeneous Gross-
Pitaevskii equation, which contains a source term that mod-
els the input of matter waves from the reservoir. This inho-
mogeneous Schrodinger-like equation can be efficiently
integrated with standard finite-difference methods, using ab-
sorbing boundary conditions in order to avoid artificial back-
reflections from the ends of the numerical grid. Typically one
would start with vanishing condensate density in the guide,
and then time integrate the equation while adiabatically in-
creasing the source amplitude from zero up to a given maxi-
mal value. Clearly, this approach is rather close to the real-
istic experiment. By construction, it automatically yields, at
the end of the propagation, scattering states that are dynami-
cally stable (provided the flow remains quasistationary dur-
ing the integration), and it allows in a natural way to deter-
mine the transmission of those states. We have successfully
applied this approach to the transport of Bose-Einstein con-
densates through quantum-dot-like double barrier potentials
[11] and through one-dimensional disorder potentials [13].

The present paper is devoted to the detailed description of
this time-dependent approach to nonlinear waveguide scat-
tering of a Bose-Einstein condensate, and to its relation with
the existence of stationary scattering states of the condensate.
To this end we briefly review in Sec. II the so-called 1D
mean-field regime, set up the theoretical framework to study
transport and scattering processes, and introduce concepts
that allow us to define transmission and reflection coeffi-
cients for stationary scattering states that are solutions of a
nonlinear wave equation. In Sec. II C, the numerical method
that is based on integrating the time-dependent Gross-
Pitaevskii equation in the presence of a source term is ex-
plained. As a first application, the transmission spectrum of
the condensate flow through a quantum point contact consist-
ing of a single potential barrier in the waveguide is discussed
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in Sec. I D. In Sec. III we investigate the transport through a
symmetric double barrier potential and we show in Sec. III A
that the transmission spectrum exhibits an interaction in-
duced suppression of resonant transport. Finally, in Sec.
III B, we develop an analytical description of the transport
problem through the double barrier potential in terms of in-
ternal quasibound states. This establishes a clear link be-
tween the nonlinear signatures of the transmission spectrum
and the self-consistent quasibound states of the quantum dot.

II. MEAN-FIELD APPROACH TO TRANSPORT OF
CONDENSATES

In the following we consider a coherent beam of Bose-
Einstein condensed atoms at zero temperature, propagating
through a cylindrical waveguide with a finite-range scatter-
ing potential, given, e.g., by a constriction acting as a barrier
potential for the beam. One of the aims of this work is to
develop methods to describe such propagation processes
based on the Gross-Pitaevskii mean-field theory [21,22]. The
mean-field dynamics of a dilute condensate can be described
in terms of a macroscopic order parameter, the condensate
wave function W(r,f), which obeys the nonlinear Gross-
Pitaevskii equation [23],

2
i L) = (— WAV + U0|\If(7,t)|2>llf(7,t). (1)
ot 2m

Low-energy scattering processes between two atoms in the
condensate are predominately described by the contribution
from s-wave scattering and lead to the nonlinear term
Uo|W(7,t)|*>. Here Uy=4mh’a,/m is the interaction strength
which is determined by the s-wave scattering length a; and
the mass m of the condensed bosons. The term V(r) in Eq.
(1) is the external trapping potential experienced by the at-
oms. For the sake of definiteness we consider the experimen-
tally relevant case of a condensate in a cylindrical harmonic
waveguide with an additional scattering potential that is in-
duced along the guide. Let x be the coordinate along the axis
of the guide and r= \x?+y? the cylindrical radius associated
with the transverse coordinates, then we assume V(7) to be of
the form

V(r) = %mwzr2 +V,(x). (2)

Here, the first term on the right-hand side is the transverse
harmonic confinement of the guide with trapping frequency
 and V|(x) is the scattering potential parallel to the axis of
the guide. V;(x) could, e.g., consist of a single barrier that
acts as a constriction for the condensate flow. Such a barrier
can, for instance, be induced by irradiating a strongly fo-
cused blue-detuned laser beam onto the waveguide.

A. 1D mean-field regime

In this section we derive an effective one-dimensional
version of the Gross-Pitaevskii equation which is particularly
suited to describe condensates in elongated waveguide struc-
tures. To this end, we adopt the adiabatic approximation
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method outlined in Refs. [18,19,24], where the condensate
wave function can be cast into the form

W(x,r) = lx, 1) plr,n). 3)

Here, ¢ is the equilibrium ground-state wave function for the
transverse motion, normalized to unity

f61’2'”|¢|2 =1, (4)

lx,1) describes the longitudinal motion, and the density per
unit of longitudinal length is given by

n(x,r) = f &) =[x, 1) (5)

We remark that this adiabatic ansatz involves a local density
approximation, in the sense that one assumes that the trans-
verse motion depends solely on the local condensate density
n(x,1) at position x. It was pointed out in Ref. [24] that this
approximation is justified if the transverse scale of the den-
sity variation is much smaller than the longitudinal one. This
regime is certainly reached when the scale of variation of the
longitudinal potential V;(x) is considerably larger than the
harmonic oscillator length a , =%/ (wm) of the radial trans-
verse confinement.

Inserting the ansatz (3) into the Gross-Pitaevskii equation
(1) yields

n & [ﬁ2((92 1a> L,
ld) ¢ ¢2 32¢ v art  ror +2mwr

+ Uon(x,t)|¢|2} . (6)

We can identify the term in the square brackets as the effec-
tive Hamiltonian Hp for the transverse degree of freedom,
acting on the wave function ¢,

Hr¢p=en)o. (7)

The energy e(n) associated with the transverse state ¢ de-
pends parametrically on the longitudinal density n. Thus, we
obtain a pair of equations, one for the transverse, and one for
the longitudinal dynamics of the condensate,
W& 14

(—2 + ——) + Ugn(x,0)|* + = mwzrz} P,

2m ror
(8)

e(n)p= [

9 K &
iﬁ;zj;: (— gt Vi(x) + E(n(x,l))> . ©)

Equation (9) is an effective one-dimensional wave equation
for the longitudinal order parameter ¢ which is particularly
suited to describe a condensate in nonuniform waveguides.
This regime is often denoted as the 1D mean-field regime
[18].

It remains to determine €(n). In the following, we assume
that ¢ is the energetic ground state of Hy. In the so-called
low-density limit, a;n < 1, the nonlinear term Uyn|¢|* in Eq.
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(8) is a small perturbation and a first-order perturbative so-
lution of Eq. (8) yields

e(n) = €+ Up( || dol*| o) = € + 2hiwan, (10)

where €,=fiw is the eigenenergy of the ground state ¢, of
the unperturbed transverse Hamiltonian (e, is a constant en-
ergy shift which we drop in the following). In the opposite
large density limit, a,n>> 1, the kinetic energy term in Eq. (9)
can be neglected, and the so-called Thomas-Fermi approxi-
mation holds for the transverse wave function [22], yielding

o= [}ve(n) V.. (1)

\0’1

By imposing the normalization condition (4) to the Thomas-
Fermi wave function (11) we find in the high-density regime

e(n) = 2hw\na,. (12)

At this point we remark that the validity of the Gross-
Pitaevskii equation is restricted to the dilute gas regime,
where the three-dimensional (3D) density ns3, fulfills
n3da§’ <1 [21,22]. This condition reads in the 1D mean-field
regime na,< (a, /a,)*” (v=1 in the low-density regime and
v=1/2 for high densities [19]). Typically a,/a, is of the
order 10°. This condition will be considered as always ful-
filled, even in the regime of high longitudinal densities, when
nag>> 1. On the other hand, the weakly interacting 1D Bose
gas picture also breaks down at very low densities, in the
Tonks-Girardeau regime (see, e.g., Refs. [25-28]). This oc-
curs in the regime na,< (a,/a,)*=107% which we therefore
discard from our present study.

At the end of this section, we derive an analytical expres-
sion that allows to interpolate e(n) between the two opposite
limits na,<< 1 and na;>1. To this end we consider the an-
satz

e(n) = [a+ Bla;n) + Ylan)’]". (13)

To determine the coefficients «, B, and 7y, we expand Eq.
(13) in the limit a;n <1 to first order in an,

e(n)=a'* + ‘l—la_3/4ﬁ(asn), (an) < 1. (14)

In the limit a,n>> 1 we keep only the quadratic term (a,n)? in
Eq. (13),

(an) > 1. (15)

The comparison of Egs. (14) and (15) with Egs. (10) and
(12) yields a=f*w*, B=8%*w* and y=16A*w*, and the inter-
polation formula (13) reads

6(n) — 1/4\'(1 n,

e(n)=hoVl +4an. (16)

This result can be compared with numerically computed val-
ues for €(n) [29]. Indeed, as displayed in Fig. 1, we find a
good agreement between the interpolation result and the nu-
merically computed values for the whole range of values of
a,n in between the two opposite density limits. We remark
that our interpolation formula (16) for e(n) is different from
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FIG. 1. (Color online) Transverse energy €(ayn) (in units of Ziw)
as a function of a,. The numerical result (solid line) coincides for
large values a,n very well with the Thomas-Fermi result. The inter-
polation result agrees excellently with the numerical result for small
values of an and converges toward the Thomas-Fermi result for
large asn. The upper inset magnifies the domain of large an. The
lower inset zooms into the region of small a,n. The straight dashed
line displays the perturbative result (10).

the nonpolynomial approach by Salasnich et al. [30] which
was derived from a variational principle.

B. Scattering states in waveguides

In this section we study the stationary transport modes of
a coherent condensate flow through a quasi-one-dimensional
waveguide with a scattering potential in the 1D
mean-field regime. Starting point of our considerations is the
effectively one-dimensional Gross-Pitaevskii equation (9).
To determine its steady solutions, we write i{(x,?)
=A(x)exp[iS(x)]exp(—iut), where A(x) and S(x) are real val-
ued functions. The longitudinal density is n=A2, w is the
chemical potential of the condensate and v=(f/m)(dS/dx)
its local velocity. From Eq. (9) we obtain flux conservation
n(x)v(x)=j,=const, and an equation of motion for the am-
plitude A(x) of the wave function
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7> A
pA=——A"+ ﬂ]—tzA +Vi(x)A + e(n)A.
2m 2n

(17)

In the following, we assume that the longitudinal potential
V,(x) vanishes asymptotically in the “upstream” region, i.e.,
for x——c0, and in the “downstream” region, for x— +%,
V(x— =) =0. In accordance with this terminology, we con-
sider an incident beam of condensate that propagates from
Xx— =% to x— + (i.e., from the upstream to the downstream
region).

