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The theory of measurement projection operators in grid-based time-dependent wave-packet calculations
involving electronic continua in atoms and molecules is discussed. A hierarchy of projection operators relevant
in their individual restricted configuration spaces is presented. At asymptotically large distances from the
scattering or interaction center the projection operators involve plane waves only. To reach this asymptotic
regime, however, large propagation times and large boxes may be required. At somewhat smaller distances
from the scattering center, the projection operators are expressed in terms of analytical single-center Coulomb
scattering waves with incoming wave boundary conditions. If propagation of the wave packet to these
asymptotic regimes is impeded, the projection operators involve the exact scattering states which are not
readily available in the wave-packet calculation and hence must be supplied by an additional, typically very
demanding, calculation. The present approach suggests an exact way of analyzing the timely problem of the
one-electron continuum in nonperturbative calculations. A key feature is that the propagated wave packet
includes every interaction of the full Hamiltonian. The practicality of the proposed method is illustrated by the
nontrivial example of strong-field ionization of the molecular hydrogen ion. Finally, the extension of the
presented ideas to single and double ionization of two-electron systems is discussed.
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I. INTRODUCTION

In many ab initio approaches to dynamics in atomic, mo-
lecular, and optical physics the time-dependent Schrödinger
equation is solved in coordinate space. The result of such an
approach is the space representation of the state of the sys-
tem, ��r� ���t��=���r� , t�, where �r� denotes generally the
set of coordinates involved. In practice, such wave packet
approaches have been successfully applied to the strong-field
ionization of atoms and molecules within the single-active-
electron approximation �see, e.g., the reviews �1–3	� and in
collisions �see, e.g., Ref. �4	�. In all cases, one of the theo-
retical tasks is to relate the theoretical description in terms of
the wave packet ���r� , t� to the experimental observables of
the system. Restricting for clarity the discussion to the case
of a single active electron, the most specific information in
strong-field ionization is the momentum-resolved ionization
probability dP /dk, i.e., the fully differential ionization prob-
ability �for a fixed orientation of the nuclei in the molecular
case� for ionization into the momentum interval �k ;k+dk	.
Of course it has been known since the early works on scat-
tering theory how to obtain this quantity by squaring the
projection of ��r , t� on the exact scattering state �k

−�r� that
asymptotically, at large distances, acquires the momentum k
�5	. There is one major practical problem here: The scatter-
ing states are only known exactly analytically for the pure
single-center Coulomb problem and generally it is a demand-
ing task to construct these states numerically from first prin-
ciples even for the simplest systems such as He, H2

+, and H2
�6,7	. It should be noted that quantities of a more integral

nature can be determined without making a projection. For
example, the total ionization probability, P, can be deter-
mined by keeping track of the wave-function norm absorbed
by an absorbing boundary. The angular ionization probabil-
ity, dP /d�, can be obtained by the analysis of the radial flux
in direction k̂ �see, e.g., Refs. �8–10	 and Sec. VI below�.
The photoelectron spectrum dP /dE can be obtained by a
spectral analysis of the autocorrelation function of ��r , t�
�11,12	, with E=k2 /2 the electron energy. This method ex-
tended previous bound state analysis �13,14	 to the con-
tinuum. Yet an alternative approach for the analysis of the
physics of the final state has been to divide the configuration
space into different regimes and associate the electron den-
sity in a particular region with ionization �see, e.g., Refs.
�15,16	�. As noted, e.g., in Ref. �17	, clearly, the fixation of
these boundaries is associated with a certain degree of arbi-
trariness.

It is the purpose of the present work to point out that the
availability of the wave packet ��r , t� in space and as a
function of time �in particular at instants of time t= t0+T
later than the end of the time-dependent interaction, t0 � may
lead to tremendous simplifications in the analysis of the mea-
surable content of the wave packet. All the information about
the short-range interaction, i.e., phase shifts, and possible
channel mixing, e.g., between different angular momentum
states in the case of a nonspherical symmetric molecule, is
fully contained in ��r , t� allowing for the analysis of the
scattering content by the application of simple asymptotic
projection operators in the long-time limit �see Fig. 1�. Al-
though the time-dependent interaction, inducing the transi-
tion into the continuum, can be of general type, we make the
discussion explicit and refer to ionization by an intense laser
pulse of short duration in the following.

The paper is organized as follows. In Sec. II, the analysis
of the scattering content of ���t�� at time t0 just after the end
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of the pulse is discussed in the case of a one-electron wave
packet �Fig. 1�a�	. In Sec. III, we present some formal and
mathematical details which prove firmly the validity of the
present approach based on asymptotic projection operators.
In Sec. IV, we discuss how to perform the analysis in the
asymptotic free-electron zone at times t0+T, where T is cho-
sen such that all momentum components of interest have
reached the asymptotic regime �Fig. 1�c�	. In Sec. V, we
discuss how to do the analysis in the somewhat closer regime
where the Coulombic monopole dominates: The Coulomb
zone �Fig. 1�b�	. In Sec. VI we compare numerical results on
strong-field ionization of H2

+ obtained by projection on exact
scattering states and with projection in the Coulomb zone at
times t= t0+T� and illustrate the accuracy and practicality of
the method. In Sec. VII, we discuss an extension of the
present ideas to the two-electron system: Single-ionization
and excitation, as well as double ionization. In Sec. VIII, the
main conclusions are presented.

