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We consider the transport properties of multiple-particle quantum states in a class of one-dimensional
systems with a single quantum impurity. In these systems, the local interaction at the quantum impurity induces
strong and nontrivial correlations between the multiparticles. We outline an exact theoretical approach, based
upon real-space equations of motion and the Bethe ansatz, that allows one to construct the full scattering matrix
�S matrix� for these systems. In particular, we emphasize the need for a completeness check upon the eigen-
states of the S matrix, when these states obtained from Bethe ansatz are used for describing the scattering
properties. As a detailed example of our approach, we solve the transport properties of two photons incident on
a single two-level atom, when the photons are restricted to a one-dimensional system such as a photonic crystal
waveguide. Our approach predicts a number of nonlinear effects involving only two photons, including back-
ground fluorescence, spatial attraction and repulsion between the photons, as well as the emergence of a
two-photon bound state.
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I. INTRODUCTION

Understanding the properties of a single quantum impu-
rity embedded in a continuum of extended states is of central
importance in both condensed matter physics and quantum
optics. In general, a quantum impurity problem is defined by
a Hamiltonian of the following form:

H = Hp + Ha + Hint, �1�

where Hp describes free propagating quantum particles, Ha
describes the internal dynamics of the impurity �henceforth
we will also use “atom” interchangeably�, and Hint describes
the tunneling processes between the impurity and the free
propagating states �see Fig. 1�. In condensed matter physics,
a notable example of a quantum impurity is described by the
Anderson Hamiltonian �1�, where the continuum is the band
formed by a free-electron gas, the impurity is a local site
with a single d orbital, and the electrons can tunnel between
the impurity and the Fermi sea. In quantum optics, the Dicke
Hamitonian �2�, which describes in a full quantized fashion
the interactions of a two-level atom with photons, also falls
into this category. Here the extended states are free-
propagating photon states, the impurity is the two-level
atom, and the tunneling term Hint describes the emission and
absorption processes. In each case, due to the interactions at
the localized impurity site, the overall system possesses
highly nontrivial and strongly correlated behaviors.

In this article we focus on the scattering properties of such
a quantum impurity, when one or more quantum particles are
incident upon it. The quantum particles are restricted to
propagate in a one-dimensional continuum. Such a one-
dimensional model is relevant to recent experiments on the
transport properties of electrons through quantum dots �3–5�,
and photons through quantum dots �6� or trapped atoms �7�.
Moreover, such a one-dimensional model can also be rel-
evant for three-dimensional scattering problems. Since the

impurity is typically far smaller in its spatial extent com-
pared with the wavelengths of incident particles, most of the
three-dimensional problems involving a single impurity can
be mapped into a one-dimensional problem, because only S
waves need to be taken into account.

It is known that many quantum impurity problems cannot
be solved using perturbation theory. Instead, since the
1980’s, significant efforts have been devoted to nonperturba-
tive approaches, such as Bethe ansatz that directly diagonal-
izes the Hamiltonian �8–13�. However, most of these papers
assume a periodic boundary condition in order to obtain ther-
modynamic information of the overall system. Only until
very recently were the Bethe ansatz approach employed to
solve for the scattering properties �14,15�. The scattering
problems involve open boundary conditions and are in fact
subtle and require very careful treatments.

Here we develop a full quantum mechanically theoretical
framework that allows one to extract scattering information
from the eigenstates of the full interacting Hamiltonian. In
particular, we emphasize the necessity of the completeness
check of the computational scheme, in order to obtain the
correct description of scattering properties. As an illustration
of our formalism, the multiphoton problem is completely
solved using this approach. The formalism, however, is gen-
eral and can be readily applied to electrons as well.

The paper is organized as follows: in Sec. II we summa-
rize some of basic results of quantum scattering theory. In
particular, we discuss the Lippman-Schwinger formalism,
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FIG. 1. �Color online� Pictorial representation of the Hamil-
tonian of Eq. �1�. The dynamics of the free quantum many particles
are described by Hp, which can have more than one incident par-
ticle. The dynamics of the impurity �the “atom”� is described by Ha.
The interactions between the quantum particles and the impurity is
described by Hint.
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with emphasis on those aspects that are relevant for our pur-
pose. In Sec. III we then discuss in details the photon Hamil-
tonian, and its connections to the Anderson Hamiltonian.
Section IV discusses the decomposition of the scattering ma-
trix �S matrix�, which enables and greatly simplifies the cal-
culations. Finally, in Sec. V, Sec. VI and VII, respectively,
we present a detailed discussion of solving the photon
Hamiltonian for its one- and two-photon transport properties.
In Sec. VIII we briefly discuss the three-particle case.

