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An optical pumping scheme is presented that uses incoherent Raman transitions to prepare a trapped cesium
atom in a specific Zeeman state within the 6S1/2, F=3 hyperfine manifold. An important advantage of this
scheme over existing optical pumping schemes is that the atom can be prepared in any of the F=3 Zeeman
states. We describe an experimental implementation of the scheme and show that a fraction 0.57±0.02 of the
total population can be prepared in the desired state, with the remaining population distributed fairly uniformly
among the six other states. We demonstrate the scheme in the context of cavity quantum electrodynamics, but
the technique is equally applicable to a wide variety of atomic systems with hyperfine ground-state structure.
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I. INTRODUCTION

Many experiments in atomic physics rely on the ability to
prepare atoms in specific internal states. For example, spin-
polarized alkali-metal atoms can be used to polarize the nu-
clei of noble gases �1�, to act as sensitive magnetometers �2�,
and to provide frequency standards that exploit magnetic-
field-insensitive clock transitions �3�. In the field of quantum
information science, internal atomic states can be used to
store and process quantum bits �4–8� with extended coher-
ence times.

A standard method for preparing an atom in a specific
internal state is optical pumping �9–11�, which involves driv-
ing the atom with light fields that couple to all but one of its
internal states; these light fields randomly scatter the atom
from one internal state to another until it falls into the un-
coupled “dark” state. Various optical pumping schemes have
been analyzed and demonstrated for alkali-metal atoms
�3,12,13� and today are well-established techniques. These
schemes rely on dark states that are set by the polarization of
the driving field, and this imposes restrictions on the possible
Zeeman states in which the atom can be prepared. Specifi-
cally, one can prepare the atom in the mF=0 state by using
light that is linearly polarized along the quantization axis, or
in one of the edge states �mF= ±F� by using light that is
circularly �± polarized along the quantization axis.

In contrast, the scheme presented here allows the atom to
be prepared in any of the Zeeman states within the lowest
ground-state hyperfine manifold of an alkali-metal atom,
which in our case is the 6S1/2, F=3 manifold of cesium. The
key component of the scheme is a pair of optical fields that
drive Raman transitions between pairs of Zeeman states
�3,m�↔ �4,m�. We apply a magnetic bias field to split out the
individual Zeeman transitions, and add broadband noise to
one of the optical fields, where the spectrum of the noise is
tailored such that all but one of the transitions are driven.
The two Zeeman states corresponding to the undriven tran-
sition are the dark states of the system, and we exploit these
dark states to perform optical pumping. We verify the optical
pumping by using coherent Raman transitions to map out a
Raman spectrum, which allows us to determine how the
atomic population is distributed among the different Zeeman
states; these measurements show that a fraction 0.57±0.02 of

the total population is prepared in the desired state, with the
remaining population distributed fairly uniformly among the
six other states. The capability of driving Raman transitions
between hyperfine ground states has many additional appli-
cations, such as state manipulation �14�, ground-state cooling
�15–18�, precision measurements �19,20�, and Raman spec-
troscopy �21�. The scheme described here shows that this
versatile tool can also be used for atomic state preparation.

We have demonstrated this scheme in the context of cav-
ity quantum electrodynamics �QED�, specifically in a system
in which a single atom is strongly coupled to a high-finesse
optical cavity. Cavity QED offers a powerful resource for
quantum information science, and the ability to prepare the
atom in a well-defined initial state is a key requirement for
many of the protocols that have been proposed for this sys-
tem, such as the generation of polarized single photons
�22,23� and the transfer of Zeeman coherence to photons
within the cavity mode �24�. Conventional optical pumping
to a single Zeeman sublevel has been previously demon-
strated within a cavity �25�, but we find our method to be
particularly effective given the constraints of our system, in
which optical access to the atom is limited and we must
address the large multiplicity of cesium sublevels. However,
optical pumping via incoherent Raman transitions has much
broader applications beyond the cavity QED setting, and can
be used in a wide variety of atomic systems with hyperfine
ground-state structure.