Atomic units �me=�=e=1� are used throughout unless
stated otherwise.

II. SCATTERING ANALYSIS JUST AFTER THE END OF
THE PULSE

When the short intense laser pulse has ended at time t0,
the time-dependent wave packet ��r , t� given in terms of
complex amplitudes in points in space is available in a the-
oretical grid-based calculation. Though not readily at hand in
this case, the wave packet may formally be thought of as
being represented by an expansion in a basis of energy
eigenstates ��r , t�=
ncn�n�r�exp�−iEnt�+�dkck�k

−�r�
�exp�−i�k2 /2�t	, with H�n�r�=En�n�r�, and where the ex-
pansion includes a sum over bound and an integral over con-
tinuum scattering states of the field-free Hamiltonian, H. It is
clear that the probability of being in a particular eigenstate
does not change in time once the driving pulse is over. The
analysis of the scattering content of ��r , t� may therefore be
performed immediately after the end of the pulse with the
projection operator

Pk = ��k
−���k

−� , �1�

where �k
−�r� is the momentum normalized, ��k

− ��k�
− �=��k

−k��, scattering state that conforms with incoming-wave
boundary condition and develops asymptotic momentum k.
Accordingly, the probability for ionization with asymptotic
momentum k is Tr��Pk	, �= ���t0�����t0��, i.e.,

dP

dk
= ���k

−���t0���2. �2�

In scattering theory, �k
−�r� is called the out or outgoing state.

The advantage of this approach where the projection is per-
formed with the exact scattering state is that no propagation
of the wave packet is required after the end of the pulse, and
compared with the methods discussed below it may hence
pose less demands to the box size and avoid associated nu-
merical problems in propagating the wave packet. An addi-
tional advantage is that the scattering states and the bound
energy eigenstates making up the formal expansion of the
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FIG. 1. Separation of configuration space into spatial zones with
each of their characteristic Hamiltonian. The features moving away
from the scattering center going from �a� to �c� illustrate a compo-
nent of the wave packet moving with central momentum k. In �a�,
the wave-packet component moving away is shown just after the
end of the pulse at time t0. The spatial region corresponding to this
situation we refer to as the reaction zone and discuss it in Sec. II. In
�b�, an additional time T� has passed and the packet is at interme-
diate distances r0�	r	r0, where the Coulombic monopole from the
scattering center dominates. This situation we refer to as the Cou-
lomb zone and discuss it in Secs. V–VII. In �c�, the time T has
passed by since the end of the pulse, and the packet is in the free
zone at asymptotic large distances, r
r0. In neutral atomic and
molecular systems the situation in �c� is, in a strict theoretical sense,
not encountered since the Coulomb tail of the potential gives a
logarithmic phase distortion of the plane-wave asymptotic state at
all distances. We include �c�, since it is of relevance in negative ions
�and other branches of physics�. We discuss the projections corre-
sponding to �c� in Sec. IV. The radius R denotes the boundary of the
sphere defining the part of space that is accounted for in a numerical
calculation. In practical calculations, to prevent reflection from the
boundary, an absorbing boundary may be used.
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wave packet are solutions to the same field-free Hamiltonian.
This means that eigenstates are orthogonal and the projection
integral in Eq. �2� is readily performed over all space: No
prior projecting out of any bound state part is necessary.
Additionally, in Eq. �2� there is in principle nothing that fa-
vors particular k values, i.e., application of Eq. �2� is equally
valid and “easy” for low, intermediate, and high k values. In
practice, of course, the “easiness” will typically depend on
the dimensions of the grid. The disadvantage in the resolu-
tion in Eq. �2� is that the analysis requires per default the
exact scattering states of the Hamiltonian H, the construction
of which in general is an elaborate affair. The hydrogen atom
and hydrogenlike ions are the only cases where the scattering
states are known analytically in terms of Coulomb wave
functions. For atoms described in the single-active-electron
approximation the scattering states can be found relatively
simply numerically by exploiting the spherical symmetry of
the problem. In molecules the multicenter character of the
remaining molecular ion means that the angular momentum
of the ejected electron is no longer a constant of motion and
the construction of the scattering states becomes a multi-
channel problem in terms of angular momenta �7,18,19	.
Hence, in general the scattering states have to be provided by
an additional structure calculation typically performed in an
eigenstate basis. This computational overhead is a clear dis-
advantage. In Sec. VI we find the scattering states for H2

+ in
a B-splines basis-state approach and compare the results with
the asymptotic analysis in the Coulomb zone.

We note in passing that Eq. �2� as it stands is the natural
starting point for analysis in the perturbative regime. For
example, for perturbative single-photon ionization, the time-
dependence drops out and essentially in Eq. �2� ���t0��
→� ·p ��0�, where � is the polarization vector, p the momen-
tum operator, and ��0� the field-free initial bound state. In
this case the perturbation introduces a transition between ex-
act energy eigenstates of H and no wave packet is formed.
Accordingly there is no possibility to propagate to
asymptotic regions and perform the scattering analysis there.
For femto- and attosecond pulses, however, the creation of a
wave packet makes the approach of Secs. IV and V natural.

