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We describe an efficient technique for calculating cross sections for two-photon single and double ionization
of an atom without the use of the final-state continuum wave function. We present results of an application to
helium over the photon energy range 25−54 eV, and we compare our results to a representative sample of
results obtained by others.
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I. INTRODUCTION

The subject of two-photon double ionization is currently
drawing much interest. The availability of sources of intense
extreme-ultraviolet �XUV� radiation has given birth to ex-
periments �1,2� probing for the first time the complete
breakup of a helium atom by two-photon absorption. Further
experiments are in the planning stages. Meanwhile, a wide
range of theoretical techniques has been brought to bear on
the problem, but the results are quite disparate �3–11�. The
purpose of this paper is to introduce yet another technique
and to present results of calculations of the generalized cross
section for two-photon single and double ionization of he-
lium over the photon energy range 25−54 eV. One merit of
our approach is that it is computationally undemanding; our
results were obtained within a relatively short execution time
using a standard desktop with 2Mb of memory.

Our approach avoids explicit use of the final-state con-
tinuum wave function in both the single- and double-
ionization channels. We start from the observation that the
inclusive rate for the breakup of a system, summed over all
possible decay channels, is, aside from a factor −2 /�, just
the imaginary part of the system’s �quasi�energy. Thus the
inclusive rate for the breakup of an atom by two-photon
absorption is �up to a factor −2 /�� the imaginary part of the
second-order term in the perturbative expansion of the at-
om’s ac quasienergy in powers of the light intensity. How-
ever, at frequencies above the threshold for one-photon ion-
ization, this term includes contributions from both one- and
two-photon ionization. The contribution from one-photon
ionization is due to the possibility that while an electron can
escape after absorbing only one photon it may absorb and
reemit, or emit and reabsorb, another photon as it moves
outwards in the radiation field; see Fig. 1. In other words the
electron can undergo a one-photon transition to a dressed
continuum state, dressed by the radiation field.

In addition, at frequencies above the threshold for two-
photon double ionization the second-order quasienergy in-
cludes contributions from both single and double ionization.
Our goal is to separate these different contributions. To ac-
complish this we make an approximation: We neglect the
dressing of the bound states of the He atom and the residual
He+ ion by the radiation field. The resulting error is relatively
very small except at those frequencies very close to a tran-
sition frequency of the residual ion, at which there is a core-
excited resonance �12�. At frequencies where the detuning

from a core-excited resonance is less than, or comparable to,
the dipole coupling energy of the relevant ionic states our
approximation does break down; regardless, in this region a
meaningful ionization rate can no longer be defined, a point
we return to below.

In the next section we describe the details of the method.
In Sec. III we present our results.

II. THEORY

A. Basics

We consider two-photon absorption by an atom composed
of two electrons labeled 1 and 2, each of charge −e, which
are bound to a nucleus with atomic number Z that is fixed in
space. The electrons are separated by the dimensionless dis-

FIG. 1. Contributions to the imaginary part of the ac quasien-
ergy, at second order in the intensity, for two-photon absorption at
photon energies above the threshold for a one-photon transition to
the continuum �the hatched region�. The left diagram includes de-
cay via both one- and two-photon transitions. Decay via a one-
photon transition is accompanied by the absorption and reemission
of a photon between two continuum states. The right diagram in-
cludes decay via a one-photon transition only; this transition is ac-
companied by the emission and reabsorption of a photon between a
bound and continuum state.
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tance r12= �r�1−r�1� where the dimensionless coordinates r�1
and r�2 locate the electrons relative to the nucleus. The
Hamiltonian of the atom is �e2 /a0�H where a0 is the Bohr
radius and where

H = Haa +
1

r12
, �1�

Haa = ha�1� + ha�2� , �2�

ha�j� = −
1

2
� j

2 −
Z

rj
�3�

with the subscript �aa� denoting the entrance channel of the
atom. Photon absorption from a radiation field with fre-

quency � and electric field amplitude F� 0 �which is complex
if the light is elliptically polarized� is mediated in the veloc-
ity gauge by the interaction �e2 /a0�V+

�v� where

V+
�v� =

1

2
� ea0F� 0

��
� · ��� 1 + �� 2� . �4�

Photon emission is mediated in the velocity-gauge by the
interaction �e2 /a0�V−

�v� where V−
�v� differs from V+

�v� through

complex conjugation of F� 0. Initially the atom is bound with
energy E0�e2 /a0� and its state is represented by ��0�. The
response of the atom to n-photon absorption is represented
by

��n
�v�� = G�En�V+

�v���n−1
�v� � , �5�

where ��0
�v��= ��0�, where En is the dimensionless energy of

the atomic system after n-photon absorption, i.e.,

�En − E0��e2/a0� = n�� �6�

and where G�E� is the resolvent

G�E� = �E − H�−1. �7�

We restrict E1 to negative values, i.e., we assume the fre-
quency lies below the threshold for one-photon double ion-
ization. However, E2 can be positive or negative.