II. EXPERIMENTAL APPARATUS

Our system consists of a single cesium atom that is
strongly coupled to a high-finesse optical cavity, as shown in
Fig. 1. The cavity supports a set of discrete modes, and its
length is tuned so that one pair of modes �26� is nearly reso-
nant with the atomic transition 6S1/2, F=4→6P3/2, F=5� at
�D2=852 nm �see the level diagram shown in Fig. 2�. The
atomic dipole associated with this transition couples to the
electric field of the resonant mode, allowing the atom and
cavity to exchange excitation at a characteristic rate g
= �2���34 MHz� for the 6S1/2, F=4, mF=4→6P3/2, F=5�,
mF�=5 transition, a rate that is much larger than either the
cavity decay rate �= �2���3.8 MHz� or the atomic decay rate
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�= �2���2.6 MHz�; thus, the system is in the strong-coupling
regime �27�.

We hold the atom inside the cavity via a state-insensitive
far off-resonance trap �FORT� �28�. The FORT is produced
by resonantly driving a cavity mode at �F=936 nm with a
linearly polarized beam, which creates a red-detuned stand-
ing wave inside the cavity. Each antinode of this standing
wave forms a potential well in which an atom can be
trapped; for the experiments described here, the optical
power of the FORT beam is chosen such that the depth of
these wells is UF= �2���45 MHz�.

We drive Raman transitions between the F=3 and F=4
hyperfine ground-state manifolds of the atom by adding a
second beam, referred to here as the Raman beam, which
drives the same cavity mode as the FORT beam but is de-
tuned from the FORT by the atomic hyperfine splitting �HF
= �2���9.2 GHz� �this scheme was first proposed in �29�, and
was used to perform Raman sideband cooling in �30��. The
FORT and Raman beams are combined on a polarizing beam
splitter �PBS� before entering the cavity, so the Raman beam
is linearly polarized in a direction orthogonal to the polariza-
tion of the FORT beam. To stabilize the frequency difference
between the FORT and Raman beams, the external-cavity
diode laser that generates the Raman beam is injection
locked to the red sideband of light that has been picked off
from the FORT beam and passed through an electro-optical
modulator �EOM�, which is driven at �HF. The FORT and
Raman beams form the two legs of a Raman pair and drive
Raman transitions between pairs of Zeeman states
�3,m�↔ �4,m�, where the quantization axis ẑ is chosen to lie

along the cavity axis �31�. Typically we use a strong FORT
beam and a weak Raman beam, so the Raman beam does not
significantly alter the FORT trapping potential �32�.

In order to address individual Zeeman transitions, we ap-
ply a magnetic bias field Ba along the cavity axis. As shown
in Fig. 3, this axial field shifts the �3,m�↔ �4,m� transition
by

���3,m� ↔ �4,m�� = �Bm , �1�

where

�B � �g4 − g3�	BBa = �2���700 kHz/G�Ba, �2�

and g4=1 /4, g3=−1 /4 are the Lande g factors for the F=4
and F=3 ground-state hyperfine manifolds. For the experi-
ments described here, we typically set the axial bias field
such that �B��2���910 kHz�.

The strong atom-cavity coupling allows us to determine
whether the atom is in the F=3 or F=4 hyperfine manifold
by driving the cavity with a 100 	s pulse of resonant 4-5�
probe light, as described in �18�. If the atom is in F=4, it
couples to the cavity and blocks the transmission of the
probe beam, while if the atom is in F=3, it decouples from
the cavity, and the probe beam is transmitted. Using this
technique, we can determine the hyperfine ground state of
the atom with an accuracy of 	98% for a single 100 	s
measurement interval.

Atoms are delivered to the cavity by releasing a magneto-
optical trap located a few millimeters above the cavity, and
the falling atoms are loaded into the FORT by cooling them
with 4-4� lattice light. This lattice light consists of two pairs
of counterpropagating beams in the �+−�− configuration,
which are applied from the sides of the cavity. We ensure
that only one atom is trapped in the FORT by applying the
Raman beam and driving the cavity with a resonant 4-5�
probe; this combination gives an effect analogous to that in
�33�, which allows us to determine the number of atoms in
the cavity based on the amount of 4-5� light that is transmit-
ted.