III. PROPERTIES OF THE OUT STATE AND
IMPLICATIONS FOR THE SCATTERING ANALYSIS

A fundamental property of the out state �k
−�r� is that it

asymptotically acquires the momentum k. Although this is
well-known, we dwell a little on the way this is proved to be
able to understand and describe clearly the implications in
the present context.

We write the total field-free time-independent Hamil-
tonian H=H0+V, where H0 is assumed to be simple such
that all its eigenstates ��n� and eigenvalues En are known,
i.e., H0 ��n�=En ��n�. Here the index n discriminates between
different, possibly degenerate, channels. Following Ref. �20	,
we call the system with energies En and states ��n� the ref-
erence system. The term V in H is the interaction that causes
perturbations of the unperturbed reference system. We may
find the stationary continuum states that solve the true prob-
lem including V, �H−Ek� ��k

−�=0, at the particular energy Ek

by the usual integral equation technique leading to the fol-
lowing Lippmann-Schwinger equation for ��k

−�:

��k
−� = ��k� + lim

�→0+

1

Ek − H0 − i�
V��k

−� , �3�

where the subscript k specifies the channel, e.g., energy Ek
and asymptotic momentum k.

To obtain an understanding of the physical meaning of
��k

−�, we form a wave packet centered around this stationary
state �20	

��k
−�t�� = 


k�

ck�e
−iEk�t��k�

− � , �4�

where the index k� specifies energy and asymptotic momen-
tum, and where each ��k�

− � is a solution of Eq. �3�. The coef-
ficients ck� only attain nonvanishing values for subscripts k�
close to k. Likewise, we construct a wave packet from the
solutions of the reference system centered also at k and with
expansion coefficients as in Eq. �4�,

�
k�t�� = 

k�

ck�e
−iEk�t��k�� , �5�

with ��k�� eigenstates of the reference system, H0 ��k��
=Ek� ��k��. Now, following the procedure in Ref. �20	, we
insert the complete set of reference states in Eq. �3� between
the inverse operator and V and we take the limiting proce-
dure t→� using the relation limt→� lim�→0+ ei�t / ��+ i��
=0 to obtain the late time behavior of the out wave packet

lim
t→�

��k
−�t�� = �
k�t�� . �6�

Equation �6� shows explicitly that at large times the wave
packet centered around the scattering state ��k

−� turns into a
packet made up of eigenstates of the reference Hamiltonian
H0. In particular the distribution over amplitudes remains
unaffected: The coefficients ck� are equal in Eqs. �4� and �5�.
This is a result which has important consequences for the
present discussion. Going back to Eq. �2�, we see why. The
index k� specifies energy and asymptotic momentum, and we
have shown that the distribution over this index is the same
in the wave packet constructed from a superposition of exact
scattering states and in the wave packet formed by the un-
perturbed reference states. Hence, we are naturally led to the
assumption that by letting the exact wave packet solution of
the problem in the right-hand side of Eq. �2� evolve to large
times we may perform the projection on reference states in
order to obtain the energy and angle resolved spectrum, i.e.,
one might suspect that dP /dk= ���k

− ���t0���2

=limt→� � ��k ���t0+ t���2. This relation, however, is incorrect
because it does not account correctly for the nonorthogonal-
ity of the bound-state spectrum of H and the continuum
states of H0. What is true, however, is that the exact scatter-
ing state is obtained from the reference state by application
of the Møller or wave operator�20–24	

��k
−� = �−��k� , �7�

where �−=limt→� eiHte−iH0t projects the states in the con-
tinuum of the reference Hamiltonian H0 onto the correspond-
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ing elements in the continuum of H. To stress this fact, we
include explicitly the projection on the continuum scattering
states of H, PH

cont=�dk ��k
−���k

−� in Eq. �7�, i.e.,

��k
−� = PH

cont�−��k� . �8�

Inserting this expression and the definition of the wave op-
erator into Eq. �2�, we obtain

dP

dk
= lim

t→�
���k�eiH0te−iHtPH

cont���t0���2. �9�

Finally, we use the completeness relation 1=PH
cont+�, with

�=
n ��n
B���n

B� the projection on the bound state part of the
spectrum of H, to obtain

dP

dk
= lim

t→�
���k�eiH0te−iHt�1 − �����t0���2. �10�

The goal we are pursuing is to move the time evolution
operator to the right and evolve the exact wave-packet for-
wards in time from t0. Clearly �exp�−iHt� ,PH

cont	
= �exp�−iHt� ,1−�	=0. Accordingly, we propagate the full
wave packet from time t0 to t and project out the bound state
part of ���t0+ t�� to obtain the continuum part ����t0+ t��
= �1−�� ���t0+ t�� of the wave packet, and the differential
ionization probability reads

dP

dk
= lim

t→�
���k����t0 + t���2, �11�

which is the formally exact relation justifying the approach
proposed in the present paper. Basically, Eq. �11� shows that
if the continuum part of the exact wave-packet solution may
be propagated long enough after the end of the short laser
pulse, then there is no need to construct the exact outgoing
scattering states. The angle and energy resolved spectrum
may be obtained by projection on the much simpler reference
states ��k�.

In the next sections, we shall discuss from a more practi-
cal point of view how the above ideas can be implemented in
a numerical calculation. For example, the bound state part is
excluded by reference to spatial separation. As we shall see
the reference projection states of H0 can be chosen as ana-
lytically known functions. All the phase shifts and informa-
tion about the short-range behavior of the interaction poten-
tial V is in the wave packet ���t0+ t��.