II. GENERAL ASPECTS OF THE MANY-BODY QUANTUM
IMPURITY SCATTERING PROBLEM

Before we begin the mathematical adventures of solving
for the quantum impurity scattering problem, we first provide
a brief review of relevant theoretical background.

A. Revisit of the Lippmann-Schwinger formalism

In general, quantum scattering theory deals with a Hamil-
tonian of the form H=H0+Hint, where H0 defines the free
constituents. H0, for example, can be Hp+Ha in Sec. I, de-
scribing particles and the single impurity. Hint defines the
interactions between these contituents. We will restrict our-
selves to the case where the interaction range of the quantum
impurity is finite in space.

The scattering theory aims to answer the following ques-
tion: for a given incident multiparticle state, after scattering
off the quantum impurity, what is the outgoing multiparticle
state? Long before �t→−�� and after �t→ +�� the scatter-
ing, the incoming and outgoing states are away from the
quantum impurity and accordingly are outside of the interac-
tion range. As a result, both the initial and the final states are
free particle states, governed by H0. The quantum impurity
therefore can be viewed as an intermediary inducing a map-
ping from one free state to another. The mapping is repre-
sented by the S matrix, which encodes all scattering proper-
ties.

In the Lippmann-Schwinger formalism, in order to define
the S matrix, one assumes that the interaction Hamiltonian
Hint was adiabatically “switched on” very slowly from the
distant past �t→−��, to its full strength at t=0, and will be
adiabatically “switched off” very slowly in the distant future
�t→ +�� �16–18�. That is, the interaction Hint is replaced by

Hint� �t� � e−��t�Hint, � → 0+. �2�

The limit �→0+ is to be taken last, after all calculations. The
adiabatic switching is designed to represent the situation that
the incoming particles only interact with the target for a short
period of time and then fly away �18�.

Let the interacting state of the overall system at t=0 be
�i+�. The time evolution of the interacting state is described
by U�t��i+�, where U�t� is the evolution operator related to
the time-dependent Hamiltonian H0+Hint� �t�. Following the
adiabatic switching on of the interaction aforementioned, in
the remote past �t→−��, U�t��i+� asymptotically approaches
e−iH0t�i��U0�t��i�, where �i� is a free state. Similarly, with the
adiabatic switching off of the interaction, in the remote fu-
ture �t→ +��, U�t��i+� asymptotically approaches U0�t��f i�,

where �f i� is a free state. Both �i� and �f i� are governed by the
free Hamiltonian H0. The subscript i in the state �f i� indicates
its dependence on �i�. �i� and �f i� directly correspond to the
incoming free states prepared, and outgoing free states de-
tected in the experiments. Hence they are referred to as “in”
and “out” state, respectively.

The three states �i�, �i+� and �f i�, as defined above �Fig. 2�,
satisfy the Lippmann-Schwinger equations �16,19�

�i+� = �i� +
1

E − H0 + i�
Hint�i+� , �3�

�i+� = �f i� +
1

E − H0 − i�
Hint�i+� , �4�

where 1
E−H0+i� �G0

R is the free retarded Green’s function;
while 1

E−H0−i� �G0
A is the free advanced Green’s function.

Equations �3� and �4� are applicable for energy eigenstates,
i.e., H0�i�=E�i�, H�i+�=E�i+�, and H0�f i�=E�f i�. It can be
proved that the energies of �i� and �f i� are the same as that of
�i+� �16–19�.

The S matrix, in general, is defined as

S � �
i

�f i�	i� , �5�

where the summation is taken over a complete basis 
�i�� of
the Hilbert space defined by H0. Once the S matrix is deter-
mined, one can then calculate the scattering properties for an
arbitrary incident state. For a given in-state �Xin�, the out state
is

�Xout� = S�Xin� = �
i

�f i�	i�Xin� , �6�

and thereby the probability amplitude of finding the out-
going particles to be in a state ��� is

	��Xout� = 	��S�Xin� = �
i

	��f i�	i�Xin� . �7�

In most practical scattering calculations, one starts with a
given �i� and computes �i+� from Eq. �3�, and then obtains �f i�
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FIG. 2. The evolution of the state of the system with adiabatic
switching. �i� and �f i� are free states governed by the free Hamil-
tonian, H0. When the interaction is adiabatically switched on from
the distant past �t→−�� to its full strength Hint at t=0, the state
evolves from asymptotic state U0�t→−���i� to �i+�, which is gov-
erned by the full interacting Hamiltonian H=H0+Hint. When the
interaction is adiabatically switched off in the remote future �t→
+��, the state asymptotically approaches U0�t→ +���f i�.
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from Eq. �4�. By repeating this process for a complete set of
eigenstates 
�i�� of H0, the S matrix is constructed. In this
route of constructing the S matrix, the unitarity of the S
matrix, i.e., S†S=SS†=1, is automatically guaranteed by
starting with a complete basis set 
�i�� for the free Hamil-
tonian H0.