III. COHERENT AND INCOHERENT RAMAN
TRANSITIONS

If the FORT and Raman beams are both monochromatic,
then they drive coherent Raman transitions between pairs of
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FIG. 1. �Color online� Schematic of experiment. �a� View from
the side of the cavity. Shown are the linearly polarized FORT, Ra-
man, and probe beams that drive the cavity, and the circularly po-
larized 4-4� lattice beams and linearly polarized 4-4� side beam that
drive the atom. �b� View along the cavity axis. Shown are the 4-4�
lattice beams and the 4-4� side beam.
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FIG. 2. Level diagram for the D2 line in cesium.
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FIG. 3. Ground-state spectrum of cesium in the presence of an
axial bias field. The Raman coupling drives transitions between
pairs of Zeeman states �3,m�↔ �4,m�, as indicated by the arrows.
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Zeeman states �3,m�↔ �4,m�, and the atomic populations os-
cillate between the two states in each pair. The effective Rabi
frequency for the �3,m�↔ �4,m� transition is


E��3,m� ↔ �4,m�� = 
0�1 − m2/16�1/2, �3�

where 
0 is set by the power in the FORT and Raman beams
�29�. For the experiments described here, the powers in these
beams are chosen such that 
0��2���120 kHz�. The Raman
detuning for the FORT-Raman pair is given by �R=�F−�R
−�HF, where �F and �R are the optical frequencies of the
FORT and Raman beams, which means that the effective
detuning for the �3,m�↔ �4,m� transition is

�E��3,m� ↔ �4,m�� = �R − �Bm . �4�

We can also drive incoherent Raman transitions by using a
monochromatic FORT beam and a spectrally broad Raman
beam, where the spectral width is typically 	10 MHz. In
contrast to coherent Raman transitions, in which the atom
undergoes coherent Rabi oscillations, for incoherent Raman
transitions the atomic population decays at a constant rate
from �3,m�→ �4,m� and from �4,m�→ �3,m�. In the Appen-
dix, we show that these decay rates are proportional to
S��HF+�Bm�, where S��� is the power spectrum of a beat
note formed between the FORT and Raman beams.

IV. MEASURING THE POPULATION DISTRIBUTION

Given an initial state of the atom in which the entire
population lies in the F=3 manifold, we can use coherent
Raman transitions to determine how the population is distrib-
uted among the various Zeeman states. To perform this mea-
surement we prepare the atom in the desired initial state,
apply a coherent Raman pulse of fixed duration, Rabi fre-
quency, and Raman detuning, and then drive the cavity with
a resonant F=4→F=5� probe beam to determine if the atom
was transferred to F=4. By iterating this process we deter-
mine the probability p4 for the atom to be transferred by the
Raman pulse, and by repeating the probability measurement
for different Raman detunings �R we can map out a Raman
spectrum p4��R�. For the Raman spectra presented here, the
Raman pulses have Rabi frequency 
0= �2���120 kHz� and
duration 25 	s. This is long enough that the Rabi oscillations
decohere, and the Raman spectrum just records the Lorentz-
ian envelope for each Zeeman transition. Thus, when the
�3,m�↔ �4,m� Zeeman transition is resonantly driven by the
Raman pulse, roughly one-half of the population that was
initially in �3,m� is transferred to �4,m�.

As a demonstration of this technique, Fig. 4 shows a Ra-
man spectrum for an initial state with comparable popula-
tions in all of the F=3 Zeeman states. To prepare this state,
we optically pump the atom to F=3 by alternating seven
pulses of resonant F=4→F=4� lattice light with seven
pulses of resonant F=4→F=4� side light, where each pulse
is 300 ns long. The beams that deliver the lattice and side
light are shown in Fig. 1.