IV. SCATTERING ANALYSIS IN THE ASYMPTOTIC
REGION: FREE ZONE

In this section we write the total field-free Hamiltonian as
H=H0+V, where H0= p2 /2 is the kinetic energy part and
where V denotes the interaction potential �see Fig. 1�c�	. It is
assumed that the wave packet is propagated for a time T after
the pulse large enough to ensure that even the slowest con-
tinuum components of interest have reached asymptotic dis-
tances where the potential V can be neglected. In a laboratory
experiment long-range Coulomb forces are shielded by the
environment at sufficiently large distances so the assumption
of a finite range is automatically fulfilled. In a theoretical

grid calculation, there is an asymptotic regime where the
Coulomb field is small compared with the kinetic energy of
the outgoing electron. Slightly more quantitatively, one may
consider the drop-off of the Coulomb-induced logarithmic
phase distortion of the phase of the outgoing wave,
� ln�2kr�compared with the free kr behavior, with �=Z /k
and Z the nuclear charge. If this ratio �=� ln�2kr� /kr is
small, the interaction V may be neglected compared with H0.
For example, �=0.13 for k=0.1 a.u., Z=1, and r=3200a0.
This means that large boxes and long propagation times are
needed to reach the asymptotic free zone. In gauging the
practicality one should of course also consider the complica-
tions in determining the exact scattering states entering Eq.
�2�. Note also that recently box radii of �1000a0 were con-
sidered for strong-field ionization of atoms described in the
single-active electron model �25	. Hence large boxes are of-
ten used in practical calculations and therefore the
asymptotic regimes may be available on the numerical grid.

A momentum component k of the wave packet ��r , t�
will reach the asymptotic regime, say beyond r0, where the
Hamiltonian is described by H=H0 at a time �r0 /k. In this
region r
r0, the eigenstates corresponding to the Hamil-
tonian H0 are simply momentum eigenstates �r ��k�
= �2��−3/2 exp�ik ·r� and the associated projection operator is
Pk= ��k���k�. This means that in this free zone, at a time T
�r0 /k sufficiently large that the momentum component of
interest has arrived, the differential ionization probability is
found by projection on plane wave states

dP

dk
= ���k����t0 + T���2. �12�

The prime on the time-dependent wave packet indicates that
the part of the wave packet not in the asymptotic regime with
well-defined plane wave projection operators has been pro-
jected away. This is necessary since the plane wave and the
eigenstates formally forming the wave packet belong to the
spectra of two different Hamiltonians, H0 and H, respec-
tively, and hence the eigenfunctions are not orthogonal, i.e.,
��k ��n� is generally different from zero. The formal justifi-
cation for this projection method was given in Sec. III in
terms of the wave or Møller operator, which acts only on the
continuous spectrum. In Eq. �12� it is the superposition of
eigenstates in the wave packet ���r , t0+T� that ensures the
spatial localization of the continuum components at
asymptotic distances, r
r0 at large times, and hence the
underlying physical reason why the proposed scattering
analysis is well justified and exact. Without details and for-
mal justification the approach discussed here was used re-
cently in the high-frequency regime to described ionization
of H2

+ �26	.
The partial wave expansion of the momentum normalized

plane wave �k�r� describing the free final state reads �27	

�k�r� = 

�=0

�



m=−�

� 
 2

�
i�j��kr�Y�m

� �k̂�Y�m�r̂� , �13�

where j��kr� is a spherical Bessel function and Y�m are
spherical harmonics. If as in, e.g., our recent approaches
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�9,11,12	, the wave packet is expanded in partial waves,
�(r , t= t0+T)=
�,m�f�m�r , t� /r	Y�m�r̂�, the insertion of Eq.
�13� into Eq. �12� leads to

dP

dk
= �


�m


 2

�
i−�Y�m�k̂��

r0

�

j��kr�f�m�r,t0 + T�rdr�2

.

�14�

Equation �14� is easily evaluated numerically since the
f�m�r , t� are available on the grid and only a one-dimensional
integral is involved. As seen from Eq. �14� the projection out
of bound states is implemented by integrating radially only
from r0 and outwards.

V. SCATTERING ANALYSIS IN THE MONOPOLE
REGIME: COULOMB ZONE

In this section we discuss the most practical way of per-
forming scattering analysis in grid-based wave-packet calcu-
lations. For single ionization of atoms, it is clear that the
region where the full Hamiltonian is well described by H0
= p2 /2−Z /r is reached when the continuum electron is out-
side the electronic cloud associated with the other bound
state electrons. In many cases this already happens at �10a0.
For molecules, the situation is slightly more complicated due
to the multicenter character of the problem. The generic fea-
tures of the problem introduced by the additional nuclei are
illustrated already for the molecular potential corresponding
to the H2

+, VM�r ;R�=−1 / �r−R /2 �−1 / �r+R /2�. A multipole
expansion of VM at distances r larger than the internuclear

separation R gives VM�r ;R�=−2
L even

�R/2�L

rL+1 PL�cos ��, so the
leading terms are VM�r ,R��−(2 /r��1− �R / �2r�)2P2�cos ��	;
where PL�cos �� are the Legendre polynomials and the polar
axis is parallel to the internuclear axis. For more general
molecules, also odd multipoles are allowed and therefore the
leading correction to the monopole in the Coulomb zone is
the dipole�1 /r2. The parameter ��=1 /r is hence a measure
of the strength of the dipole compared with the monopole. At
a radius of r0�=100a0 it appears to be a quite accurate ap-
proximation to ignore higher-order corrections; for H2