For the impurity scattering problem that we deal with
here, however, as it turns out, we will be in an unusual situ-
ation wherein the interacting state �i+� is first obtained
through a nonperturbative Bethe-ansatz technique. In this
situation, to construct the S matrix, one has to turn around
Eqs. �3� and �4� to compute �i� and �f i� from �i+�. In doing so,
the completeness of the set 
�i�� thus obtained needs to be
explicitly checked, especially since the state �i� thus obtained
can itself possess rich and entangled structures. �A complete-
ness check for 
�i+�� typically is far more involved.� This
route of constructing the S matrix, and the completeness
check, will be explicitly carried out for photon-impurity scat-
tering problem in Sec. V for the one-photon case, and in
Secs. VI and VII for the two-photon case.

As a remark, we note that Eqs. �3� and �4� can also be
expressed using the exact Green’s functions �16–18�

�i+� = �i� +
1

E − H + i�
Hint�i� � �i� + GRHint�i� , �8�

�i+� = �f i� +
1

E − H − i�
Hint�f i� � �f i� + GAHint�f i� . �9�

Our approach therefore also provides a way to compute the
exact Green’s functions.

B. A simple example

As an illustration of the approach of constructing the full
S matrix starting from �i+�, here we give one simple example
of a one-dimensional scattering problem wherein a quantum
particle �or a wave� scatters off a � potential characterized by
V�x�=V0��x�, as shown in Fig. 3. The quantum particle is
described by the free Hamiltonian H0=−d2 /dx2.

An eigenstate �i+� of the full Hamiltonian H=H0+V�x�
can be computed straightforwardly as

	x�i+� = � eikx

2�
+ rk

e−ikx

2�
���− x� + tk

eikx

2�
��x� , �10�

where rk=
−iV0

2k+iV0
, tk= 2k

2k+iV0
, and 1+rk= tk. To compute �f i�, we

write Eq. �4� in the real-space representation

	x�i+� = 	x�f i� +� dx�	x�
1

Ek − H0 − i�
�x��V�x��	x��i+�

= 	x�f i� + 	x�
1

Ek − H0 − i�
�0�V0	0�i+� , �11�

where 	0 � i+���	0− � i+�+ 	0+ � i+�� /2= tk /2� and Ek�k2.
Using the fact that the advanced Green’s function for

H0=−d2 /dx2 is

	x�
1

Ek − H0 − i�
�x�� = +

i

2k
e−ik�x−x��, �12�

one can easily verify using Eq. �11� that the out-state �f i� is

	x�f i� = rk
e−ikx

2�
+ tk

eikx

2�
, for all x . �13�

Similarly, by using the retarded Greens’ function for H0,

	x�
1

Ek − H0 + i�
�x�� = −

i

2k
e+ik�x−x��, �14�

and Eq. �3�, the in-state �i� can be obtained as

	x�i� =
eikx

2�
, for all x . �15�

Hence, �i� is a plane wave state �k�. Since the set 
�i�� forms
a complete basis set of eigenstates of H0,

H0�k� = k2�k�, �
k

�k�	k� = 1 , �16�

the S matrix is

S = �
i

�f i�	i� = �
k

rk�− k�	k� + tk�k�	k� , �17�

with the relations 	−k�S�k�=rk and 	k�S�k�= tk.
These relations are consistent with the usual reading of

�i+� in Eq. �10�, where rk and tk are interpreted as the reflec-
tion and transmission amplitude, respectively. The deriva-
tions here put such an intuitive reading of the interacting
eigenstates on a firm theoretical foundation.

C. One- and two-particle states expressed in second-quantized
form

When describing scattering processes involving multiple
particles, it is advantageous to express the states in second-
quantized form. Moreover, similar to the example above, the
eigenstate �i+� in the Bethe ansatz calculations is best ex-
pressed in real-space representation. Here, for convenience,
we list the expressions of one- and two-particle states in the
second-quantized form using a real-space representation.