To determine the population p3,m in the Zeeman state
�3,m�, we fit a sum of Lorentzians, one for each Zeeman
transition, to the experimental data,

p4��R� = pb + �1/2�

�

m

�1 + ��R − �Bm�2/�1 − m2/16�
0
2�−1p3,m, �5�

where pb is a constant background. We fit the Zeeman state
populations, the Rabi frequency 
0, and the frequency �B
that characterizes the strength of the axial bias field, and
perform an independent measurement to determine the back-
ground probability pb=0.006. The fitted value of 
0 agrees
to within 14% with the value we would expect based on the
measured optical powers in the FORT and Raman beams,
and the fitted value of �B agrees to within 5% with the value
we would expect based on the known axial coil current and
geometry. As a consistency check we sum the fitted popula-
tions and obtain the result 1.10±0.03, in reasonable agree-
ment with the expected value of 1.

V. OPTICAL PUMPING SCHEME

We can prepare the atom in a specific Zeeman state by
using a Raman beam whose spectrum is tailored to incoher-
ently drive all but one of the Zeeman transitions. As an ex-
ample, Fig. 5�a� shows the power spectrum of the noise used
for pumping into �3,0�. This graph was obtained by measur-
ing the power spectrum of a beat note formed between the
FORT and Raman beams by mixing them on a photodetector
with a nonpolarizing beam splitter. For comparison, Fig. 5�b�
shows the power spectrum for a monochromatic Raman
beam tuned to Raman resonance, as would be used for driv-
ing coherent Raman transitions.

Comparing the noise spectrum shown in Fig. 5�a� to the
Raman spectrum shown in Fig. 4, we see that the noise
drives incoherent Raman transitions from �3,m�↔ �4,m� for
m�0, but because of the notch around zero detuning, the
�3,0�↔ �4,0� transition is not driven. We optically pump the
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FIG. 4. �Color online� Raman spectrum for a random initial
state. Shown is the transfer probability p4 versus Raman detuning
�R: the points are the experimental data, the curve is a fit of p4��R�,
as given by Eq. �5�, and the vertical green lines indicate the
predicted frequencies ���3,m�↔ �4,m�� for individual Zeeman
transitions.
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atom into �3,0� by first driving incoherent Raman transitions
for 10 	s, then pumping the atom to F=3 using the method
discussed in Sec. IV, and iterating this sequence 40 times. It
is straightforward to modify this procedure so as to pump
into the �3,m� Zeeman state for any m; we simply shift the
notch in the noise so that it overlaps with the �3,m�↔ �4,m�
transition.

To characterize the optical pumping, we first pump the
atom into a specific Zeeman state and then measure the Ra-
man spectrum as described in the preceding section. Figure 6
shows Raman spectra measured after pumping into �a� �3,0�
and �b� �3,1�. We find that the fraction of the atomic popu-
lation in the desired state is 0.57±0.02 for pumping into
�3,0� and 0.57±0.02 for pumping into �3,1�, where the re-
maining population is roughly equally distributed among the
other Zeeman states �these numbers are obtained by fitting
Eq. �5� to the data, as described in Sec. IV�. Summing the

fitted populations in all the Zeeman states, we obtain the
value 1.02±0.04 for �a� and 1.08±0.04 for �b�, in reasonable
agreement with the expected value of 1.