+, r0�
=100a0 makes the approximation excellent. It is hence clear
that there exists an intermediate Coulomb zone in space r

r0�, with r0�	r0 where the monopole from the atomic or
molecular system dominates �see Fig. 1�b�	. In this zone the
projection operators corresponding to the asymptotic mo-
mentum k are known analytically in terms of Coulomb
waves ��k

−,C�, Pk= ��k
−,C���k

−,C�, and for r
r0�, the ionization
probability may be calculated as

dP

dk
= ���k

−,C����t0 + T����2. �15�

Here, as in Eq. �12�, the prime on the wave packet indicates
that only the part of the wave packet localized at distances
r
r0� with H�H0= p2 /2−Z /r is involved. The prime on the
additional propagation time T� indicates that now, for the
same problem, T�	T where T corresponds to the propaga-
tion time needed to reach the asymptotic free zone. The for-
mula in Eq. �15� is very general and highly applicable since

in practice quite small r0� values �20–50 a0� are large enough,
which is a fact that limits the demands on computational
time and box size. This is a huge advantage compared with
the scattering analysis discussed in Sec. II where new scat-
tering wave functions have to be constructed for each system
at hand—the Coulomb waves are analytical and universal.
Explicitly, in an expansion in partial waves, the outgoing part
of the momentum normalized Coulomb wave function
�k

−,C�r�, normalized to the k scale, reads �27	

�k
−,C�r� = 


�m


 2

�
i�e−i��

F��kr,��
kr

Y�m
� �k̂�Y�m�r̂� , �16�

with F� the regular Coulomb function, and ���k�
=arg����+1+ i��	 the Coulomb phase shift expressed in
terms of the complex Gamma function �. With the con-
tinuum wave packet ���r , t� expanded in partial waves as in
Sec. IV, the momentum resolved probability is

dP

dk
= �


�m

1

k

 2

�
i−�ei��Y�m�k̂��

���
r0�

�

F��kr,��f�m�r,t0 + T��dr�2

. �17�

We illustrate the usefulness of Eq. �17� in Sec. VI, where we
consider the case of strong-field ionization of H2

+. In Eq. �17�
the radial integral is from r0� and effectuates the projection
out of the bound states. Note that in the limit �→0: F��kr�
→krj��kr�, �l→0, and Eq. �17� turns into Eq. �14� corre-
sponding to the high-energy limit and/or large r or negative
ions.

VI. RESULTS AND DISCUSSION

To illustrate the method, we consider strong-field ioniza-
tion of H2

+. The field is linearly polarized along the internu-
clear axis with peak intensity 2�1013 W /cm2, photon en-
ergy 0.8 a.u., and a duration of 10 cycles. The envelope of
the field is taken to be a sine square and the carrier-envelope
phase difference �CEPD� is zero. For the ten-cycle pulse con-
sidered here the results are insensitive to the value of the
CEPD. Note that the ionization potential is 1.1 a.u. corre-
sponding to the two-photon ionization regime. The frequency
of the source can, e.g., be obtained from a free-electron laser
source. We expand the time-dependent wave function in
spherical harmonics and solve the time-dependent
Schrödinger equation by the split-step method discussed in
detail elsewhere �9–11	. The maximum angular momentum
is �max=11, the radius of the sphere in which the calculation
is performed is rmax=300 a.u., the number of grid points in
the radial coordinate is 2048, and the time increment is �t
=0.005 a.u.

To construct the scattering states of H2
+ at equilibrium

distance �R=2�, we expand the continuum states as
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�k
−�r� = 


�=0

�



m=−�

�

i�e−i��
��,m

k,− �r�
r

Y�m�k̂� , �18�

with �� defined after Eq. �16�. The function ��,m
k,− �r� is ex-

panded in spherical harmonics and the radial part in turn is
expanded in a B-splines basis set �28,29	. The scattering
states are calculated applying the inverse iteration method
described in Refs. �7,30	. In this way we first obtain wave
functions ��,m

k �r� with the K-matrix asymptotic boundary
condition

��,m
k �r� � 


����m�

�F���kr,�����,� + K�,��
m �E�G���kr,��	Y��,m�r̂� ,

�19�

with F� and G� the regular and irregular Coulomb wave
functions. With the sign convention followed here, the
asymptotic forms of the Coulomb waves are F��sin �� and
G��cos ��, ��=kr−� ln 2kr− �� /2+��. To obtain the cor-
rect out state with incoming spherical wave boundary condi-
tion, we change to the S-matrix representation

��,m
k,− �r� = 


����m�

�I + iKm�E�	�,��
−1 ���,m

k �r� . �20�

In terms of the B-splines basis, the result in Eq. �20� is ex-
pressed as

��,m
k,− �r� = 


����m�



i

c���m
−,i �E�Bi�r�Y��,m�r̂� , �21�

where Bi denotes the ith B-spline of order 10 defined in a box
of size of 300 a.u. with a linear breakpoint sequence of 2048
equidistant points in which the first B-spline is deleted from
the basis set and the last one is retained �i.e., N�=2055 B
splines per angular momentum�. The spatial grids coincide in
the wave packet and in the B-spline calculation. The partial
wave expansion in the B-spline calculation also includes an-
gular momenta up to �max=11. In order to perform the pro-
jection �Eq. �2�	 over the continuum states of the H2