In order to properly define the scattering problem, we first
study the asymptotic behavior of the flow far away from the
constriction, where V;(x)=0. In this region, Eq. (17) can be
integrated one time, yielding the first-order equation of mo-
tion

#2 , mj,2
=E(A )2+@+m2—6(n), (18)
with
En) = f e(n)dn, (19)
0

where E is an integration constant. It was pointed out in Ref.
[19] that Eq. (18) admits a simple interpretation in terms of
classical dynamics, since it describes the energy conservation
of a fictitious classical particle with “position” A and “time”
x moving in the effective potential

W(n) = (mj})/(2n) + un - En), (20)

and the integration constant E corresponds to the total energy
of the particle. Equation (18) is therefore integrable by
quadrature (see Ref. [12] for a discussion of the low-density
regime agn< 1).

The left-hand panel of Fig. 2 displays the potential W(n)
in the low-density regime where we have £(n)=gn?/2 with
the effective interaction parameter g=2fwa,. W(n) has
qualitatively the same form in the high-density regime as
well where £ is given by £(n)=2gn>?/3 with g=2hw\a,.
For weak and moderate coupling constants g (respectively,
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FIG. 2. (Color online) Schematic behavior of the function W(n), here displayed for the low-density regime £(n)=gn?/2, in the left-hand
panel. The right-hand panel shows typical density profiles of the condensate [lengths are given in units of the healing length &(n,)
=fi/\2mn,g]. For given values u, j, and g, a beam of uniform density has either the density n; (supersonic solution, horizontal line in the
right-hand panel) or the density n, (subsonic solution). At a given classical energy E (with E,;, <E<Eg,.y, to assure bounded density
oscillations), n_ and n* are the minimum and maximum values of the cnoidal density oscillations, displayed in the right-hand panel. Energy

values E close to (but lower than) E,,, correspond to gray solitons.
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g), W(n) exhibits a local minimum E,;,=W(n;) at a low
density n; and a local maximum E,,,=W(n,) at a high den-
sity n,. These extrema, at which the fictitious particle would
be at rest forever, correspond to solutions of Eq. (18) with
constant density. They represent plane waves of the form
W (x,t)=\n, exp(ik,x—iut/#) (v=1,2) whose wave num-
bers k, are implicitly determined through the dispersion re-
lation of the Gross-Pitaevskii equation, namely

2
m
=" ), 1)
4
as expressed in terms of the total current j,=#k,n,/m. The
solutions ¢, and ¥, are termed “supersonic” and ‘“‘subsonic,”
respectively, since the beam velocity is larger than the speed
of sound of the condensate for ; and smaller than the speed
of sound for %, [19]. The transport of particles at these two
solutions is dominated by the kinetic energy in the super-
sonic case, and by the interaction between the atoms in the
subsonic case. We note that in the noninteracting limit, where
€(n) is independent of n, the subsonic density n, diverges
and W(n) has only one finite extremum at the density n,.
Solutions of Eq. (17) with E;, <E<E,, exhibit peri-
odic density oscillations and correspond to a bounded motion
of the fictitious classical particle. They are implicitly given
through the integration of Eq. (18), i.e.,

AW) #h\2mdA
X=X = \/ 2 2 2 2’
Axg) VE =mj;/(2A%) — pA” + E(A”)

(22)

where the amplitude A(x,) at the position x, determines the
initial value for the solution of the differential equation (17).
For e(n)=gn/2 it was shown that the solutions of Eq. (22)
can be expressed in terms of Jacobi-elliptic functions [12].

For our purpose, a qualitative characterization of the free
solutions of the Gross-Pitaevskii equation is sufficient: Small
deviations from the constant density value n;, e.g., small
values of E—W(n,) correspond to small sinusoidal density
oscillations. Energy values close to (but lower than) the lim-
iting classical energy value E,,,=W(n,) correspond to gray
solitons. In the intermediate regime, between the limiting
cases of small sinusoidal oscillations and gray solitons, the
condensate density exhibits cnoidal oscillations. Energy val-
ues larger than E,, lead to an infinite density at finite x and
cannot be interpreted as physically meaningful steady-state
solutions. We also note that the flat-density solutions coin-
cide, n;=n,, when the potential W(n) exhibits a saddle point
configuration. For the potential W(n) displayed in Fig. 2,
such a saddle point configuration would, e.g., be encountered
by increasing g while u and j, are kept fixed. In the low-
density limit where €(n)=2%w  a,n, the criterion for the ex-
istence of a saddle point configuration reads 8u*=27mj’g*;
in the high-density limit where €(n)=2Aw Van, we find
w=5mj?g*/2°. Beyond these limits no stationary solutions
exist any more.

Finding stationary scattering states in the presence of a
finite scattering potential requires now to match two
asymptotic density modes, each characterized by a separate
integration constant E, in the upstream, respectively, down-
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stream region. From general arguments on the dispersion re-
lation of elementary excitations of the Gross-Pitaevskii equa-
tion it follows that the physically meaningful boundary
condition for the steady-state solutions of Eq. (17) demands
a constant downstream density profile [19]. The asymptotic
downstream density should therefore correspond either to n,
or n,. In the present study, we intend to investigate the cross-
over from a noninteracting to a weakly or moderately inter-
acting system. We therefore focus on the regime of rather
small condensate densities, respectively weak atom-atom in-
teractions [na,< 1 and €(n)=gn]; hence, the low-density
downstream solution n; will be relevant in the following.
The high-density solution n, exhibits qualitatively different
features, such as solitonic transmission modes, and has been
discussed in Ref. [20].

In analogy with the scattering problem in a noninteracting
system we define a stationary scattering state as a solution of
Eq. (9) of the form

i(x,1) = Ylx)exp(= ipt/h), (23)

satisfying, in the downstream_region, outgoing boundary
conditions of the form (x)=\n, exp(ikx), with k>0 given
by k; as defined above. In order to determine the scattering
states for a given barrier potential V(x), which vanishes at
x— =+, and for given values for the total current flow j, and
the chemical potential w, we integrate the equation of motion
(17) from the downstream to _the upstream region with the
“asymptotic condition” A=vn, and A’=0 in the downstream
region. This allows us to compute the density profile in the
whole waveguide, and by computing the phase via S’(x)
=mjA*(x)/h we determine unambiguously the stationary
scattering state ¢(x). This procedure describes the scattering
process in terms of a so-called fixed output problem, because
the outgoing current j; in the downstream region enters as a
parameter in the asymptotic boundary conditions that deter-
mine the scattering state [31,32].

There is only a small number of potential configurations,
such as the square well or &-peak barriers, for which the
integration can be carried out analytically [12]. For the gen-
eral case, it is convenient to rewrite Eq. (17) in terms of
Hamilton-like equations of motion

, IH m
= "t
. IH (mj}
p=-—r= (F —2u-Vix) -em]|A,  (24)
where we introduced the canonical momentum p

=(h?/m)A’. These equations of motions can be deduced
from the classical Hamiltonian

K2 2
H(A,p) = %pz + % +[pn-V(0)]A* - E(4%). (25)

In the picture of the fictitious classical particle, V;(x) plays
the role of a driving force which drives the particle away
from the minimum of the classical potential W(n). The clas-
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sical energy, which is E;=W(n;) in the downstream region,
is altered by the amount

AE = f*“ Vi(x)A(x)A’ (x)dx, (26)

which yields the new classical energy value E,=E +AE for
the upstream region. The asymptotic behavior of the scatter-
ing state is then fully determined by E, and E,. The energy
transfer AE is a measure for the amplitude of the density
oscillations in the upstream region, i.e., increasing values of
AE imply a larger backreflection.

Our purpose is now to determine the reflection and trans-
mission coefficients, 7 and R, associated with the stationary
scattering states. These quantities are naturally given by T
=j,/j; and R=j,/j;, where j;, j,, and j,, respectively, denote
the incident, transmitted, and reflected current of the conden-
sate. The determination of j; and j,, however, is a nontrivial
task, since we cannot simply decompose the upstream wave
function into an incident and reflected plane wave compo-
nent due to the nonlinearity of the Gross-Pitaevskii equation
which does not permit the application of the superposition
principle. We show now how the incident and reflected cur-
rents can nevertheless be defined and calculated in a mean-
ingful way.

First, we briefly recall a method that has been suggested
in Ref. [20] and was successfully applied in Ref. [13]. It
allows one to determine approximate values for 7 and R in
the regime of small backreflections or small nonlinearities,
by means of an approximate decomposition of the upstream
density into an incident and reflected beam. We consider here
the low-density regime an< 1, e.g., e(n)=gn. In the up-
stream region, n(x)=A%(x) obeys the equation [see Eq. (18)]

h? (d\’;>2
E,=—|—| +W 27
= S8 ) W @)
with
mj? 1
W(n) = —— + un — —gn’. (28)
2n 2

We write the density in the form n(x)=n;+ dn(x), where
on(x) represents the density oscillations originating from
backreflections. Inserting this ansatz into Eq. (27) and intro-
ducing a new effective wave number

k=kV1l - 1/Q2&%k>) (29)
(here, &é=h/\2mn,g is the condensate’s healing length
in the downstream region) and the characteristic scale &n,
=m[E,—W(n,)]/ (#*«?) for density oscillations, we obtain

2
(@> +4Kk>on* = 8Kk*6n,(ny + bn) + 4%5}13 (30)
dx h

as an equation of motion for dn(x).

Until now, no approximation has been made. In the re-
gime of small backreflections, where |n|/n; <1 holds, or
small interaction parameters g (both limits are covered by the
condition |dn|/n, < K*&, see Ref. [20]), we neglect the cubic
term in Eq. (30). Thus, the equation of motion (30) corre-
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sponds to the dynamics of a shifted harmonic oscillator, and
its solution is given by

—
n(x) =ny + ony +\2n,6n; + (én;)* cos(2rx + ), (31)

where 6 is an arbitrary phaser. The density profile (31) is
equivalent to that of the two counterpropagating plane waves
with wave vector «,

i(x) = \/ 7t %CXP(in),
on, . .
Px) =1/ Texp(— ikx+i0), (32)

n(x) = [ (x) + (). (33)

Identifying ¢;(x) as an incident and ,(x) as a reflected wave
component allows one to determine the transmission and re-
flection coefficients through

6}’11 -1 2”1 -1
T=\1+—1] , R={1+—] . (34)
2”1 6’11

The approximate nature of Eq. (34) becomes evident if we
consider the conservation of currents. Computing the inci-
dent and reflected current components in the upstream region
yields

yielding

s jr=__’ (35)
m

whereas we find from the asymptotic downstream behavior
of the wave function the transmitted current component j,
=nhk/m. It is easy to see that the relation j,+j,=j; is exactly
fulfilled only in the case of vanishing atom-atom interac-
tions, i.e., k=k. In the regime of weak interactions deviations
from the current conservation are of the order O[(k&)~2] and
the approximate approach becomes inappropriate for strong
interactions or large backreflections.