If E2�0 and if electron 2 is ejected while electron 1
remains bound �possibly in an excited state� the motion in
the exit channel �ab� is governed by the Hamiltonian

Hab = ha�1� + hb�2� , �8�

where hb�2� is the one-electron Hamiltonian

hb�2� = −
1

2
�2

2 −
Z − 1

r2
−

e−�r2

r2
�9�

with � real and positive �so the potential is Hermitian�. The
difference �1−e−�r2� /r2 between hb�2� and ha�2� accounts for
the partial screening of the nucleus at large distances. We
take � to have the same value as the �inverse� length scale of
the basis on which the states are expressed. The full Hamil-
tonian can be written as

H = Hab + Uab, �10�

where Uab is the final-state perturbation

Uab =
1

r12
− �1 − e−�r2

r2
� , �11�

which �for fixed r1� falls off as an inverse square with in-
creasing r2 and �aside from the exceptional case r1=0� is
finite at r2=0.

In the length gauge the interaction with the radiation field
is �e2 /a0�V+

�l�, where

V+
�l� =

1

2
� ea0F� 0

e2/a0
� · �r�1 + r�2� �12�

and the response of the atom to n-photon absorption is rep-
resented by

��n
�l�� = G�En�V+

�l���n−1
�l� � , �13�

where ��0
�l��= ��0�. Noting that

V+
�v� = � e2/a0

��
���En − H�,V+

�l�� �14�

it is not difficult to show that

��n
�v�� = � e2/a0

��
�V+

�l���n−1
�v� � − G�En�V+

�l���n−1
�v� �

− � e2/a0

��
�G�En�V+

�l�V+
�v���n−2

�v� � . �15�

In particular, the first-order response kets in the length and
velocity gauges are related by

��1
�v�� = � e2/a0

��
�V+

�l���0� − ��1
�l�� , �16�

a result we use below.

B. Flux formulas

The second-order contribution to the inclusive rate for
breakup is −�2 /�� times the imaginary part of the second-
order ac quasienergy. Let us denote this contribution by
�e2 /�a0��inc, where �inc is the dimensionless asymptotic
flux. Referring to Fig. 1, both diagrams contribute to �inc and
their sum is

�inc = − 2 Im�	�0�V−
�v�G�E1�V−

�v�G�E2�V+
�v�G�E1�V+

�v���0�

+ 	�0�V−
�v�G�E1�V+

�v�G�E0��1 − ��0�	�0��

�V−
�v�G�E1�V+

�v���0�� , �17�

where the projection operator �1− ��0�	�0�� serves to elimi-
nate the ground-state pole of G�E�. However, for our purpose
it is more useful to express the inclusive flux directly as �12�

�inc = i	�2
�v���H − H†���2

�v�� . �18�

Note that �use Green’s theorem to convert the volume inte-
gral to an integral over the surface at infinity� only the
asymptotic form of the response function 	r�1r�2 ��2

�v�� contrib-
utes to the right side of Eq. �18�. Using Eq. �5� in the second
step below we can re-express Eq. �18� in a form more suit-
able for computation as
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�inc = − 2 Im	�2
�v���E − H†���2

�v�� �19�

=− 2 Im	�1
�v���V+

�v��†��2
�v�� . �20�

In general, the right side of Eq. �20� includes contributions
from both one- and two-photon ionization.