+ mol-
ecule we rewrite the time-dependent radial wave functions
f�m�r ; t0� �just after the end of the pulse at t0� in terms of the
same B-splines basis set, i.e,

f�m�r;t0� = 

i

N�

b�m
i �t0�Bi�r� , �22�

where b�m
i �t0� are complex amplitudes since f�m�r ; t0� is com-

plex. The evaluation of the scalar products is performed in
the B-spline basis and involves matrix-vector operations. The
fully differential ionization probability obtained by projec-
tion on numerical scattering states of H2

+ is given by

dP

dk
�t0� = �


�m

i−�ei��I �m
− �E;t0�Y�,m�k̂��2

, �23�

where

I �m
− �E;t0� = 


��

�max



i

N�



j

N�

�c���m
−,i �E�	�Oi,jb��m

j �t0� �24�

is the continuum projection matrix element associated with
partial wave � normalized to the S-matrix, consistent with
the time-dependent representation of the photoionization
process �18,31,32	, Oi,j =�0

rmaxBi�r�Bj�r�dr is the overlap ma-
trix, c���m

−,i �E� are the coefficients that define the continuum
partial wave � �Eq. �21�	, b��m

j �t0� the coefficients entering
Eq. �22�, and m designates the value of the projection of the
angular momentum over the molecular axis. We note that the
results are insensitive to the time t0 since the field-free
Hamiltonian does not induce coupling between the field-free
eigenstates. We keep the argument t0 in the differential prob-
ability as a parameter stressing that the projection on eigen-
states is performed immediately after the end of the pulse at
time t0. Also note that the spatial integrals are over the entire
region r� �0,rmax	.

In Fig. 2 we show the photoelectron angular distribution,
i.e., the quantity dP /d�=��dP /dk�k2dk, for two-photon ion-
ization of H2

+ by the field described previously. For the
present orientation of the molecular axis with respect to the
field there is rotational symmetry around the molecular axis
and the angular distribution is the same for all values of
azimuthal angle. In the figure we have chosen this angle to
be 0. The full curve shows the angular distribution obtained
by �i� projection on the exact H2

+ scattering states �Eqs. �2�
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FIG. 2. �Color online� Photoelectron angular distribution for
strong-field two-photon ionization of H2

+ at the equilibrium distance
by a linearly polarized laser field with polarization along the direc-
tion of the internuclear axis. The azimuthal angle is zero �see text�.
The field has peak intensity 2�1013 W /cm2, photon energy
0.8 a.u., and a duration of 10 cycles. The envelope of the field is
taken to be a sine square. The full curve shows the angular distri-
bution obtained by flux analysis �Eq. �25�	 and by projection on the
exact H2

+ scattering states �Eqs. �2� and �23�	. The other curves
show snapshots of the projection on single-center Coulomb waves
Z=2 �Eq. �17�	 at different instants of time T after the end of the
pulse. The inner boundary of the Coulomb zone is r0�=40 a.u. On
the scale of the figure there is no difference between the results
obtained by the single-center Coulomb projector applied at T
=17.6,20.6,26.4 a.u., by the flux analysis and by the H2

+ projector.
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and �23�	 and �ii� flux analysis �Eq. �25�	 �12	. The latter case
�ii� is analyzed with reference only to the grid. We simply
evaluate the probability current at the distance rflux

=200 a.u. in the direction k̂, and integrate over time up to
time T=500 a.u. after the end of the pulse when all radial
outgoing flux has passed the point of observation �see, e.g.,
Ref. �12	�. We obtain the angular distribution from the for-
mula

dP

d�
��,T� = �

t0

t0+T

dt�rflux
2 jr�rflux,�,t�� , �25�

with jr�r , t�=Im����r , t�r̂ ·���r , t�	. On the scale of Fig. 2
we see no difference between the results obtained by flux
analysis and the scattering-state-projection method confirm-
ing that both methods are accurate. The other curves in Fig.
2 show snapshots of the projection on single-center Coulomb
waves with Z=2 �Eq. �17�	 at different instants of time T
after the end of the pulse as detailed in the inset. In this
calculation we followed the procedure discussed in Secs. III
and V and projected out the bound state part of the wave
packet. The inner boundary of the Coulomb zone is r0�
=40 a.u., i.e., the radial integrals are performed from 40 to
300 a.u. �Eq. �17�	. We see, in accordance with the discus-
sion in the preceding sections, that the results based on the
analysis in the Coulomb zone converges to the exact result:
On the scale of the figure there is no difference between the
results obtained by the single-center Coulomb projector ap-
plied at T=17.6,20.6,26.4 a.u. and the flux and the
H2

+-projector results. Stability of the quantity of interest with
respect to time is hence a sign of convergence in the appli-
cation of the asymptotic projector method. Compared with
the flux analysis where a propagation time of T=500 a.u.
was needed much less propagation time is required with the
projection method as seen from the insert in Fig. 2—the
result is fully converged at T=17.6 a.u.