The basis for real-space representation of one- and two-
particle states are

�x� � c†�x��0”� ,

�x1,x2� �
1
2

c†�x1�c†�x2��0”� , �18�

where �0”�is vacuum. These states are normalized as

FIG. 3. A quantum particle incident upon a � potential barrier
characterized by V0��x�.
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	x�x�� = ��x − x�� ,

	x1,x2�x1�,x2�� =
1

2
���x1 − x1����x2 − x2�� � ��x1 − x2����x2 − x1��� ,

�19�

with a plus sign for bosons, and a minus sign for fermions
�	x1 ,x2��	0” � 1

2
c�x2�c�x1��. Using this basis, any two-

particle states �f� is defined as

�f� � � dx1�dx2�f�x1�,x2��
1
2

c†�x1��c
†�x2���0”� , �20�

with f�x1 ,x2�= + f�x2 ,x1� for bosons, f�x1 ,x2�=−f�x2 ,x1� for
fermions.

f�x1 ,x2� is in fact the two-particle wave function. Let the
free Hamiltonian H0 take the following form in the second
quantization

H0 =� dxc†�x�Ĥ0�x�c�x� , �21�

which is relevant to our purpose. One can show that the
second-quantized Schrödinger equation H0�f�=E�f� leads to

�Ĥ0�x1� + Ĥ0�x2��f�x1,x2� = Ef�x1,x2� , �22�

the Schrödinger equation in the first quantization form
�17,18�. Thus f�x1 ,x2� has the same properties of the two-
particle wave function when expressed in the first-
quantization form. �Note that similar relations between Eqs.
�21� and �22� hold true, for one-particle wave function, as
well as when one-particle external potential and two-particle
interaction are included �17,18�.�

Below we provide further evidence that f�x1 ,x2� is indeed
a “two-particle” wave function. For example,

	x1,x2�f� =� dx1�dx2�
1

2
���x1 − x1����x2 − x2��

� ��x1 − x2����x2 − x1���f�x1�,x2��

=
1

2
�f�x1,x2� � f�x2,x1�� = f�x1,x2� . �23�

Moreover, for any two-particle states �f� and �g�, where

�g� � � dx1�dx2�g�x1�,x2��
1
2

c†�x1��c
†�x2���0”� , �24�

with g�x1 ,x2�= �g�x2 ,x1� �plus sign for bosons and minus
sign for fermions�, one has

	f �g� =� dx1dx2dx1�dx2�f*�x1,x2�g�x1�,x2��

	
1

2
���x1 − x1����x2 − x2�� � ��x1 − x2����x2 − x1���

=� dx1dx2
1

2
�f*�x1,x2�g�x1,x2� � f*�x1,x2�g�x2,x1��

=� dx1dx2f*�x1,x2�g�x1,x2�

=� dx1dx2	f �x1,x2�	x1,x2�g� . �25�

III. THE SYSTEM AND THE HAMILTONIAN

We now apply the general ideas developed above to the
problem of photons scattering off a two-level system. Figure
4 shows the schematics of the overall system of interest. The
two-level system is embedded in a one-dimensional wave-
guide in which the photons propagate. The one-dimensional
waveguide can be, for example, a line-defect waveguide in a
photonic crystal with a complete photonic band gap. A dis-
cussion of such a problem for photonic crystal experiments is
provided in Ref. �15�. The focus here is on the formalism
itself.

The system is modeled by the Hamiltonian �20,21�

H =� dx�− ivgcR
†�x�

�

�x
cR�x� + ivgcL

†�x�
�

�x
cL�x� + V̄��x�

	�cR
†�x�
− + cR�x�
+ + cL

†�x�
− + cL�x�
+��
+ Eeae

†ae + Egag
†ag, �26�

where vg is the group velocity of the photons, and cR
†�x�

�cL
†�x�� is a bosonic operator creating a right-going �left-

going� photon at x. V̄ is the coupling constant, ag
† �ae

†� is the
creation operator of the ground �excited� state of the atom,

+=ae

†ag �
−=ag
†ae� is the atomic raising �lowering� ladder

operator satisfying 
+�n ,−�= �n , + � and 
+�n , + �=0, where
�n , � ���n� � �� � describes the state of the system with n
photons and the atom in the excited ��� or ground ��� state.
Ee−Eg���� is the transition energy.  is set to 1. This
Hamiltonian describes the situation where the propagating
photons can run in both directions, and is referred to as the
“two-mode” model.