In order to overcome this problem, we consider a wave-
guide configuration in which the interaction strength g tends
to zero for x— —o and reaches a finite constant value in the
region where the barrier potential is located (see Fig. 3).
Furthermore, we assume that the typical length scale on
which g varies is much larger than the periodicity of the
density oscillations. Such a variation of g can, e.g., be
achieved by decreasing the transverse confinement frequency
o of the waveguide or by tuning the scattering length a, via
a Feshbach resonance.

Using once more the analogy with the dynamics of a clas-
sical particle, we introduce the effective “pseudoaction”

ﬁz Xo+Ax
J= fﬁ pdA=— J [A(x)]%dx (36)

that is integrated over one spatial period Ax of the upstream
density oscillation (which would be given by Ax=7/k in the
absence of the interaction). By use of Eq. (18) the pseudo-
action can also be written in the form
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FIG. 3. (Color online) Adiabatic transition of the interaction
parameter g for a proper definition of transmission coefficients: The
upper part of the figure displays the adiabatic variation of the
position-dependent parameter g(x) from g=0 up to a maximal value
g. The gray-shaded transition region between x; and x, in which g
varies with position is assumed to be much larger than the typical
periodicity of the condensate density oscillations. The lower part
shows the density of a stationary scattering state in the presence of
a potential barrier, which is constant in the downstream region and
displays oscillations in the upstream region (the position of the
barrier potential is marked by the vertical line). The nonlinear cnoi-
dal oscillation of n between the barrier and x, is adiabatically con-
veyed, in the transition region between x; and x,, into a sinusoidal
oscillation in the interaction-free domain on the left-hand side of x;.
There, the wave function can be linearly decomposed into an inci-
dent and a reflected component.

T=h \/% f - VIE, — W(n)/ndn, (37)

where n_, (n,) is the minimal (maximal) density value of the
oscillating upstream density. It is determined via the relation
W(n,)=E,. Due to the theorem of adiabatic invariants, [J
remains approximately constant along the waveguide as long
as g is sufficiently slowly varied. It can, under this condition,
therefore be evaluated at any position x, in particular also in
the far-upstream region at x <x; where we have g=0. There
we can decompose the wave function in an incident and re-
flected part as

Px) = (ae'*+9) 4 Bemihe) i (38)

with k=V2mu/#h, where the amplitudes «, 8 and the phases
¢, ¢ are real. The wave function’s amplitude reads

A(x)=Va? + B+ 2ap cos(2kx + ), (39)

and the canonical momentum p is given by

#? 2aBk sin(2kx + @)

(x)=—A"(x) = . (40)
P m Va2 + B*+2ap cos(2kx + ¢)
By use of dA=A'dx, we evaluate Eq. (36) as
J= é; pdA =2B°hk/m. (41)

Using the fact that the incident and reflected currents read
ji=hka?/m and j,=hkB*/m in the far-upstream region, we
can obtain the reflection and transmission coefficients via
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FIG. 4. (Color online) Comparison between the approximate
and exact transmission values, calculated with Egs. (42) and (34),
respectively, for a moderately interacting condensate that propa-
gates through a potential barrier, with the dimensionless parameters
m=3, g=1/2, j,=1, and with variable barrier height. The transmis-
sion is plotted as a function of the classical energy transfer AF,
which is a measure for the backreflection in the upstream region.
For increasing backreflections, the approximate result (34) overes-
timates the “true” value of the transmission coefficient given by Eq.
(42).

2 J -1
_%=<1+27Tﬁj,) . (42)

Equation (42) unambiguously assigns a reflection and a
transmission value to each scattering state that is a solution
of the nonlinear wave equation (9). This definition represents
a natural extension of the concept of transmission for non-
linear scattering problems.

For the practical computation of the transmission value
associated with a given scattering state, it is sufficient to
evaluate the integral (37) numerically in the near-upstream
region (i.e., for x=x, in Fig. 3) where the extremal densities
n, can be found by solving W(n,)=E,. This means that the
adiabatic variation of g does not need to be included at all in
the calculation; it is sufficient to take into account a short
spatial domain in the upstream region within which the con-
densate exhibits a couple of density oscillations. Computing
the transmission by use of Eq. (42) circumvents the approxi-
mate character of the relation (34) and is therefore also valid
in the regime of strong atom-atom interactions as well as for
large backreflections. In Fig. 4 we compare the approximate
with the “exact” expression for the transmission, determined
by Egs. (34) and (42), respectively, for a condensate with a
moderate nonlinearity that encounters a potential barrier in
the guide. For small backreflections both results coincide,
whereas for large backreflections the approximate formula
(34) systematically overestimates the transmission.

T=1-R=1

C. Time-dependent transport processes

So far, we restricted our considerations to stationary scat-
tering solutions of the time-independent Gross-Pitaevskii
equation. A severe problem is the fact that the mere existence
of a stationary scattering state does not imply that this state is
dynamically stable and can be populated in a time-dependent
scattering process. This is not only true for the propagation
of a finite wave packet (which obviously cannot be evolved
by an expansion in terms of stationary solutions of the
Gross-Pitaevskii equation, due to the absence of superposi-
tion principle), but also concerns the limiting case of a qua-
sistationary flow that is generated by an adiabatic injection of
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FIG. 5. (Color online) A reservoir of Bose-condensed matter
with a given chemical potential u is locally coupled at the position
Xy to a waveguide with a scattering potential. The reservoir emits a
plane matter wave in both directions into the guide. Hence, a co-
herent beam, with current j;, propagates toward the barriers of the
potential where the condensate is partially reflected, with the cur-
rent j,, and partially transmitted, with the current j,.

the condensate into the waveguide. This affects, as we shall
discuss later on, the resonant transport of a condensate
through a double barrier potential, where the dynamical sta-
bility properties of the scattering states become crucial for
their population.

In view of this complication we now describe a method
based on the time-dependent Gross-Pitaevskii equation,
which allows us to simulate a realistic propagation process.
This equation is integrated in the presence of an inhomoge-
neous source term, located at a position x=x, in the upstream
region and emitting monochromatic matter waves. The
source term simulates the coupling of the waveguide to a
large reservoir of a Bose-condensed matter at a given chemi-
cal potential u, from which matter waves are injected into
the waveguide (see Fig. 5). The effective nonlinear wave
equation that governs the time evolution of the condensate
wave function (x,7) is therefore given by

Il(x, K &
iﬁ% = (— ma Vi(x) + gltﬁ(xﬁ)lz) x,1)
+8(1) 8(x — xg)exp(— iut/h), (43)

where the time-dependent coupling strength between the
waveguide and the reservoir is contained within the source
amplitude S(7). The interaction parameter g need not be con-
stant, but may be considered too position dependent as well,
in order, e.g., to simulate the adiabatic transition from a non-
interacting to an interacting guide as depicted in Fig. 3. In
this work, we restrict ourselves to the case where g is con-
stant in the vicinity of the finite-range scattering potential.
Before studying time-dependent scattering processes in a
waveguide with a finite scattering potential, it is instructive
to consider first stationary solutions of Eq. (43) for the par-
ticular case of a homogeneous waveguide, i.e., V;(x) =0, and
a constant source amplitude S(¢) =S,,. In this case, there exist
plane-wave solutions #(x, )= y(x)e " with constant density
n=|y(x,1)|>. To demonstrate this, we switch to the Fourier
space by introducing the Fourier transformed wave function

J(q,t): Jexpligx)y(x,1)dg. Then, Eq. (43) takes the form

J  hq’ ~ o
(’% " gn) Hq.1) = Se~ @0 (44)

This equation admits solutions of the form
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2mSye~'4%0

e )

lq.1) =
Here, we introduced the wave vector k via the relation
h’k>=2m(u—gn). By transforming back to the position
space, we find solutions where the source term emits in both
directions the monochromatic wave

Som ik|x=xq| ,—ipt/h
lx,t) = ﬁe kx=xl g=iputlfi, (46)
with the wave number k being self-consistently defined by
1 |Sol*m*
k2=ﬁ{2m<u—gw . (47)

The density that is associated with the wave function (46)
reads

[Salm? _ |Sol*m
n= = .
(h*,) "~ 20 (pu— gn)

(48)

Evaluating the quantum mechanical current operator shows
that the source emits the current

S 1
= + —
#k) Tk

ji= % [Sol\n, (49)
with “+” for x> x, and “~” for x <x,. Inserting Eq. (49) into
Eq. (48) immediately yields the plane-wave dispersion rela-
tion w=mj?/(2n?)+gn.

As already discussed in Sec. IT B [see Eq. (21)] this equa-
tion admits two flat-density solutions, n=n; and n=n,, cor-
responding to a supersonic and a subsonic propagation of the
condensate, respectively. Rewriting Eq. (48) in the form

1
n,= i(ﬂ F - 2gm|S,|*1h?) (50)

allows one to compute the two densities 7, , that are possible
for a given value of the source amplitude S,. This relation is
illustrated in Fig. 6: the lower branch contains the supersonic
solutions and the upper branch the subsonic solutions. The
value S, =fiu/\V2gm corresponds to the saddle point con-
figuration of the classical potential W(n); there, the conden-
sate density is n,=u/(2g). For source amplitudes larger than
this threshold, no stationary solutions of Eq. (43) are pos-
sible. In the limit of noninteracting particles, g=0, only the
supersonic branch survives (because the speed of sound is
zero) and Eq. (50) takes the simple form n=|Sy|?m/(2A%w).

Now we study the time evolution of ¢(x,?) in the pres-
ence of a variable source amplitude S(z). Here, the scenario
of an initially empty waveguide that is gradually filled with
matter waves is of peculiar interest as this corresponds to the
experimentally realistic situation where the condensate is ini-
tially confined in a microtrap (playing the role of the reser-
voir) and then smoothly released to propagate into the wave-
guide. To simulate such a process, we propagate ¥i(x,t) by
numerically integrating the wave equation (43) in the pres-
ence of an adiabatic increase of the source amplitude S(z)
from S(#=0)=0 up to a given maximal value S,, with the
initial condition ¢(x,t=0)=0. The amplitude S(¢) is in-
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FIG. 6. Tllustration of the relation (50) between the source am-
plitude S, and the densities n, , of a homogeneous flow. The lower
branch corresponds to the supersonic solutions with density n; and
the upper branch to the subsonic solutions with density n,. These
two branches merge at the maximal value Sy, =Au/\V2gm of the
source amplitude, where a homogeneous solution with density 7
=u/(2g) is found on the saddle point of the classical potential
W(n). The insets illustrate the shape of W(n) for the different types
of solutions.

creased adiabatically in order to ensure that, at any instant
during the propagation, the wave function in the guide re-
mains as close as possible to a stationary scattering state of
the form ¢(x)exp(—iut/#). Quantitatively this means that the
typical time scale AT on which the amplitude S(7) increases
is much larger than the characteristic time scale =%/ u that
is associated with the chemical potential u of the source,
AT> 7. As we are studying an infinitely extended scattering
problem, we must impose absorbing boundary conditions in
order to avoid artificial backreflection at the boundaries of
the numerical grid. Details on these absorbing boundaries,
which are taken from Ref. [33] and adapted to account also
for a finite nonlinearity, as well as on the numerical integra-
tion procedure are given in Appendix B.