We note that the angular distribution and the full momen-
tum distribution are much more delicate tests of the accuracy
of the theory than, e.g., the photoelectron energy spectrum.
The reason is that the former quantities depend on the rela-
tive phases between the different partial waves making up
the continuum wave functions while the latter is insensitive
thereof.

We now turn to the differential momentum distribution.
This quantity cannot be obtained by the flux analysis used
above nor through the autocorrelation function �11	. A pro-
jection method seems to be the only practical method. Figure
3 shows the differential momentum distribution dP /dk for
strong-field two-photon ionization of H2

+ by the same pulse
used to obtain the results shown in Fig. 2. The horizontal
axis shows the component k� parallel with the linear polar-
ization. The vertical axis shows a component k� perpendicu-
lar to the polarization axis. The momentum distribution is
rotationally invariant with respect to the k�=0 axis. Figure
3�f� shows the momentum distribution obtained by projec-
tion on the H2

+ scattering states �Eqs. �2� and �23�	. The other
distributions show snapshots of the projection on single-
center Coulomb waves Z=2 at different instants of time T
after the end of the pulse �Eq. �17�	. We see that the projec-

tion on the single-center Coulomb wave functions in the
Coulomb zone converges to the correct numerical result of
Fig. 3�f� for increasing T, and hence the figure provides an-
other example for the practicality and accuracy of the present
method.

VII. THE TWO-ELECTRON PROBLEM

In this section we propose the extension to two-electron
systems. An accurate description of two-electron systems
and in particular the helium atom under time-dependent
strong fields has been a quest for theory in the last 10–15
years �33	.

A. Single ionization and excitation

The channel corresponding to single ionization and exci-
tation of He is readily resolved by the projection operator
Pk1

� Pn2
where Pk1

= �
k1
��
k1

� is the projection operator of
the appropriate reference system �see Sec. III� that “mea-
sures” one of the electrons in the asymptotic momentum k1.
The operator Pn2

= �
n2
��
n2

� projects on the nth eigenstate
of the He+ subsystem. The advantage here is that both Pk1

FIG. 3. �Color online� Differential momentum distribution
dP /dk for two-photon ionization of H2

+ by the linearly polarized
laser field used in Fig. 2 with polarization along the direction of the
internuclear axis. The horizontal axis shows the component k� par-
allel with the linear polarization. The vertical axis shows a compo-
nent k� perpendicular to the polarization axis. The distribution is
invariant with respect to rotations around the k�=0 axis. The field
is as in Fig. 2. Panel �f� shows the momentum distribution obtained
by projection on the H2

+ scattering states �Eqs. �2� and �23�	. The
other distributions show snapshots of the projection on single-center
Coulomb waves Z=2 �Eq. �17�	 at different instants of time T after
the end of the pulse �a� T=0.01 a.u., �b� T=5.9 a.u., �c� T
=11.8 a.u., �d� T=20.6 a.u., and �e� T=26.4 a.u.. The inner bound-
ary of the Coulomb zone is r0�=40 a.u.

EXTRACTING CONTINUUM INFORMATION FROM ��t�… PHYSICAL REVIEW A 76, 063407 �2007�

063407-7



and Pn2
are known analytically. So, the proposed formula

giving the photoelectron angular distribution with the ion left
in the analytical 
n2

bound state of He+, and working in the
spatial regime where the continuum electron moves in the
−1 /r Coulomb potential from the screened nuclei, reads

dP

dk1
�n2� = ���k1

C,−
n2
����t0 + T�����2, �26�

where ��k1

C,−� is a Coulomb wave function with asymptotic
momentum k1. In Eq. �26�, only the bra or the ket needs to be
properly antisymmetrized since the antisymmetrization op-
erator A is idempotent �A2=A�.

B. Double ionization

Recently, works have appeared that focus on the problem
of two-photon double ionization �for a recent paper that
gives a detailed survey of the literature see Ref. �17	�. Mul-
tiphoton double ionization is a computationally very hard
problem: It involves six spatial dimensions, and infinitely
many coupled channels. Also the extraction of scattering in-
formation is very complicated. One approach �15,16	 is to
perform the analysis of the numerical data based on where in
space the electron density is localized. An alternative is to
generate the multichannel double-continuum wave function
�19	. Another method was developed in connection with the
time-dependent close-coupling method �34	 where the final-
state wave function after the pulse was projected on a prod-
uct of uncorrelated Coulomb wave functions. With this
method fully differential cross sections can be obtained. Very
recently, an alternative ab initio approach relying on the con-
struction of the correlated multichannel scattering wave
function by means of the so-called J matrix was developed

�17	. In that approach the probability for double ionization
was obtained by subtracting from the total wave function the
bound-state and single-continuum parts, and no angular dif-
ferential information was obtained. Hence, it is fair to say
that the extraction of scattering information in the double
continuum reached by multiphoton absorption is a very chal-
lenging problem.

In this section, it is discussed how a straightforward gen-
eralization of the ideas of the preceding sections may help in
the scattering analysis. An advantage of the proposed method
is that only controllable approximations in the measurement
projection-operator step are introduced. If propagation to
large distances of the wave packet is possible, the presented
formula is exact and the final state for the analysis of the
two-electron continuum is analytical. Hence, also in this
complicated case the grid-based wave-packet calculation
need not be supplemented in any way.