The aim of this paper is to solve the two-photon transport
properties of this Hamiltonian. Specifically, we imagine a
physical scattering experiment, where two photons incident
upon a two-level quantum impurity embedded in a one-
dimensional waveguide. When the two photons arrive at the
impurity within a time interval comparable to the spontane-
ous emission lifetime of the impurity, one should expect that
the transport properties of the photons are strongly corre-
lated, as mediated by the quantum impurity. Here, we de-
velop the theoretical formalism to describe such a correla-
tion.

As a first step, we note that by employing the following
transformation
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ce
†�x� �

1
2

�cR
†�x� + cL

†�− x�� ,

co
†�x� �

1
2

�cR
†�x� − cL

†�− x�� , �27�

the original Hamiltonian is transformed into two decoupled
“one-mode” Hamiltonians, i.e., H=He+Ho, where

He =� dx�− i�vgce
†�x�

�

�x
ce�x� +� dxV��x��ce

†�x�
−

+ ce�x�
+� + Eeae
†ae + Egag

†ag, �28a�

Ho =� dx�− i�vgco
†�x�

�

�x
co�x� , �28b�

with �He ,Ho�=0. Ho is an interaction-free one-mode Hamil-
tonian, while He describes a nontrivial one-mode interacting

model with coupling strength V�2V̄. For notational sim-
plicity, vg is set to 1 hereafter.

As a side note, the Hamiltonian He is closely related to the
extensively studied Anderson model in condensed matter
physics. The Anderson model describes the interaction of the
conduction electrons with a single quantum impurity �1�. In
real space, the one-mode Anderson Hamiltonian takes the
following form �11,22�:

HA =� − i�



c

†�x�

�c
�x�
�x

dx +� V��x��c

†�x�cd,


+ cd,

† c
�x��dx + �




�dnd,
 + Und,↑nd,↓, �29�

where c

†�x� �c
�x�� is the creation �annihilation� operator of

the conduction electron with spin 
, while the operator cd,

†

�cd,
� creates an electron of spin 
 on the local impurity at
x=0. nd,
 is the number operator of electrons on the impurity.
V is the coupling strength. �d is the energy of the electron on
the impurity, and is degenerate for both spins.

The first term in Eq. �30� describes the kinetic energy of
the conduction electrons, and the second term describes the

interaction �“hybridization”� between the conduction elec-
trons and the impurity. These two terms closely resemble the
first two terms of He in Eq. �28a�. The last term, Und,↑nd,↓,
describes the on-site Coulomb interaction between the elec-
trons on the impurity. For an isolated impurity, this term has
three energy configurations: �i� zero occupation with energy
E0=0; �ii� single occupation by an electron of spin 
. The
energy is E1,
=�d where 
=↑ or ↓; �iii� double occupation
with a spin ↑ and a spin ↓ electron with an energy E2=2�d
+U. When U is large, double occupation is energetically un-
favorable. In the limit where U→ +�, double occupation
becomes prohibited, and the quantum impurity can only ac-
commodate at most one electron, a situation similar to the
photon Hamiltonian wherein the two-level system can at
most absorb one photon at a time. In this infinite U limit,
since there is no double occupation, the term Und,↑nd,↓ effec-
tively drops out, and the Anderson Hamiltonian HA is exactly
the same as the photon Hamiltonian He �except the spin de-
generacy�. In fact, the general procedures and formalism de-
tailed in this article for two photons can be directly applied
to the Anderson model for two electrons in the spin-singlet
state for arbitrary U �23�. Our procedures thus provide a
unified computation schemes for the transport properties of
strongly correlated photons as well as electrons.

Furthermore, when 	�
nd,
��1, i.e., in the so-called local
moment phase, the Anderson model and the Kondo Hamil-
tonian �s-d model� are equivalent �24�. Both the Anderson
model and the Kondo model have recently been applied to
nanostructures such as quantum dots and single electron
transistor �5,25–28�. This connection hints the rich structures
of the problem of strongly correlated photon transport. On
the other hand, unlike the Anderson model, where fermionic
operators describe electrons, here we have bosonic operators
describing photons. Consequently, the physics that arises
from the existence of a Fermi surface does not occur in our
system. The transport properties for multielectrons and for
multiphotons will be correspondingly different.

In the following three sections, we will provided a de-
tailed account of our solutions to the two-photon transport
properties for the Hamiltonian in Eq. �26�.