In a first step we discuss the filling of the waveguide in
the absence of a scattering potential, i.e., for V,(x)=0. Fig-
ures 7(a)-7(c) display the time evolution of the wave func-
tion ¢(x,t) by a series of snapshots showing the density at
different times. For the sake of definiteness we choose S(7)
=So[1—exp(-#/AT)], which provides a smooth evolution to-
ward the desired final value S(t— )=S,. We find that for
propagation times 7>>AT the calculation converges toward
the flat density [Fig. 7(c)] that corresponds to the stationary
plane wave (46) at the source amplitude S=S,. The bottom
part of Fig. 7 shows the real and imaginary parts of the wave
function ¢ at the time t=AT during the filling process. These
panels clearly illustrate that the source emits a plane-wave-
like solution of the form A(x,t)exp[—iut+ik(x,)x], where
A(x,1) and k(x,t) vary slowly with position and time.

It is instructive to display the evolution of the condensate
density as a function of the time-dependent source amplitude
S. Figure 8 shows this evolution for different values of AT
(dashed lines). We notice that these curves approach the
lower branch of the relation (50) (solid line in Fig. 8, see also
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FIG. 7. Time evolution of the condensate density during the
adiabatic increase of the source amplitude (the source is located at
the vertical dashed lines). The panels (a)—(c) show three snapshots
of the condensate in a waveguide without scattering potential: at (a)
t=0.1 AT, (b) r=AT, and (c) t=10 AT. The bottom part of the
figure shows the real and imaginary part of the wave function (in
units of Vn;) whose density is displayed in panel (b). The panels
(d)—(f) illustrate the scattering of the matter waves at a repulsive
barrier potential (gray-shaded region). Panel (f) clearly shows that a
stationary scattering state is populated in the long-time limit #>> AT.

Fig. 6) if we reach the limit AT>> 7. We therefore deduce
that the adiabatic filling of an initially condensate-free wave-
guide can only populate stationary solutions that correspond
to a supersonic flow; hence, the final condensate density is

0.6

”I: ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, '
”0.47 o N

E N A B - 3
0.2 == aT=100+ ; _
% o 0.5 s, 1
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FIG. 8. (Color online) Evolution of the condensate density
[given in units of the density n,=pu/(2g) of the saddle-point solu-
tion, see Fig. 6] as a function of the source amplitude S for three
different values of the time scale AT in which S is ramped to its
maximal value S, (dashed and dashed-dotted curves). For an in-
creasing ratio AT/ 7 with 7=#/u, the curves converge toward the
supersonic branch of Eq. (50) (solid line). For § — S, the supersonic
scattering state with constant density n=n; is reached.
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given by n=n, as defined by Eq. (50). In analogy to the fixed
output problem discussed in Sec. II B, the implementation of
the source term therefore allows one to investigate the trans-
port of the condensate in terms of a so-called fixed input
problem, where the incident current j; that is emitted into the
guide parametrizes the process. The fixed input approach is
much closer to experimental situations because the current
that is injected into the guide is typically under much better
control than the total transmitted current j,.

In a second step, we consider a scattering process in the
presence of a barrier potential Vj(x). Due to the partial back-
scattering of the condensate at the barrier, the dynamics be-
comes more complex as compared to the potential-free case.
Nevertheless, for weak or moderate nonlinearities the wave
function ¢(x,7) is found to converge toward a stationary
scattering state ¢(x)exp(—iut/f) during the adiabatic in-
crease of the source amplitude toward its final value S, as
illustrated in Figs. 7(d)-7(f). During the gradual filling of the
guide, the condensate is partially reflected at the barrier,
which leads to the oscillating density pattern between the
barrier and the position of the source in the upstream region.
On the right-hand side of the barrier, in the downstream re-
gion, the density is flat in the long-time limit > AT, which
reflects the fact that the wave function i(x) is given there by
an outgoing plane wave of the form (x)=A exp(ikx). We
checked that the state (x) that is reached at the end of the
propagation fulfills the stationary Gross-Pitaevskii equation,
i.e., the wave function’s amplitude A(x)=|¢(x)| is a solution
of Eq. (17).

Once we populate a stationary state, we have another
straightforward access to the transmission coefficient 7 in the
nonlinear scattering problem: 7' is given by the ratio of the
transmitted current j,, evaluated through the current operator
in the downstream region, to the current that would propa-
gate through the waveguide in the absence of the barrier
potential, which is the current j; that is directly emitted from
the source. This approach provides another natural extension
of the definition of transmission coefficients to nonlinear
wave equations. Hence, the numerical method introduced in
this section allows not only to calculate scattering states that
are dynamically stable and can be populated in a realistic
propagation process [34], but provides also a straightforward
access to transmission coefficients for a fixed input problem.

We point out that in the nonlinear case, convergence to-
ward a stationary scattering state is not always guaranteed.
Indeed, studying the transport of condensates through a
waveguide with an extended disorder region by means of the
method described in this section revealed that, beyond a
critical interaction strength, respectively, a critical length of
the disorder region, the transport process generally remains
time dependent and stationary states are not populated [13].

D. Transport through a quantum point contact

As a first and simple example we study the transport
of a Bose-Einstein condensate through a quantum point
contact. We consider a waveguide with a constriction given
by a single repulsive Gaussian barrier potential V(x)
=V, exp(=x*/0?) which can be experimentally implemented
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FIG. 9. (Color online) Transmission spectrum of the condensate
flow through a quantum point contact for different values of the
incident current j; (w in units of Zw). The solid lines are found by
evaluating the stationary Gross-Pitaevskii equation, the values de-
noted by crosses are obtained by integrating the time-dependent
Gross-Pitaevskii equation in the presence of the source term (the
dashed line displays the result for a noninteracting condensate). The
inset shows the j,—j; current characteristics for a condensate flow
without interactions (g=0, dashed line) and in presence of interac-
tions (g=0.034%w, solid line), at u=3hw.

by focusing a blue-detuned laser beam in its transverse
ground mode onto the waveguide [35]. For the sake of
definiteness we consider in the following a condensate of
8Rb atoms (m=1.45X10" kg, a,=5.77 nm) flowing
through a waveguide with transverse trapping frequency
w=27X10> s7! that corresponds to a harmonic oscillator
length a | =0.34 um. It is convenient to measure energies in
units of Aw, lengths in units of a,, and particle currents in
units of w. In these units the interaction parameter reads
£=0.034%wa , . For the longitudinal extension of the barrier
we assume 0=2a, =0.7 um (which would be at the limit of
experimental realizability) and its height is chosen as
V0=3 ﬁw

In a first step, we investigate the transport process in
terms of a fixed output problem: We calculate scattering
states by integrating the stationary Gross-Pitaevskii equation,

2

pip(x) = (— UL g|w<x>|2) W), (51)

2m dx

for given values of the chemical potential w and the trans-
mitted current j, from the downstream to the upstream region
[where a supersonic density n(x— )=n, is assumed in the
downstream region]. Equation (42) allows us to compute the
corresponding transmission coefficient from which we can
deduce the incident current via j;=j,/T. Varying the transmit-
ted current allows us to compute the j,—j; current character-
istics which is displayed for u=3%w in the inset of Fig. 9.
For noninteracting particles (g=0) the j,—j; characteristic is
linear, because the transmission coefficient 7 does not de-
pend on the particle current, whereas for nonvanishing inter-
action parameters the j,—j; characteristic shows a nonlinear
behavior and displays increasing deviations from the linear
case with increasing particle currents. This means that the
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presence of repulsive interactions suppresses the transmis-
sion through the quantum point contact with growing cur-
rent.

It is now easy to switch from the fixed output to the fixed
input problem where the incident current j; is kept constant.
To this end, we basically must invert the j,—j; characteristics,
in order to determine the total current j, and the correspond-
ing transmission coefficient 7 that result from a given inci-
dent current j;. This can be done in a unique way in the
present case, since the j,—j; characteristics are monotonous
and therefore allows one to unambiguously assign to each
value of j, a unique incident current j;. Computing the cur-
rent characteristics for different values of u allows one then
to obtain the transmission spectrum, i.e., the transmission
coefficient T as a function of the chemical potential u at a
fixed incident current j;. Transmission spectra of the point
contact for different incident currents are displayed in Fig. 9.
Qualitatively, we find that in the presence of repulsive inter-
actions the spectra strongly resemble the spectrum for a
single particle: for chemical potentials considerably smaller
than V|, the transmission tends to zero, whereas for u much
larger than V|, we reach a regime of perfect transmission. In
the intermediate regime, we clearly see that increasing par-
ticle currents j; yield a moderate suppression of the conden-
sate flow through the point contact. This is attributed to the
fact that the presence of the repulsive interaction leads, at
fixed u, to a reduction of the available kinetic energy, which
in turn reduces the probability for the atoms to penetrate the
barrier.

So far, the computation of the transmission spectra was
based on the stationary Gross-Pitaevskii equation. As a
complementary access, we apply the method based on inte-
grating the time-dependent Gross-Pitaevskii equation with
the source term. For each value of u, the wave function was
propagated according to Eq. (44) in the presence of an adia-
batic increase of the source amplitude S up to the maximum
value S, that corresponds to a given incident current j;. For
the considered range of incident currents j; we find stationary
scattering states at the end of the propagation. As shown in
Fig. 9, the results for the transmission obtained from the
time-dependent integration (marked by blue crosses) coin-
cide with the result based on evaluating the stationary Gross-
Pitaevskii equation. Hence, we can conclude that a gradual
filling of the guide populates precisely those scattering states
that are eigenmodes of the stationary problem, and that these
stationary states are dynamically stable.

III. TRANSPORT THROUGH A DOUBLE BARRIER
POTENTIAL

Now we study the particularly interesting propagation
process of a Bose-Einstein condensate through a symmetric
repulsive double barrier potential which can be seen as a
Fabry-Perot interferometer for matter waves. This setup was
first discussed by Carusotto and La Rocca [9,10] who pro-
posed to use a combination of optical lattices for the realiza-
tion of this bosonic quantum dot. In the context of atom
chips, a double barrier potential could also be implemented
by suitable geometries of microfabricated wires on a
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multilayer chip geometry [36]. Another straightforward
implementation relies on two blue-detuned parallel laser
beams, crossing transversely the waveguide. Assuming the
laser beams to be in the lowest transverse mode, this setup
creates a potential geometry with two Gaussian-shaped bar-
riers. For the sake of definiteness, we consider this latter case
and assume a double barrier given by

de(x) — Vo(e—(x + L/2)2/(r2 + e—(x - L/2)2/<12)_ (52)

Here, o is the width of one barrier and L is the distance
between the barriers.