If E2�0 two-photon double ionization occurs, and it con-
tributes to �inc. In order to remove this contribution we in-
troduce the projection operators pa�j ;E�, j=1,2, which
project onto a subspace of the full two-electron space in
which electron j resides in a localized state represented by a
linear combination of those bound eigenstates of ha�j� with
eigenvalues less than or equal to E, where E�0. Thus, if
�j ;Ea� is an eigenket of ha�j� with eigenvalue Ea,

pa�1;E� = 

Ea	E

�1;Ea�	1;Ea� � 12, �21�

where 12 is the identity operator acting on the space of elec-
tron 2. The symmetric projection operator

Pa�E� � pa�1;E� + pa�2;E� − pa�1;E�pa�2;E� �22�

projects onto a subspace of the full two-electron space in
which at least one of the electrons is localized and has en-
ergy less than or equal to E�0. Both pa�j ;E� and Pa�E� are
Hermitian, and have the properties pa

2�j ;E�= pa�j ;E� and
Pa

2�E�= Pa�E�. Since the right side of Eq. �18� depends only
on the asymptotic form of 	r�1r�2 ��2

�v��, the rate �SI�Emax� for
single ionization accompanied by excitation of the residual
ion to all energy levels below Emax, where Emax is negative
and less than E2, is given by making the replacement

��2
�v�� → Pa�Emax���2

�v�� �23�

in Eq. �18�. Omitting 1 /r12 from H �it cancels out� we have

�SI�Emax� = i	�2
�v��Pa�Emax��Haa − Haa

† �Pa�Emax���2
�v�� �24�

=i

j=1

2

	�2
�v��pa�j ;Emax��Haa − Haa

† �pa�j ;Emax���2
�v��

�25�

=2i	�2
�v��pa�1;Emax��Haa − Haa

† �pa�1;Emax���2
�v��

�26�

=2i	�2
�v��pa�1;Emax��Hab − Hab

† �pa�1;Emax���2
�v�� .

�27�

We have just made an approximation: We have assumed
that once the photoelectron escapes and is asymptotically far
away, the residual ion, if it is bound, relaxes to an unper-
turbed state. This is not entirely correct, for within our for-
malism the residual ion remains in the radiation field and
therefore its bound states are slightly perturbed by the field,
and hence are not exactly eigenstates of the unperturbed
Hamiltonian ha�1�. In other words, we have neglected the
virtual absorption and reemission, or emission and reabsorp-
tion, of a photon by the residual ion, which accompanies

one-photon single ionization. As noted in the Introduction,
this is a small correction except in the immediate vicinity of
a core-excited resonance where the photon frequency differs
from a transition frequency between two unperturbed states
of the residual ion by less than the dipole coupling energy of
these states. At these exceptional frequencies the virtual pro-
cess becomes a real one, and the ion undergoes Rabi flopping
so that it is no longer possible to define a meaningful ioniza-
tion rate. Recall that we have not neglected the �generally
important� real absorption and reemission, or emission and
reabsorption, of a photon by the photoelectron as it escapes
in the field after one-photon absorption.

We can put �SI�Emax� in a form more suitable for compu-
tation by introducing the resolvent

Gab�E� =
1

E − Hab
. �28�

If E�0 we have

G�E� = Gab�E� + Gab�E�UabG�E� . �29�

Combining Eqs. �5� and �29� gives

pa�1;Emax���2
�v��

= pa�1;Emax�Gab�E2��1 + UabG�E2��V+
�v���1

�v�� �30�

=pa�1;Emax�Gab�E2��V+
�v���1

�v�� + Uab��2
�v��� . �31�

As noted earlier if r1 remains finite Uab vanishes as 1 /r2
2 for

r2→
. However, at energies above the complete breakup
threshold both electrons escape, so Uab has a long-range
Coulomb tail, and therefore Eq. �29� is invalid when E�0.
Nevertheless, Eq. �31� is valid even if E2�0 since Emax�0
and pa�1;Emax���2

�v�� excludes the double-ionization channel.
Noting that pa�1;Emax� commutes with Hab, it follows from
Eqs. �27� and �31� that

�SI�Emax� = − 4 Im	�2
�v��pa�1,Emax��E2 − Hab

† �pa�1,Emax���2
�v��

�32�

=− 4 Im�	�1
�v���V+

�v��†pa�1,Emax���2
�v��

+ 	�2
�v��Uabpa�1,Emax���2

�v��� . �33�

In general, the right side of Eq. �33� includes contributions
from both one- and two-photon single ionization.

C. Two-photon single and double ionization

Since E1�0 the difference

�DI
�2� = �inc − �SI�0� �34�

gives the rate for two-photon double ionization. To obtain the
rate for two-photon single ionization we must eliminate the
contribution to �SI�Emax� from one-photon single ionization.
We begin this task by isolating that part of the modified
second-order response ket pa�1;Emax���2

�v�� which accounts
for one-photon ionization.
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Using Eq. �31�, noting that pa�1;Emax� commutes with
Gab�E�, and inserting �pa�1;E1�+1− pa�1;E1�� between V+

�v�

and ��1
�v��, we have

pa�1;Emax���2
�v�� = Gab�E2����̃unloc� + ��̃loc�� , �35�

where

��̃unloc� = pa�1;Emax�V+
�v�pa�1;E1���1

�v�� , �36�

��̃loc� = pa�1;Emax��V+
�v��1 − pa�1;E1����1

�v�� + Uab��2
�v�� .