To generate the Raman beam used in Fig. 5�a�, we start
with an rf noise source, which produces broadband noise that
is spectrally flat from dc to 	10 MHz. The noise is passed
through a high-pass filter at 500 kHz and a low-pass filter at
5 MHz, where both filters roll off at 60 dB per octave. The
filtered noise is then mixed against an 85 MHz local oscilla-
tor, and the resulting rf signal is used to drive an acousto-
optical modulator �AOM� that modulates a coherent beam
from the injection-locked Raman laser. The first order dif-
fracted beam from the AOM forms a Raman beam with the
desired optical spectrum. Note that previous work has dem-
onstrated the use of both synthesized incoherent laser fields
�34,35�, such as that used here, as well as the noise intrinsic
to free-running diode lasers �36,37� to resonantly probe
atomic spectra.
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FIG. 5. �Color online� �a� Power spectrum of noise used for
pumping into �3,0�. �b� Power spectrum of coherent signal used for
driving coherent Raman transitions with 
0= �2���120 kHz�. Both
curves are obtained by combining the FORT and Raman beams on
a photodetector and measuring the spectrum of the photocurrent;
shown is the rf power in a 3 kHz bandwidth versus detuning from
�HF.
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FIG. 6. �Color online� �a� Raman spectrum for optical pumping
into �3,0�. �b� Raman spectrum for optical pumping into �3,1�.
Raman spectrum for a random initial state. Shown is the transfer
probability p4 versus Raman detuning �R: the points are the experi-
mental data, the curve is a fit of p4��R�, as given by Eq. �5�,
and the vertical green lines indicate the predicted frequencies
���3,m�↔ �4,m�� for individual Zeeman transitions.
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Although the scheme presented here relies on incoherent
Raman transitions, it is also possible to perform optical
pumping with coherent Raman transitions. The basic prin-
ciple is the same: we simultaneously drive all but one of the
Zeeman transitions, only instead of using a spectrally broad
Raman beam, we use six monochromatic Raman beams,
where each beam is tuned so as to resonantly drive a differ-
ent transition. We have implemented such a scheme, and
found that it gives comparable results to the incoherent
scheme described above, but there are two advantages to the
incoherent scheme. First, it is simpler to generate a Raman
beam with the necessary spectral properties for the incoher-
ent scheme. Second, when coherent Raman transitions are
used, the six frequency components for the Raman beam
must be tuned to resonance with their respective transitions,
and hence are sensitive to the value of the axial magnetic
field. When incoherent Raman transitions are used, however,
the same Raman beam can be used for a broad range of axial
field values.

VI. CONCLUSION

We have proposed a scheme for optically pumping atoms
into a specific Zeeman state and have experimentally imple-
mented the scheme with cesium atoms in a cavity QED set-
ting. An important advantage over existing schemes is that
atoms can be prepared in any of the Zeeman states in the
lower hyperfine ground-state manifold.

We have measured the effectiveness of the optical pump-
ing, and have shown that a fraction 	0.57 of the atomic
population can be prepared in the desired Zeeman state.
Some possible factors that could be limiting the effectiveness
of the optical pumping include fluctuating magnetic fields
transverse to the cavity axis, misalignment of the cavity axis
with the axial bias field, and slow leaking out of the dark
state due to scattering from background light. We are cur-
rently investigating these factors.

The scheme presented here operates on a fundamentally
different principle from existing optical pumping schemes, in
that it relies on incoherent Raman transitions to create an
atomic dark state. Raman transitions have many different
applications in atomic physics, so there are often indepen-
dent reasons for incorporating a system for driving Raman
transitions into an atomic physics laboratory; our scheme
shows that such a system can also be applied to the problem
of atomic state preparation. The scheme should serve as a
useful tool for experiments in atomic physics, both in a cav-
ity QED setting and beyond.
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APPENDIX: TRANSITION RATE FOR INCOHERENT
RAMAN TRANSITIONS

As described in Sec. III, we drive incoherent Raman tran-
sitions between pairs of Zeeman states �3,m�↔ �4,m� by us-

ing a monochromatic FORT beam and a spectrally broad
Raman beam. For incoherent Raman transitions the atomic
population decays at a constant rate from �3,m�→ �4,m� and
from �4,m�→ �3,m�, and in this appendix we calculate these
decay rates.

We will consider a single Zeeman transition
�3,m�↔ �4,m�, so we can treat the system as an effective
two-level atom with ground state g��3,m� and excited state
e��4,m�, where the energy splitting between g and e is
�A��HF+�Bm. The FORT-Raman pair drives this effective
two-level atom with broadband noise, which we can approxi-
mate as a comb of classical fields with optical frequencies �k
and Rabi frequencies 
k. Let us assume that we start in the
ground state g. If we only consider the coupling of the atom
to field k, then the equation of motion for the excited state
amplitude ce is

iċe =

k

2
e−i�ktcg, �A1�

where �k��k−�A is the detuning of the field from the atom.
At small times the population is almost entirely in the ground
state, so we can make the approximation cg=1 and integrate
Eq. �A1� to obtain

ce�t� =

k

2�k
�e−i�kt − 1� . �A2�

Thus, the transition rate from g to e for a single frequency �k
is

�k =
�ce�t��2

t
=

�

4
t
k

2D��kt/2� , �A3�

where

D�x� �
sin2 x

�x2 . �A4�

The total decay rate is obtained by summing the decay rates
for all the fields in the comb,