For a flow of noninteracting particles it is well known that
the transmission spectrum of a symmetric double barrier po-
tential exhibits Breit-Wigner resonances [37] which are re-
lated to resonant transport states. In our context, these reso-
nant states can be defined as stationary scattering states of
the condensate [see Eq. (23)] that exhibit perfect transmis-
sion. In the following, we investigate to which extent reso-
nant transport through such a double barrier potential can be
achieved for an interacting condensate, and how interactions
modify the transmission spectrum.

A. Resonant transmission spectra

We now compute transmission spectra for the double bar-
rier potential (52) by applying the same methods that have
been employed to find the spectra of the quantum point con-
tact in Sec. II D, using again the same units that were already
introduced there. In the following, we consider a condensate
with effective interaction strength g (which will be varied to
investigate the effect of an increasing nonlinearity), a wave-
guide with transverse trapping frequency w=27X10° s,
and a double barrier potential (52) with the parameters V,
=1.1 hw, o=a,, and L=4.25a . We study the transport of
the condensate in terms of a fixed input problem, with inci-
dent current j;=1.0 w. The influence of the atom-atom inter-
action on the transmission spectrum is exemplarily investi-
gated in the vicinity of the energetically lowest resonance
which has one density maximum in between the two barriers
(see inset in Fig. 10). In Ref. [11] we showed that qualita-
tively similar results are also found for higher resonances.

First we compute transmission spectra by use of the inte-
gration method based on the stationary Gross-Piatevskii
equation, respectively, Eq. (17): The spectrum is, as in Sec.
II D, determined by calculating stationary scattering states
for given j, and u, and the incident current of the scattering
states is computed via Eq. (42). Finding the value of j, that
results from a given j; is an optimization problem that can be
solved systematically by analyzing the j,—j; current charac-
teristics. In the linear case, g=0, we obtain a Breit-Wigner
resonance at ©=0.389%w corresponding to the energetically
lowest resonance state (Fig. 10).

Now we consider the case of a weak atom-atom interac-
tion, g=0.002wa . As the most striking result, we find,
close to the resonance, a multivalued transmission spectrum
where two further solutions appear for 0.419<pu/(fhw)
<0.472. These solutions join together to form a resonance
peak that is asymmetrically distorted toward higher values of
the chemical potential [38]. The resonant state, which is
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FIG. 10. (Color online) Transmission spectra of the double bar-
rier potential at g=0 (upper panel), g=0.002 Ziwa, (middle panel),
and g=0.01 Awa, (lower panel). The (green) solid lines show the
transmissions of all scattering states, calculated by the “stationary”
method based on Eq. (17), that exist at the incident current j;
=1.0 w of the matter-wave beam. The dashed lines display the
spectra obtained from the time-dependent integration approach. The
inset shows the longitudinal atom densities (in units of af) of the
first resonant state and the coexisting low-transmission state for g
=0.002 Awa, (the position x is given in units of a ). The gray-
shaded curves indicate the positions of the two barriers. The (red)
dots (marked by the arrows) designate the positions of the resonant
state and the low-transmission state in the transmission spectrum.
The chemical potential w is given in units of A w.

found at ©u=0.472%w, coexists with a low-transmission state,
as depicted in the central panel of Fig. 10. The asymmetric
distortion becomes even more pronounced for an increasing
interaction strength. This is shown in the bottom panel of
Fig. 10 where we display the spectrum in the vicinity of the
first resonance for g=0.01%w | .

It is instructive to trace the evolution of the j,—j; charac-
teristics in the vicinity of the onset of the multivalued sub-
zone in the spectrum. In contrast to the monotonously in-
creasing current characteristics that we found for the
quantum point contact (Fig. 9), the characteristics of the
double barrier potential shows a more complex behavior,
where it is not always possible to unambiguously attribute to
each incident current j; one single transmitted current j,. Fig-
ure 11 shows that for values of u below the critical chemical
potential from which three branches coexist, the current
characteristics intersect only one time the horizontal line that
represents the fixed incident current j;=1.0 . Above this
critical value of u three intersection points are found, corre-
sponding to the three coexisting scattering states.

Our findings are characteristic for a bistability phenom-
enon, similar to processes in nonlinear optics [39] and in the
electronic transport through quantum wells [40,41]. This bi-
stability phenomenon is found to arise already for rather
weak interaction strengths, namely for g > g* with the critical
value g*=0.000 165fiwa of the nonlinear parameter [50]. It
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FIG. 11. (Color online) Current characteristics for the double
barrier potential in the vicinity of the onset of the multivalued sub-
zone of the spectrum (for g=0.002 %wa ), calculated for different
chemical potentials (given in units of fiw). Below the critical u
=0.419hw, the j;—j, characteristics (dashed-dotted line) intersect
only once the horizontal line indicating the fixed incident current
Ji=1.0 w. Above this critical value, three intersection points are
found (dashed line). At u=0.419%w, the current characteristics
(solid line) exhibits a tangent to the horizontal line. The intersection
points marked with filled (green) points correspond to scattering
states that are populated during a time-dependent propagation
process.

is therefore crucial to know which branches of the transmis-
sion spectrum are actually populated in a realistic experi-
mental situation in order to decide if resonant transport is
possible in the presence of a finite interaction strength. To
this end, we recalculate the transmission spectrum with the
time-dependent integration approach, which simulates, at
given value of u, the adiabatic release of the condensate
from the reservoir into the waveguide. As explained in Sec.
II D, this method provides another straightforward access to
the transmission values, and stationary states that are se-
lected by this method automatically satisfy the criterion that
they are dynamically stable and can be populated in a real-
istic propagation process.

The dashed lines in Fig. 10 show the result of this calcu-
lation. While a perfect agreement with the method based on
the stationary Gross-Pitaevskii equation is found for g=0,
the time-dependent approach reproduces, for g # 0, only the
lowest branches of the spectra in the multivalued region.
This apparently implies that the asymmetrically distorted
peak structure is essentially inaccessible in the propagation
process that is considered here. We therefore conclude that
resonant transport, which would necessarily require the
population of such a distorted peak, will generally be sup-
pressed in the presence of finite interactions, and only the
low branches of the spectrum which have rather low trans-
mission will be populated. Qualitatively, this behavior of the
nonlinear system can be understood by comparing the “inter-
nal” interaction energy (evaluated within the internal region
of the double barrier)

+L/2
En=g f |p(x) [Pdx (53)

-L/2

of the resonant with the one of the coexisting low-
transmission state. The system can minimize E;, by realizing
a state with a low particle density in between the barriers. As
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displayed in the inset of Fig. 10, this favors the low-
transmission state.

To conclude this section, we remark that a temporary en-
hancement of the transmission of matter waves near the reso-
nance can be achieved by a variation of the external potential
during the propagation process. In Ref. [11] we devised a
temporal modulation scheme where the potential is shifted
with time according to V(x)— V(x,1)=V(x)—-V,(z). Specifi-
cally, such a modulation can be induced by illuminating the
scattering region with a red-detuned laser pulse, where
Vo(1)>0 would be determined by the detuning and the in-
tensity of the laser. In the case of an adiabatic modulation of
V, the wave function ¢/(x,7) remains, at each time ¢, close to
the instantaneous scattering state that is associated with the
external potential V(x,7)—or, equivalently formulated, close
to the scattering state for the potential V(x) at the shifted
chemical potential p+V(f). As soon as u+ V() is raised
above the critical chemical potential from which the trans-
mission spectrum becomes multivalued, the wave function
follows continuously the upper branch of the resonance and
evolves into a near-resonant scattering state with high trans-
mission. This state turns out to be dynamical unstable, and
the wave function decays after a typical lifetime of the order
of several milliseconds toward a low-transmission state [11].

B. Transmission in terms of quasibound states

In this section, we present analytical and numerical evi-
dence that the distortion of the resonance peak arises indeed
due to the nonlinearity-induced level shift of the self-
consistent quasibound state within the atomic quantum dot.
We describe, for this purpose, our system in a similar way as
in the well-known scattering matrix approach [42], namely
by a discrete “bound” (or quasibound) state within the quan-
tum dot that is weakly coupled to two symmetric continua of
unbound “lead” states in the upstream and downstream re-
gions of the waveguide. In contrast to the situations for
which the scattering matrix formalism was originally devel-
oped [42], we consider here nonlinear dynamics within the
quantum dot, which is described by the Gross-Pitaevskii
equation. As was previously pointed out, the outcome of a
given scattering process is, in this case, not completely inde-
pendent of the “history” of the process, i.e., of the way in
which the condensate is injected into the waveguide. Differ-
ent scattering states might, specifically, be populated if the
chemical potential is adiabatically varied in different ways
during the propagation [11]. To account for this complica-
tion, we formulate our nonlinear scattering theory in a time-
dependent way, namely by considering the asymptotic propa-
gation of a spatially broad (and energetically narrow) wave
packet that is injected onto the quantum dot from the left-
hand (upstream) lead. The population of the wave packet that
exits the scattering region in the right-hand lead naturally
gives rise to the transmission coefficient.

As a starting point, we subdivide the Hilbert space 7 into
a subspace H, containing discrete bound states within the
quantum dot region, and two other subspaces H;z contain-
ing continuous states in the left- and right-hand leads of the
waveguide. This subdivision can be formally achieved by
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means of the Feshbach projection method [43], where
those subspaces are defined by the projection operators P;
=60(x;—X), Pg=6(X—xg), and Q=1-P;—Py. Here x; and xg
are suitably chosen positions that mark the left- and right-
hand boundaries of the quantum dot, and # denotes the
Heavyside step function. As an essential ingredient of the
Feshbach formalism, different boundary conditions (i.e., of
Dirichlet or Neumann type) are imposed within and outside
the dot, which then allows one to shift the boundary contri-
butions from matrix elements of the Laplace operator to ap-
propriate sides of the spatial cuts at x=x;,;, in such a way
that the operator T of the kinetic energy remains Hermitian
within each subspace, but exhibits finite coupling matrix el-
ements across the boundaries (see, e.g., Ref. [44] for more
details). Choosing Dirichlet boundary conditions within the
resonator and Neumann boundary conditions in the leads,
these matrix elements would read

ﬁ2
<¢R|T| ¢> = 2_¢;(XR) ¢’(XR)5 (54)
m

hZ
<¢L|T| h)=- Eﬁ(&)ﬁ(&) s (55)

for wave functions ¢(x), i, (x), and ¢x(x) defined within the
subspaces H,, H;, and Hp, respectively. Without loss of
generality, we set x; =—a and xzp=a in the following, where
a=L/2 denotes the position of the maximal barrier height.
We now make the assumption that the nonlinearity can be
neglected in the lead regions outside the quantum dot, which
should be valid at weak interaction strengths and which is
motivated by the fact that close to resonance the density
within the double barrier potential is strongly enhanced as
compared to the leads. Furthermore, we assume that only one
quasibound state, namely the local “ground state” of the
quantum dot, appreciably contributes to the scattering pro-
cess, which is indeed the case in our specific double barrier
potential (52) where “excited” quasibound states are ener-
getically located above the barrier height. Neglecting the
contribution of those excited states, we make the ansatz

[

Px,1) = J dEAL(1) (x) + B(1) olx) + f dEAR(1) ¢f(x)
0

0
(56)

for the wave function, where ¢, & H denotes the above qua-
sibound state and d)é/ REeH,x are the energy-normalized
continuum eigenstates within the left- and right-hand lead,
respectively, at energy E. Inserting this ansatz into the Gross-
Pitaevskii equation yields the equations

d
iﬁEAgR(t) = EAYR(1) + VeB(1), (57)

[

ih%B(t)wU[lB(t)lz]B(tH J dEV AL + AJ(D)],
0

(58)

for the amplitudes A,ﬁ-, Ag, and B. Here,
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ol BOP1= w1l + g|B(1)|? (59)
with
F=g f ol (60)

represents the population-dependent chemical potential of
the quasibound state, and

h2 h2
Vp= 2—¢5(a>¢§(a) =— —d(-a)pi(—a)  (61)
m 2m

denotes the coupling matrix element between ¢, and é/ k.