�37�

At frequencies above the threshold for one-photon ionization
��1

�v�� contains open subchannels in which one of the elec-
trons can escape. Although pa�1;Emax� acts to suppress the
escape of electron 1, electron 2 can escape and therefore

��̃unloc� represents an unlocalized state and is non-
normalizable. Indeed, if �EaEb���1;Ea� � �2;Eb� is an eigen-

ket of Hab, the matrix element 	EaEb � �̃unloc� is proportional to
��Eb−E1+Ea�. This delta function expresses energy conser-
vation for the process in which the atom absorbs one photon
and electron 2 escapes with energy Eb leaving behind elec-
tron 1 which is bound in the residual ion with energy Ea

�E1. On the other hand, ��̃loc� represents a localized state
and is normalizable due to the joint action of pa�1;Emax�
�which suppresses the escape of electron 1� and either
�1− pa�1;E1�� �which suppresses the escape of electron 2� or
Uab �which suppresses the escape of both electrons�.

Hence Gab�E2���̃unloc� describes both one- and two-photon

ionization while Gab�E2���̃loc� describes only two-photon

ionization. It is useful to look at Gab��̃unloc� in position space:

	r�1r�2�Gab�E2���̃unloc� = 

Ea	Emax

� 

Eb	0

+ �
0




�Eb�dEb�
�	r�1r�2�EaEb�

	EaEb��̃unloc�
E2 − Ea − Eb

, �38�

where �Eb� is the density of continuum states of electron
2. When �r�2� is large 	r�1r�1 �EaEb� oscillates very rapidly as
Eb varies, and so the main contribution to the integral over
Eb comes from the region where the integrand is singular.

Since 	EaEb � �̃unloc����Eb−E1+Ea� the response function

	r�1r�2�Gab�E2���̃unloc� contains, at asymptotically large dis-

tances, a wave eik�1��Eb�r2 which represents electron 2 moving
radially outwards with momentum k�1��Eb�=�2�E1−Ea� after
the atom has absorbed one photon, leaving behind a residual
ion with internal energy Ea�E1. The integrand is also singu-
lar at Eb=E2−Ea, where the denominator is proportional to
��Eb−E2+Ea�. This delta function expresses energy conser-
vation for the process in which the atom absorbs two photons
and electron 2 escapes with energy Eb leaving behind a re-
sidual ion with internal energy Ea�Emax where Emax is nega-
tive and less than E2. Hence at asymptotically large distances

	r�1r�2�Gab�E2���̃unloc� also contains a wave eik�2��Eb�r2 which

represents electron 2 moving radially outwards with momen-
tum k�2��Eb�=�2�E2−Ea�.

Evidently we must eliminate all asymptotic waves of the

form eik�1��Eb�r2 from 	r�1r�2�Gab�E2���̃unloc�. Since k�1��Eb� de-

pends on the value of Ea, it is expedient to resolve ��̃unloc�
into components, each of which depends on a specific value
of the energy Ea of the �unperturbed� residual ion at asymp-
totically large distances. Thus we write

��̃unloc� = 

Ea	E1

��̃unloc�Ea�� , �39�

where 	r�1r�2 � �̃unloc�Ea�� is proportional to a specific wave

eik�1��Eb�r2 at asymptotically large r2. Noting that hb�2� com-
mutes with Gab�E� we remove this wave from
Gab�E2���̃unloc�Ea�� by applying �E1−Ea−hb�2�� to
Gab�E2���̃unloc�Ea��. However, Gab�E2���̃unloc�Ea�� also con-

tains the waves eik�2��Eb�r2 and, as a result of applying �E1

−Ea−hb�2��, their amplitudes are erroneously enhanced by a
factor �E1−E2−Ea+Ea�� where here Ea� is a possible energy of
the residual ion after two-photon ionization. We correct for
this by dividing by �E1−E2−Ea+ha�1��. Thus, we introduce
the operator