In the case of double ionization, a fully differential mea-
surement determines the two momenta k1, k2 of the ejected
electrons. Now, as discussed already in connection with the
effective two-body Coulomb problem in Sec. V, it is well
known that an asymptotic plane wave is inconsistent with the
solution to the Schrödinger equation pertaining to the Cou-
lomb problem. The Coulomb tail of the potential generates a
logarithmic phase that distorts the plane wave so that the
asymptotic momentum k is only reached slowly as r in-
creases. Generalizing to the case of the three-body Coulomb
problem with a He++ nucleus and two continuum electrons,
we expect such logarithmic phase distortions in the relative
motion of each pair. Indeed it has been known for a long
time �see, e.g., �35	 and references therein� that the exact
form of the wave function describing two electrons in the
continuum of an infinitely heavy He++ nucleus when all in-
terparticle distances are large is given by

�−�k1,r1;k2,r2� =
1

�2��3ei�k1·r1+k2·r2�e−i�1 ln�k1r1+k1·r1�e−i�2 ln�k2r2+k2·r2�e−i�12 ln�k12r12+k12·r12�, �27�

where � j =−Z� /kj �j=1,2�, Z=2, �12=� /k12, k12=k1−k2,
r12=r1−r2. Equation �27� shows that the asymptotic form
consists of two phase-distorted plane waves for the two out-
going electrons and an additional phase �last factor� stem-
ming from the electron-electron interaction. Clearly this last
phase factor is just as important as the other two, and in
particular it has to be included in order to conform with the
correct boundary conditions. This means that projections
based on a product of two uncorrelated Coulomb wave func-
tions �34	 should only be applied with care �see also the
discussion in �17	�. As in Eq. �26�, the projection state needs
not be symmetrized.

We note in passing that in the 90’s much work was in-
vested into the construction of an analytical three-body Cou-
lomb wave function that satisfied the correct boundary con-
dition of Eq. �27� �36	. The interest was, e.g., in single-
photon double ionization in the perturbative regime. The

analysis was made in time-independent theory and, accord-
ingly, the wave functions that entered in the construction of
the appropriate matrix elements had to be known and defined
in all of space: There was no possibility to propagate a wave
packet to large interparticle distances and to make the scat-
tering analysis in the asymptotic part of space with the exact
state in Eq. �27�. In this work, however, this possibility forms
the grounds of the proposed method, and therefore we sug-
gest that the analysis of the double continuum may be stud-
ied by evaluation of the formula

dP

dk1dk2
= ���k1,k2

− ����t0 + T�����2, �28�

with �r1 ,r2 ��k1,k2

− � given in Eq. �27� and with the continuum
part of the wave packet ����t�� evaluated at time t0+T�
where all the particles are far away from each other �r1 ,r2
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and r12 large�. The asymptotic form of Eq. �27� is straight-
forwardly generalized to the N-particle problem �37	 and a
generalization to the N-particle breakup of the present ap-
proach is therefore formally possible.

The exclusion of the two-electron bound states implied by
the prime on the wave packet in Eq. �28� ensures that no
artificial result from the single-ionization channel appears in
the double-ionization signal. This is easily proved by noting
that for bound state components of the singly ionized species
of a spatial range similar to the range of the two-electron
bound states, the bound state wave function in the single-
ionization channel is zero in the integration volume under
concern in Eq. �28� and thus implies an overall vanishing
overlap between the double ionization projector and the
single-ionized channels.

A nice feature of the present approach is that the wave
packet includes every interaction of the full Hamiltonian. It
is at the level of the measurement projection operator that the
approximations are introduced and in a controlled way: The
longer propagation time, the more exact result. When the
momentum components of interest are in the asymptotic re-
gime then Eq. �27� is valid, and the angle and energy re-
solved ionization probability of Eq. �28� remains constant in
time; a prerequisite for a converged calculation.

VIII. SUMMARY AND CONCLUSION

In conclusion, the theory of measurement projection op-
erators in time-dependent grid-based wave-packet calcula-
tions involving continua was discussed. The mathematical
foundation of the approach relies on the properties of the

wave operators that act on continuum states. A hierarchy of
projection operators relevant in their individual restricted
configuration spaces was presented. At large distances from
the scattering or interaction center the projection operators
are simply given in terms of momentum eigenstates. If the
wave packet is only propagated to intermediate distances
where the Coulombic monopole is significant, the projection
operators are generated from Coulomb waves with incoming
scattering wave boundary conditions. If propagation of the
wave packet to these asymptotic regimes is impeded, the
projection operators involve the exact scattering states which
are not readily available in the wave-packet calculation and
hence must be supplied by an additional calculation. The
present work demonstrates that the Coulomb and plane wave
states forming the projection operators are conveniently ex-
pressed in a spherical coordinate partial wave expansion.
However, since the Coulomb and plane wave states are
known analytically, it is possible to use the present method in
any coordinate grid representation. Therefore, in general
time-dependent grid calculations, the present method is po-
tentially very practical since a whole range of processes may
be analyzed directly by making the appropriate projections
over restricted parts of a numerical grid. There is no need for
finding the scattering states for each individual subsystems
under study. The accuracy of the method was illustrated by
considering strong-field ionization of H2

+ where the exact
scattering states were found by a numerical ab initio method.
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