We assume here, without loss of generality, that the wave

functions ¢y(x), qﬁé(x), and d)lg(x) are real valued and that the

continuum eigenfunctions exhibit the symmetry-related
R I

property ¢g(x)=¢p(-x).

As an appropriate initial state for the quasistationary scat-
tering process, we consider a spatially broad Gaussian wave
packet that is injected from the left-hand side onto the double
barrier potential. This wave packet is explicitly written as

2
Yx,t) =a exp{— (x;— x;) + ik(x + %xeﬂ (62)

€

with x.=x,/€ and o.=0,/€ for xy,0,>0. Choosing
the initial time 7, in the asymptotic past according to
t.=—mx. (hk), the wave packet will, in the limit e—0,,
evolve into the plane wave

Wx,1) = ae’R-rh) (63)

at finite times ¢, with the incident chemical potential u
=#%k*/(2m). Using the fact that the energy-normalized con-
tinuum eigenfunctions are, in the asymptotic spatial region
XxX>a, given by

2
BE(x) = P x) = ¢/ #cos(kgx o) (64)
E

with ky=+2mE/h and with a potential-dependent phase ¢,
we obtain the initial amplitudes

2
L mo 1
AL =\ G5 e exp(— el k>2>
. ky .
Xexp| + ix, kE—E +igg (65)
and B(t,)=AX(t)=0 for e—0,.
Equation (57) can now be formally integrated yielding
t

Aé/R(t) =Aé/R(t€)e—iE(t—t5)/ﬁ _ évEf B(t/)e—iE(t—t')/ﬁdt/'

le

(66)

Inserting this expression into Eq. (58) leads to the equation
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. d 2 2i ' ’ 1, —ip(t—t")ih ’
ih= B(0) = ol |BOPIB(@) == | di'B(&")e™ ™ K1 ~1")
tE

+ J dEVAL(t e F1dh (67)
0

for the bound component, with the Kernel
K(7)= f dEVie T, (68)
0

In the limit €e— 0, the last term on the right-hand side of Eq.
(67) is evaluated as Se”"“"" with the effective source ampli-
tude

27h*k .
S= vV ae . (69)
m

This suggests that the time dependence of the bound ampli-
tude is, in the quasistationary case, dominated by the expo-
nential factor e~ #/",

This latter information now permits one to evaluate the
second term on the right-hand side of Eq. (67): if
B(¢")exp(iut'/h) varies much more slowly with time than
K(r—1"), we can justify the approximation

t o
J dt'B(t")e m=1" Vg _ 47 :B(z)f d7K(7)
I3 0
ih i
= 3(5;; 5“")’ (70)

where the energy shift &, and the rate vy, are, respectively,
given by the principal value integral

2V;
5,=P f dE—=- (71)
n—E
and by the expression
Y, =4mVo/h. (72)

Omitting the small shift §,, in the following, we obtain the
equation

ih B0 = <M0[|B(l)|2] - éfm)B(r) £ Sl (73)

for the bound component B(¢), which exhibits strong analo-
gies to a nonlinear damped oscillator model that is subject to
a periodic driving. Obviously, stationary solutions of Eq.
(73) are of the form

B(1) = Bye /", (74)

where the bound amplitude B, satisfies the self-consistent
equation
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By = S : (75)

i
= po(|Bol?) + Ehm

For the noninteracting case g=0, one can show that this so-
lution is necessarily realized after a transient propagation
time of the order of y;l.

Inserting this stationary solution into Eq. (66) for the
transmitted component finally yields

2 e—iﬂ(’—’e)/ﬁ
AR == 2mi =

l
= o(|Bol) + ez

AL(t)  (76)

while Alg(t) would, for E# u, vanish in the limit e—0. We
therefore obtain the transmission coefficient through

AR (hiy/2)°
AL [ = wo([Bo)T + (hy,/2)*

In the noninteracting limit g— 0, this expression describes
the Breit-Wigner profile of a single resonance peak at w
= po. Indeed, if the decay rate vy, is sufficiently small around
this resonance, we can safely approximate vy, by Yuo in the
relevant energy range |u— uo| waﬂo' Then T(w) is given by
a perfect Lorentzian centered around u= g, with the width
hyﬂo. At finite g#0, however, T may exhibit several
branches for a given value of u, due to the implicit relation
(75) between the bound component B, and the incident
chemical potential u.

We now aim at reproducing the numerically calculated
transmission spectrum (see Fig. 10) through Egs. (77) and
(75) using information that is obtained from the correspond-
ing decay problem [45-49], namely the chemical potential
and the instantaneous decay rate of the local quasibound
state at given population |By|*. The latter quantity can also be
derived from Eq. (67), now in absence of the incident wave
AlL(t,) and with the initial population B(y)=B,. Taking into
account the fact that the dominant time dependence of B(z)
is, in this case, given by exp[—iu(|By|*)t/#] for not too long
evolution times ¢, we obtain

T(u) = (77)

ih%B(I) = (M0[|B(t)|2] - éﬁyo[lB(t)V])B(f) (78)

as the equation for the bound component B(z), with
(B> = Yuy(8p)- Clearly, Eq. (78) describes a nonexponen-
tial decay of the condensate in the quantum dot, which is
explicitly given by the equation

N0 == WV O, (79)

where the decay rate varies adiabatically with the remaining
population N,,(r) = |B()|? of the quasibound state. Such non-
exponential decay processes of Bose-Einstein condensates
were discussed in detail in Refs. [47-49], where the instan-
taneous decay rates y,(N,) at various populations N, were
used to predict the time evolution of the quasibound popula-
tion through the numerical integration of Eq. (79).
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In analogy with the noninteracting case, we now replace
¥.— Yo(|B*) in Eq. (77), which approximately interpolates
between the decay rate of the weakly populated quasibound
state at u=u(0) [which is naturally given by ,(0)] and the
decay rate near maximum of the shifted resonance peak. Us-
ing this approximation, the equation for the transmission co-
efficient reads as

T(w) = [y (N,) 2T
[ = to(Np) I + [y (N,) /2]
where the quasibound population N, implicitly depends, via

Egs. (75) and (69), on the incident chemical potential x and
the incident current j;=#k|a|>/m according to

(80)

fiyo(N,)/2
[ = po(Np) T + [fiyo(N,)/21

As in the corresponding decay problem [47-49], we now
need to know the instantaneous chemical potentials wy(N,,)
and decay rates y,(N,) at given quasibound populations N,
in order to calculate solutions of this set of equations. For
this purpose we apply a real-time propagation method which
is based on the numerical integration of the “homogeneous”
time-dependent Gross-Pitaevskii equation (i.e., without the
inhomogeneous source term) in the presence of absorbing
boundaries. Starting from an appropriate initial condensate
wave function (which should approximate quite well the
resonance state to be calculated), and renormalizing the wave
function after each propagation step to satisfy the condition

N,(1) = hji- (81)

f i |p(x)[*dx =N, (82)

within the quantum dot, one indeed obtains, after a suffi-
ciently long propagation time, convergence toward the low-
est decaying state of the system. The scaling factor that is
needed to perform the renormalization (82) then gives rise to
the decay rate y,=7,(N,) of the quasibound state, while the
chemical potential o= uy(N,) of the decaying state can be
extracted from the expectation value of the nonlinear Gross-
Pitaevskii Hamiltonian. In practice, it is sufficient to com-
pute u, and 7y, in this way for the equidistant values N,g
=0,0.05,0.1,... of the population N,, and to use cubic inter-
polation in order to determine intermediate values of wg and
Y- (see Fig. 12)

With this information, the possible self-consistent values
of the quasibound population can be computed by applying a
numerical root-search method to Eq. (81) at given chemical
potential u and given incident current j;. The resulting occu-
pation numbers N, are then inserted in the expression (80)
for the transmission coefficient. As shown in Fig. 13, a dis-
torted resonance peak is then obtained for g>0. Apart from
a slight overestimation of the peak width, this peak agrees
quite well with the peak structure that would be formed
through the transmission coefficients of all possible station-
ary scattering states at the above incident density. This ulti-
mately confirms the one-to-one correspondence between
quasibound states of the atomic quantum dot and resonance
peaks in the transmission spectrum.
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FIG. 12. Chemical potential uy and decay rate v, of the quasi-
bound state within the double barrier potential, calculated as a func-
tion of N,g with N, the population of the quasibound state and g the
effective one-dimensional interaction strength. In practice, o and
o were computed at 30 equidistant values of N,g within 0=N,g
=1.5, and cubic interpolation was employed to obtain intermediate
values of ug and 7, for the self-consistent solution of Eq. (81). u,
hyo, and g/ o are given in “natural” energy units of Zw.

It is worthwhile to note that self-consistent solutions of
the quasibound populations can also be found in a different
way, namely by iteratively inserting approximate expressions
for N, into the right-hand side of Eq. (81) starting with N,
=0. This approach would effectively mimic the quasistation-
ary propagation of a Bose-Einstein condensate through the
initially empty quantum dot. In agreement with the time-
dependent propagation approach based on the inhomoge-
neous Gross-Pitaveskii equation (see Sec. II C), only the
lowest branch of the distorted resonance peak is populated in

I

0.7

FIG. 13. (Color online) Transmission spectra of the double bar-
rier potential at g=0 (upper panel), g=0.002%wa,; (middle panel),
and g=0.01 Awa, (lower panel). The solid line shows the trans-
missions of all scattering states, calculated by the “stationary”
method based on Eq. (17), that exist at the incident current j;=1w of
the matter-wave beam. The dashed line is obtained from self-
consistent solutions of Eq. (81) at j;=1w, which are inserted in the
expression (80) for the nonlinear transmission coefficient. The good
agreement confirms the one-to-one correspondence between quasi-
bound states of the atomic quantum dot and resonance peaks in the
transmission spectrum (g in units of fw)
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this way. This again underlines that the framework used in
this section is intrinsically suited to take into account time-
dependent effects and might therefore be used to predict the
outcome of specific propagation processes.