O�Ea� � � E1 − Ea − hb�2�
E1 − E2 − Ea + ha�1��pa�1;Emax� �40�

=− ga�1;E2 − E1 + Ea��E1 − Ea

− hb�2��pa�1;Emax� , �41�

where g��j ;E� is the one-particle resolvent

g��j ;E� = 1/�E − h��j�� . �42�

Defining

��̃loc� � 

Ea	E1

O�Ea���̃unloc�Ea�� , �43�

we delete the contribution from one-photon single ionization
to �SI�Emax�, and thereby obtain �SI

�2��Emax�, the two-photon
single ionization rate, by the replacement

pa�1,Emax���2
�v�� → Gab�E2����̃loc� + ��̃loc�� �44�

in Eq. �27�.
If Ea�−Ea=E2−E1, where Ea� and Ea are any two bound-

state energies of the residual ion, ga�1;E2−E1+Ea� has a
pole. This pole is the signature a core-excited resonance.
However, due to the interaction between the electrons, the
corresponding pole in the complete scattering matrix is
shifted slightly, and displaced off the real energy axis into the
complex energy plane. Therefore we can add a tiny imagi-
nary part to E1 without incurring any physical consequence;
we do so to improve numerical stability. We do not alter E0
and E2.

It remains to identify the components ��̃unloc�Ea�� in the

decomposition of ��̃unloc�. This task exposes a difficulty:
When �E1−Ea−hb�2�� acts on ��̃unloc�Ea�� the resulting func-
tion in position space is prohibitively singular at r2=0. To
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remedy this we modify ��̃unloc�Ea��, thereby changing ��̃loc�
and ��̃loc� on the right side of Eq. �44�. We first use Eq. �16�
to rewrite Eq. �36� as

��̃unloc� = �e2/a0��1/���pa�1;Emax�V+
�v�pa�1;E1�V+

�l���0�

− pa�1;Emax�V+
�v�pa�1;E1���1

�l�� . �45�

The first term on the right side of Eq. �45� is normalizable,

and so we subtract it from ��̃unloc� and add it to ��̃loc�, i.e., we

replace ��̃unloc� and ��̃loc�, respectively, by

��unloc� = − pa�1;Emax�V+
�v�pa�1;E1���1

�l�� �46�

and

��loc� = ��̃loc� + �e2/a0��1/���pa�1;E2�V+
�v�pa�1;E1�V+

�l���0�

= pa�1;Emax��V+
�v��pa�1;E1� − 1���1

�v�� + Uab��2
�v�� ,

�47�

+ �e2/a0��1/���pa�1;Emax�V+
�v�V+

�l���0� , �48�

where we used

�1 − pa�1;E1����1
�v�� +

e2

a0��
pa�1;E1�V+

�l���0�

=
e2

a0��
V+

�l���0� + �pa�1;E1� − 1���1
�l�� . �49�

From Eqs. �13� and �29� we have

pa�1;E1���1
�l�� = pa�1;E1�Gab�E1��V+

�l���0� + Uab��1
�l���

�50�

and hence

pa�1;E1���1
�l�� = 


Ea	E1

��unloc�Ea�� , �51�

where

��unloc�Ea�� = �1;Ea�	1;Ea� � gb�2;E1 + i0 − Ea��V+
�l���0�

+ Uab��1
�l��� . �52�

It follows that

��unloc� = 

Ea	E1

��unloc�Ea�� , �53�

where

��unloc�Ea�� = − pa�1;Emax�V+
�v���unloc�Ea�� . �54�

In place of ��̃loc� we define

��loc� � 

Ea	E1

O�Ea���unloc�Ea�� . �55�

The presence of V+
�l� rather than V+

�v� on the right side of Eq.
�52� ensures that O�Ea���unloc�Ea�� is nonsingular, or at least
acceptably singular, in position space. We have

O�Ea���unloc�Ea�� = pa�1;E2�ga�1;E2 − E1 + Ea���V+
�v�,hb�2��

���unloc�Ea�� + V+
�v���1;Ea�	1;Ea� � 12�

��V+
�l���0� + Uab��1

�l��� . �56�

We delete the contribution of one-photon single ionization to
�SI�Emax� by the replacement �instead of Eq. �44��

pa�1,Emax���2
�v�� → Gab�E2����loc� + ��loc�� �57�

in Eq. �27�. Note that pa�1;E2� and O�Ea� commute with
Gab�E2�, and with each other, so