� = 

k

�k =
�

4
t


k


k
2D��kt/2� . �A5�

To evaluate this expression we need to know the distribution
of Rabi frequencies 
k. This information can be obtained by
forming a beat note between the FORT and Raman beams on
a photodetector, and measuring the power spectrum S��� of
the photocurrent using a spectrum analyzer. Let us first con-
sider this measurement for a monochromatic Raman beam,
and then generalize to a spectrally broad Raman beam. If
both the FORT and Raman beams are monochromatic, with
optical frequencies �F and �R, then the resulting photocur-
rent i�t� is given by

i�t� = iF + iR + 2� cos���F − �R�t��iFiR, �A6�

where iF and iR are the cycle-averaged photocurrents for the
FORT and Raman beams taken individually and � is the
heterodyne efficiency. Thus, the power spectrum of the pho-
tocurrent has a spike at the difference frequency ���F
−�R,

OPTICAL PUMPING VIA INCOHERENT RAMAN TRANSITIONS PHYSICAL REVIEW A 76, 063401 �2007�

063401-5



Sc��� = Pc��� − �� , �A7�

where the integrated power Pc of the spike is proportional to
iFiR. If the difference frequency � is tuned to Raman reso-
nance ��=�A�, then the FORT-Raman pair drives coherent
Raman transitions with a Rabi frequency 
c that is propor-
tional to �iFiR, so


c
2 = 
Pc, �A8�

where 
 is a constant that depends on various calibration
factors.

Now consider the case of a spectrally broad Raman beam,
which results in a photocurrent with power spectrum Si���.
The effective Rabi frequency 
k corresponding to comb line
k is given by


k
2 = 
Si��k��� , �A9�

where �� is the frequency spacing between adjacent comb
lines. Substituting this result into Eq. �A5�, and replacing the
sum with an integral, we obtain

� =
�

4

t� Si���D��� − �A�t/2�d� . �A10�

If the power spectrum near �A is flat over a bandwidth 	1 / t,
then we can approximate D as a � function and perform the
integral

� =
�

2

Si��A� . �A11�

It is convenient to use Eq. �A8� to eliminate the calibration
factor 
,

� =
�

2

Si��A�
Pc


c
2. �A12�

The spectrum analyzer trace given in Fig. 5�a� displays the
power spectrum in terms of the power Pi����2�BSi��� in a

bandwidth B=3 kHz, so we can also write this as

� =
1

4

Pi��A/2��
Pc


c
2

B
=

1

4
�1 − m2/16�


0
2

B

Pi���HF + �Bm�/2��
Pc

,

�A13�

where we have substituted 
c= �1−m2 /16�1/2
0 and �A

=�HF+�Bm.
We can calculate the time evolution of the atomic popu-

lations using rate equations. It is straightforward to show that
the decay rate e→g is also given by �, and from the rate
equations one can show that the excited state population is

pe�t� =
1

2
�1 − exp�− 2�t�� . �A14�

We can calculate the decay rates for the noise spectrum
shown in Fig. 5. For this noise spectrum the power Pi��� has

roughly the same value P̄i at the frequencies of all the m
�0 Zeeman transitions, so we can write the decay rates for
these transitions as

���3,m� → �4,m�� = ���4,m� → �3,m�� = �1 − m2/16�� ,

�A15�

where

� � �1/4��
0
2/B��P̄i/Pc� . �A16�

From the power spectrum for the noise shown in Fig. 5�a� we

have that P̄i=−63 dBm, and from the power spectrum for the
coherent signal shown in Fig. 5�b� we have that Pc
=−36 dBm, where the corresponding Rabi frequency is 
0
= �2���120 kHz�. Substituting these values into Eq. �A16�,
we obtain �=0.084 	s−1.
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