IV. CONCLUSION

We have presented analytical and numerical results for
steady and time-dependent flows of repulsively interacting
Bose condensed atoms through mesoscopic waveguide struc-
tures. To this end, we described a theoretical framework that
is suitable to study transport and scattering processes in the
1D mean-field regime. In this context we introduced a non-
perturbative method to extend the concept of transmission
and reflection coefficients to nonlinear wave equations. On
the other hand, to predict the behavior of the condensate flow
under realistic experimental conditions, it is necessary to
study time-dependent transport processes. We developed for
this purpose a numerical method based on integrating the
time-dependent Gross-Pitaevskii equation in the presence of
a source term that simulates the coupling of the waveguide to
a reservoir from which a quasistationary flow of condensate
is smoothly released into the guide.

The approach was first applied to the transport through a
single quantum point contact, where we found as a main
result that an increasing nonlinearity leads to a distinct re-
duction of the transmission. Much more complex behavior
was found for the condensate flow through a double barrier
potential. Here, the atom-atom interaction induces a bistabil-
ity phenomenon of the transmitted flux in the vicinity of
resonances, which manifests as a strong distortion of the
transmission peaks. By means of the time-dependent integra-
tion scheme, we demonstrated that resonant transport will
consequently be suppressed in a realistic propagation pro-
cess. However, as we showed in Ref. [11], a suitable varia-
tion of the external potential during the propagation process
can enhance the flow to reach a near-resonant state on finite
time scales. Finally, an analytical description of the transport
problem through the double barrier was developed, which
establishes a clear link between the nonlinear signatures of
the transmission spectra and the properties of the self-
consistent quasibound states of the quantum dot. Similar re-
sults were recently obtained in Ref. [51] as well.

The methods which are presented in this paper can cer-
tainly be applied also to more complex scattering potentials,
involving more than two barriers. In that case, however, we
do not expect that the calculation always converges toward a
stationary scattering state, even if the source amplitude in the
inhomogeneous Gross-Pitaevskii equation is varied on a very
long time scale. This was demonstrated in our study on the
transport of Bose-Einstein condensates through one-
dimensional disorder, where we found that randomly gener-
ated disorder potentials of finite range will generally give
rise to permanently time-dependent scattering processes at
finite interaction, as long as the length of the disorder region
exceeds a critical interaction-dependent value [13,14]. Inter-
estingly, this crossover between quasistationary and time-
dependent scattering, arising for disorder samples with
lengths below and above this critical value, respectively, cor-
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relates with a transition from an exponential (Anderson-like)
to an algebraic decrease of the average transmission with the
sample length [13] (which is different from the transition
between exponential and algebraic tails that is predicted for
the expansion of a condensate in a speckle potential [52]).
This indicates that the depletion of the condensate during the
propagation process might play a prominent role there. We
note in this context that the effect of depletion can to a cer-
tain extent be accounted for within the framework of our
approach, namely through the implementation of the micro-
scopic quantum dynamics approach introduced by Kohler
and Burnett [53] in combination with an external source
[54].

Furthermore, our numerical approach based on the inho-
mogeneous time-dependent Gross-Pitaevskii equation can
straightforwardly be generalized to describe scattering pro-
cesses in multidimensional geometries. This is of particular
interest in the context of the presently very active field of
atom-chip based waveguide interferometry with cold atoms
and Bose-Einstein condensates [55]. This technology is very
promising and offers an exquisite precision measurement ca-
pability, e.g., for investigating gravity-related effects [56],
with far greater sensitivity than its photon-based counterpart.
A key ingredient for atom interferometry are devices to split
and recombine the flow of cold atoms, respectively, conden-
sates [57,58]. Recent attempts to implement a coherent two-
arm interferometer by means of suitable magnetic field con-
figurations suffer from interaction-induced instabilities
during the splitting and recombination process, which leads
to an undesired loss of phase coherence [59,60]. Simulations
of the condensate flow based on our approach open the per-
spective to tailor suitable potential geometries that permit a
steady and coherent condensate transport through these me-
soscopic structures.

The results that were obtained in this work are related to
other fields of nonlinear physics as well, such as nonlinear
optics [61] and the electronic transport through quantum
wells [40,41], where similar observations on resonant trans-
port were made. In the context of Bose-Einstein condensates,
the realization of a quasistationary flux of interacting matter
waves though scattering potentials that are defined on micro-
scopic length scales still represents a formidable experimen-
tal challenge. There are, however, promising advances in this
direction, such as the atom-laser-like injection of a conden-
sate into an optical waveguide [16] as well as the scattering
of a stationary condensate in the presence of a moving ob-
stacle [35]. Such advances should, in combination with de-
tection techniques for single atoms [62,63] (which would
allow one to measure very low transmissions), make it pos-
sible to experimentally investigate the role of interaction in
mesoscopic transport processes from a new perspective,
namely the one of cold bosonic atoms.
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APPENDIX A

In this appendix we describe the numerical integration
procedure of the time-dependent Gross-Pitaevskii equation
and the implementation of the source term into this integra-
tion scheme. We consider the equation of motion (in the
following we set for simplicity A=1, m=1)

J
i5—t¢(x,t)=H(x,t)¢(x,t), (A1)
with the effective nonlinear Hamiltonian
1 & 5
H(x,t) = — —— + V(x) + g|g(x,1)|?, (A2)
2 dx

which we want to integrate for a given initial state ¢(x,z,) of
the condensate. In order to compute the time evolution of the
condensate wave function i(x,7) for > f,, we subdivide the
time interval r—f, into n discrete time steps of the size Ar
=(t—ty)/n, and use an implicit Crank-Nicholson integration
scheme [64] to propagate the wave function from one time
step to the next one. The effective time evolution operator U
for one discrete time step Ar is then given by [65]

1
Ut+Att) = ———

(1 _ éH(x,t)At). (A3)
1+ éH(x,t)At

The representation (A3) of U{ is unitary and thus conserves
the norm of the wave function . The implicit integration
scheme for the wave function then reads

(1 + lé—tH) Ylx,t+ Af) = (1 - lé—tH> pxt).  (A4)

We expand the wave function on a discrete lattice with N
lattice sites by introducing the grid basis

1 1
1, xj——AxSx<xj+—Ax,
X = 2 2 (A5)

0, otherwise,

with Ax= (Xpin—Xmax)/ N. Here, x,;, and x,,,, are the bound-
aries of the finite grid. The wave function then reads as

N
w(x’tn) = 2 %’Xj’ (A6)
j=1

where gbj?E #(x;,1,) is the value of the wave function at the
position x; of the jth lattice site (the index n labels the dis-
crete times, £,=1,+nAt). Using the finite-difference represen-
tation for the kinetic part of H(x,7), we find
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A
(1 + %‘H) lp(.x]‘,tn)

iA i ]_2 j j—1

(A7)

with V;=V(x;). By introducing ;Vl=(¢//l’- /A )7, the lat-
tice representation of Eq. (A4) finally reads

D2&'+1=D1&1<:> 117'+1=D51D1;V"

where we define

o[} el

and the N X N matrix representation of D , reads

(A8)

with

iAt _ At ( 1
Ax?

A j_7—+vj+g|w;|2>. (A10)

Hence, the integration of Eq. (A1) reduces to the solution of
a system of linear equations with a tridiagonal matrix.

So far, our integration scheme uses the value of ¢ at the
beginning of the integration step. This neglects the fact that
the effective Hamiltonian (A2) is implicitly time dependent
due to the presence of the nonlinear term g|¢(x,#)|>. Thus, it
would be appropriate to use a more precise estimate for this
nonlinear term, which is somehow averaged over the time
step At leading from ¢, to t,,,. This problem can be handled
by using a predictor-corrector-like scheme which was al-
ready successfully applied in [66]. In this scheme, each inte-
gration step is done 2 times: First, we propagate the wave
function from time ¢, to time f,,; using ¢" in the nonlinear

term, in order to obtain a predicted wave function fﬂ’“.
Then, we repeat this integration step but now using the av-
eraged value %(z,b"+ #") in the nonlinear term, yielding a
corrected wave function /.

Now we consider the presence of the source term. The
equation of motion therefore reads

i% Px,t) = H(x,t) Y(x,1) + S(t)exp(— iut) 8x). (A11)

Working with a grid representation of the wave function, it is
convenient to approximate the & function by

R(x) =i[®(x+Ax/2)—®(x—Ax/2)], (A12)

where O is the Heavyside step function. Before including the
source term to the finite difference scheme, we estimate the
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error that is introduced by this approximation. To this end,
we study the steady-state solutions of the wave equation

A 1& 5
lE - (— Eﬁ +V(x) + g|(ﬁ| =SoR(x), (A13)
that are obtained in the limit r— o. The Green function that
is associated with the stationary equivalent of Eq. (A13) is
given by

So
G(x-x')= .—;(’e'klx—x ‘ (A14)

1

with k=2(u—gn) [see Sec. I D, Eq. (46)]. Hence, the an-
satz

e So '
Pr(x) =f dx’_—](;e’kl"_’C R(x") (A15)
—0C l

yields a solution ¢(x) of Eq. (A13). Evaluating this integral
yields

p
. A
e  gin(kAx/2), x<-— Tx,
2S0 . A.x
— < 1— ikAx/2 cos(k , <=,
i) = 1 o), o] <
) A
e sin(kAx/2), x> 7’6
\

(A16)

which converges toward Eq. (A14) in the limit Ax— 0. The
result (A16) can serve as an estimate for the relative error £
that is done by approximating 8(x) with R(x): we obtain

2 sin(kAx/2) K*Ax? kAx

£=1 if S 1. (AL7
kAx <L (A1)

The relative error therefore scales quadratically with the grid
spacing Ax and becomes negligible for reasonably small val-
ues of Ax.

The above considerations justify the implementation of
the source term at the position x;» through the discretized
form

St =S(t,)exp(=iut,)d; (A18)

JJ'

where &; ;=1 if j=j" and 0 otherwise. In the presence of the
source term, Eq. (A8) is modified and reads as

D,/ +b" =Dy & ' =D3' (D - b,

where the components of the vector b" are given by

iAt
b= (S + 558, (A19)
In Fig. 14, we compare the exact result (A13) to the numeri-
cally computed plane-wave solution that is obtained in the
limit t— o0 by simulating the gradual filling of a waveguide
without scattering potential, V,(x)=0. Indeed, we find an
excellent agreement between the numerical result and the
exact plane-wave solution (A13) if we choose, e.g., Ax
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0 5 10
x/ A

FIG. 14. (Color online) Real and imaginary parts (black solid
lines) of the steady-state plane-wave solution (in units of \Vn;) ob-
tained by integrating the time-dependent Gross-Pitaevskii equation
with the numerical source term (A12) using the time step Ar
=%/(50u) and the grid spacing Ax=N\/30 with A=27/k the wave-
length of the condensate. An excellent agreement with the exact
analytical result (A13) (red dashed lines) is found. The source is
located at x=0 (lengths are given in units of \).