�SI
�2��Emax� = 2i	�loc�Gab

† �E2��Hab − Hab
† �Gab�E2���loc�

+ 2i	�loc�Gab
† �E2��Hab − Hab

† �Gab�E2���loc�

− 4 Im	�loc�Gab
† �E2��Hab − Hab

† �Gab�E2���loc�
�58�

=− 4 Im�	�loc�Gab�E2���loc� + 	�loc�Gab�E2���loc�

+ 	�loc��Gab�E2� − Gab
† �E2����loc� . �59�

III. APPLICATION

We have applied the preceding formalism, in particular
Eqs. �34� and �59�, to two-photon ionization of helium. We
expressed the response functions on a complex Sturmian ba-
sis, composed of functions r1

l1r2
l2Lm−l1−1

2l1+1 �−2i�r1�Lm−l2−1
2l2+1

��−2i�r2�ei��r1+r2� with � chosen to encompass outgoing-
wave and exponentially damped-wave behavior, i.e., Re���
�0 and Im����0. We included values of l1 and l2 in the
range 0	 l1 , l2	3 subject to angular momentum coupling
rules and identical particle symmetry. For the reason noted in
Sec. II C, at photon energies above 40 eV we added a tiny
imaginary part 0.14 eV to E1.

In Fig. 2 we show our results for the two-photon single-
ionization generalized cross section over a range of photon
energies beginning just above the threshold for one-photon
single ionization of the ground-state He atom, and ending
just below the threshold for one-photon ionization of the
residual ground-state He+ ion. This cross section was
summed over all states of the He+ ion. The results were
obtained using 30 radial basis functions per electron. The
numerous fluctuations in the cross section are signatures of
resonances. At photon energies below 40.8 eV these reso-
nances are due to one- or two-photon transitions to autoion-
izing states of He. The broad and high peak centered at 40.8
eV is due to the lowest core-excited resonance, where the
photon frequency coincides with the 1s-2p transition fre-
quency of He+. The next core-excited resonance is centered
at 48.4 eV, and infinitely many core-excited resonances ac-
cumulate at 54.4 eV, the threshold for one-photon ionization
of ground-state He+. Similar core-excited resonances were
found �12� in a study of two-photon detachment of H−. The
computed heights of the core-excited resonance peaks are
limited not only by the interaction between the electrons but
also by our addition of an artificial imaginary energy of 0.14
eV to E1. The inclusion of this artificial energy does not
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affect the widths of the lowest few core-excited resonance
peaks, which are much broader than 0.14 eV. At photon en-
ergies very close to the maxima of these peaks the dressing
by the radiation field of the bound states of He+, which we
have omitted, becomes important, and a rate can no longer
be defined, so the exact heights of the core-excited resonance
peaks are of little interest. We also show in Fig. 2 the data of
Feng and van der Hart �8� �solid circles� which cover the
region between the first and second core-excited resonances.
The agreement with our results is good.

In Fig. 3 we show our results for the two-photon double-
ionization generalized cross section over a range of photon
energies beginning just above the threshold 39.5 eV for two-
photon double ionization and ending just below the threshold
54.4 eV for sequential double ionization �11�. We performed
calculations with three different basis sets, containing differ-
ent numbers of radial basis functions per electron; the first
set �dots� contained 21 basis functions, the second set �bro-
ken line� contained 30, and the third set �solid line� contained
40 �which is about as many basis functions as can be accom-
modated on a 2Mb desktop�. The three sets of results are in
fair agreement far from the two thresholds but clearly di-
verge from each other as either threshold is approached. In
fact, the true cross section should vanish at the lower thresh-
old, but the 21�21 cross section rises near this threshold,
while the 30�30 cross section reaches zero about 1 eV

above this threshold. The numerical stability of our results
�for double ionization� appears to be impaired by the pres-
ence of the core-excited resonances. Evidently a 40�40 ba-
sis is insufficient to achieve convergence; nevertheless, it
yields results which may warrant some confidence, except
near the threshold for sequential ionization, where an infinite
number of core-excited resonances accumulates and pertur-
bation theory is of questionable validity. We also show in
Fig. 3 a representative sample of the results of others, spe-
cifically Feng and van der Hart �8� �solid circles� and Fou-
mouo et al. �stars�. The results of Nikolopoulos and Lam-
bropoulos �3� �not shown� lie somewhat above those of
Foumouo et al. while the results of Laulan and Bachau �9�
�also not shown� lie between our results and those of Feng
and van der Hart. In summary, two-photon double ionization
of helium remains an open problem.
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