=N\/20 (with the wavelength A=27/k) and Ar=%/(50w).

It is worthwhile to mention that in the presence of strong
nonlinearities (for values of g considerably larger than in this
paper) and strong backreflection, a nonlinear back action be-
tween the reflected matter wave and the source term can
occur. As a consequence, the transmitted current depends not
only on the source amplitude S, but also on the position of
the source. In such a situation, it is advisable to implement
the adiabatic transition scheme that is displayed in Fig. 3
where g vanishes in the far-upstream region. By positioning
the source term there and by choosing a sufficiently large
transition region, one can avoid this nonlinear back action
and ensure that the wave function is adiabatically conveyed
from a linear wave to a nonlinear scattering state obeying the
Gross-Pitaevskii equation.

APPENDIX B

In the numerical treatment of time-dependent scattering
processes in open quantum systems, one often encounters the
problem of defining physically meaningful boundaries at the
edges of the computational domain. The naive, straightfor-
ward expansion of the wave function on a finite spatial grid
generally leads to an artificial backscattering of the wave
function from the boundaries of the grid, which makes it
impossible to simulate infinitely extended scattering states.
This problem can be circumvented by introducing complex
absorbing potentials in the vicinity of the grid boundaries
(see, e.g., Ref. [45]), which should be designed such that
they absorb the outgoing flux as best as possible without
affecting the dynamics inside the scattering region. An alter-
native method, which was introduced by Shibata for the lin-
ear Schrodinger equation [33], consists in the definition of
absorbing boundary conditions (ABC) at the edges of the
grid, which are formulated in order to perfectly match out-
going plane waves with a specified dispersion relation. This
method is particularly suited for quasistationary propagation
processes where the outgoing part of the wave function is
well described by a plane monochromatic wave. We show in
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(a, )1/2 T

1
(a, )1 2|

FIG. 15. (Color online) The positive branch of the dispersion
relation of a plane wave (black line) is approximated by a linear
function (straight blue line). The parameters «;, @, are chosen such
that the wave numbers of the plane waves to be absorbed lie within
the momentum interval Ak.

this Appendix how this approach can be numerically imple-
mented, and how the effect of a moderate nonlinearity in the
Gross-Pitaevskii equation can be taken into account.

We first discuss the absorbing boundary conditions for the
Schrodinger equation (with =1 and m=1)

lﬁ+VE)¢//(x,t), (B1)

J
I—i(x,t)=|—
ot Yl ( 2 9x?
where V, is a constant potential which is independent of the
position x. This equation admits plane-wave solutions
x, 1) =Ae " #k) gatisfying the dispersion relation

k= +\2(u-V,). (B2)

The “+” and “=” branches of Eq. (B2) correspond to plane
waves that propagate to the right- and left-hand side, respec-
tively. Thus, the ABC should satisfy the dispersion relation
given by the “+” branch of Eq. (B2) at the right-hand bound-
ary and the “-~” branch at the left-hand boundary of the grid.

We derive the so-called “one-way wave equations’” on the
basis of the dispersion relation (B2), which we will imple-
ment at the boundaries of the grid and which locally allow
for wave propagation only in the outgoing direction. To this
end, we make use of the duality relations

d . d .
—o-iu, —oik

B3
Jdt ox (B3)

which is going to be inserted into the dispersion relation
(B2). Unfortunately Eq. (B2) is nonlinear in x and cannot be
straightforwardly converted into a linear differential equa-
tion. To circumvent this problem, we approximate Eq. (B2)
in the vicinity of the chemical potential of the wave to be
absorbed by the linear function

— R _
X N \/2&2 - \"26(1 N (1’2\/2&’1 - \’20’2

= + JT=
@ —a

(B4)

ay — a;

(see Fig. 15). The parameters «;, a, are chosen such that Eq.
(B4) is a good approximation to the dispersion relation (B2)
within the interval Ak= \J’Tar V2a,, around the central
wave number %(\«"Taﬁ \2a,). By use of the duality relations
(B3), Eq. (B4) is transformed into the one-way wave equa-
tion
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d 19
i—(//—<—z——+V£—&>z/f, (BS)
Jat g10x g1
with
V2a, - \/2_a1
81 ==+ s
@ —
N~
a\N2a; — aN2a,
&= =% . (B6)

a — a;

Implementing these one-way wave equations at the bound-
aries of the grid (see below) leads to a very good absorption
of plane waves with wave numbers k satisfying \2a; <k
=\2a,. In Ref. [33] it was demonstrated that also wave
packets of the form =3 A; exp(ik;x) can be absorbed if all
wave numbers in this superposition lie within the above in-
terval.

It is straightforward to see that the one-way equation (B5)
absorb plane waves also in the presence of the nonlinear term
g|¥A*. This is evident for the special case of a constant den-
sity: y(x,t)=\n exp(—iut/f+ikx) with the dispersion rela-
tion

k= +V2(u—gn). (B7)

is obviously a solution of the Gross-Pitaevskii equation. A
comparison of Eq. (B7) with Eq. (B2) reveals that the term
gn can be identified as a constant effective potential. Hence
we set V,=gn for a proper absorption of the plane wave.

We now generalize this result for plane waves whose pa-
rameters are slowly varying in time and position. This case is
of high relevance for our work since the gradual filling of the
guide with matter waves leads to the population of a scatter-
ing state whose outgoing parts, which must be absorbed at
the boundaries of the grid, exhibit slowly varying amplitudes
and phases. We consider

lﬂ(x,t) =A(x,t)e_i"”iis(x’l),

where A(x,7) and S(x,r) represent the local amplitude and
phase, respectively, of the wave function. Locally, at position
x=Xx(, we can expand the phase according to

S(x,1) = S(xg, 1) + k(xg.1) (x — x) + O[ (x — x¢)*]

(B3)

(B9)

with k(xq,1) = 9,S(x,1) |x=x0 In the limiting case where A(x,1)
and S(x,7) vary on time and length scales that are consider-
ably larger than 1/u and 1/k(x,,7), respectively (for x=x,
and for all times 7), Eq. (B8) locally takes the form of a plane
wave with a slowly varying amplitude and wave number.
Under this condition, we find at a given position x, at any
time the local dispersion relation

k(x05t) == \‘”2[”“ - g”(xo,t)]- (BIO)

with n(xq,1)=|A(xy,1)|>. Hence, k(xy,f) parametrically de-
pends on ¢ via the condensate density at the position x, which
is supposed to be at the boundary of the grid. By adjusting
the values of «; and «, such that \2a; <k(xy,t) <\2a, is
satisfied for all times ¢, the wave i is absorbed at the edge of
the lattice.
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N-2 N-1 N

77777777777 e e e
-— AX —

X, 2Ax  X,-Ax Xp

Additional point X

FIG. 16. Sketch of the right-hand lattice boundary. The addi-
tional point at position X allows for a proper implementation of the
absorbing boundary conditions in a grid representation of the wave
function.

We now outline how to incorporate the ABC into the lat-
tice representation (A6) of the wave function. Here we con-
sider exemplarily the right-hand side boundary x,=xy of the
grid, where the wave function must obey Eq. (B5) with the
upper (+) sign in the definition (B6) of the prefactors. The
idea is to replace the equation for the boundary component

Yy, of the state vector ¢/, i.e., the last component in Eq. (A8),
by the finite-difference version of the one-way wave equa-
tion (B5). To this end, we need a finite-difference expression
for the derivative &Xl,lf(x,t)|x=xr at the grid boundary. Since x,
is the last grid point, this expression can only be obtained in
an asymmetric way with respect to x,, namely through the
difference between ¢/(x,,) and (x,—Ax,z). This would lead
to the equation

i
A_t[¢(xr7t+ At) - ‘ﬁ(xr’t)]

= (Ve - &) Plx,,1) — 0 lx,) — plx, — Ax,1)

81 81 Ax

(B11)

which was also used in Ref. [33].

The asymmetric structure of Eq. (B11) introduces a small
but systematic error in the propagation of the wave function,
since the value and the derivate of ¢ are, strictly speaking,
computed at different positions, namely at x, and at the in-
termediate point ¥=x,—Ax/2, respectively. This problem can
be circumvented by replacing Eq. (B11) with the analogous
equation for the wave function ¢(X,) evaluated at this inter-
mediate point X (see Fig. 16). There we have

_ Ylent) = gy, - Axi1)

A (B12)

d
—Px,t
pLAC)

X=X

as “exact” (i.e., symmetric) finite-difference expression for
the derivative, and the value of the wave function at this
additional point is obtained through

PY(x,1) = %[gb(xr, 1)+ i(x, — Ax,1)]. (B13)

Inserting these expressions (B12) and (B13) into Eq. (B5)
leads to a symmetric finite-difference equation for ix,,?)
and (x,—Ax,r) where the value of the wave function at the
auxiliary point X does not explicitly appear any longer. In the
grid representation, this finite-difference equation reads
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1
DL W= )

i n+1
- +
2At( N

i n n 1 g n
gle( N~ '/’N—l) + E(Ve_ j)( Nt W)

(B14)

Equation (B14) allows for a straightforward incorporation
into the matrix representation (A9): the modified matrices
D, , read at the right-hand side edge of the numerical grid as

a 1-By, «a

D, = s
a 1-By «a
Y3 Ya
—a 1+ By -
D,= B> ’
- 1+BN_| -
Y1 Y2

(B15)

where we define
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i
71—72—2&,

i i 1<V g2>
=—+ + = -==1,
3 20t g Ax 2\ ¢ g

i i 1 2

s 2At gle+2<V€ gl)' (B16)
The main cause for artificial backreflection in the presence of
the above boundary conditions comes from the approximate
nature of the finite-difference evaluations (B12) and (B13).
Clearly, these approximations become better with decreasing
grid spacing Ax, which means that a reduction of the grid
spacing should lead to a more efficient absorption of the
outgoing flux. In practice, we find for grid spacings of the
order of Ax=\/30 (with A=27/k the wavelength of the con-
densate) that the relative amplitude of artificial backreflec-
tions from the grid boundaries is below 1%. We note that the
amount of backreflection that is accumulated during the nu-
merical propagation process would, at the same value of the
grid spacing Ax, be considerably larger if the asymmetric
version (B11) of the one-way wave equation was used in-
stead of Eq. (B14).
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