IV. RELATIONS BETWEEN THE TWO-MODE
AND ONE-MODE S MATRIX

The decomposition of the two-mode Hamiltonian H into
two decoupled one-mode Hamiltonians �Eqs. �28a� and
�28b�� greatly simplifies the calculations. In this section, we
present a strategy, followed by explicitly detailed calcula-
tions, to construct the exact S matrix of H from the scattering
properties of He and Ho.

Since both cR
†�x� and cL

†�x� can be decomposed into a lin-
ear combination of ce

†�x� and co
†�x� via Eq. �27�, any free

one-photon state ��1� can be written as

��1� = ���e + ���o, �30�

where the subscripts label the subspace spanned by ce
†�x�

�0” ,−� or co
†�x��0” ,−�, respectively. Similarly, since

cR
†�x1�cR

†�x2�, cR
†�x1�cL

†�x2�, and cL
†�x1�cL

†�x2� can all be decom-

FIG. 4. �Color online� Schematics of the system. A two-level
system is coupled to a one-dimensional continuum in which the
photons, shown as wiggly waves, propagate in each direction.
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posed into a linear combination of ce
†�x1�ce

†�x2�, ce
†�x1�co

†�x2�,
and co

†�x1�co
†�x2�, ��2� can also be written as

��2� = ���ee + ���eo + ���oo, �31�

where the subscripts label the subspace spanned by
1 /2ce

†�x1�ce
†�x2��0” ,−�, ce

†�x1�co
†�x2��0” ,−�, or

1 /2co
†�x1�co

†�x2��0” ,−�, respectively.
Letting the two-mode S matrix be S, we assert the follow-

ing decomposition relation:

S��1� = Se���e + So���o,

S��2� = See���ee + Seo���eo + Soo���oo, �32�

where Se is the one-photon S matrix in the o subspace gov-
erned by Ho, So=1, the identity operator, is the one-photon S
matrix in the o subspace governed by Ho. See is the two-
photon s matrix in the ee subspace governed by He, Seo
=SeSo, and Soo=1. Once the terms on the right-hand side of
Eq. �33� are computed, S can be constructed correspond-
ingly. We will calculate Se in the next section. Obtaining
See���ee involves nontrivial calculations, and will be done
via the Bethe-ansatz approach in Sec. VI.

To prove the decomposition relation of the two-mode S
matrix �Eq. �32��, we start from the asymptotic conditions
stated in Sec. II A which relates the in state �i�, out state �f i�,
and the interacting eigenstate �i+�,

U�t��i+� ——→
t→−�

U0�t��i� , �33a�

U�t��i+� ——→
t→+�

U0�t��f i� , �33b�

where U0�t��e−iH0t is the unitary evolution operators for H0,
while U�t��e−iHt is the unitary evolution operator for H.
Combining Eqs. �33a� and �33b�, one then has

�f i� = lim
tf→+�

lim
ti→−�

�U0†�tf�U�tf���U†�ti�U0�ti���i� � S�i� .

�34�

We note this form of the S matrix is equivalent to that of Eq.
�5� and both have exactly the same matrix elements. Also,
when �i� is an eigenstate of H0, Eq. �34� directly gives rise to
the Lippmann-Schwinger formalism �19�.

To proceed, one recognizes that the photon Hamiltonian
H, Eq. �26�, can be separated as H=He+Ho �Eq. �28��, and
so is the free Hamiltonian H0=H0

o+H0
e, where

H0
e =� dx�− i�vgce

†�x�
�

�x
ce�x� + Eeae

†ae + Egag
†ag,

�35a�

H0
o =� dx�− i�vgco

†�x�
�

�x
co�x� , �35b�

with �H0
e ,H0

o�=0. It thus is easily seen that the S matrix in
Eq. �34� can be factored as

S = lim
tf→+�

lim
ti→−�

�Ue
0†�tf�Ue�tf���Ue

†�ti�Ue
0�ti���Uo

0†�tf�Uo�tf��

	�Uo
†�ti�Uo

0�ti�� � SeSo, �36�

where

Ue,o�t� � e−iHe,ot, Ue,o
0 �t� � e−iH0

e,ot. �37�

The factoring of the S matrix also occurs in situations such as
when the Hamiltonian can be separated into degrees of free-
dom of center of mass and relative variables, or the spin and
spatial coordinates �16�.

The decomposition relation, Eq. �32�, follows naturally as
a consequence of the factoring of the S matrix. For the one-
photon case, we have

S�i� = SeSo�i�e + SeSo�i�o � Se�i�e + So�i�o, �38�

where Se and So take the form as in Eq. �5�, with �i� restricted
to one-photon “e” and “o” subspaces. In this derivation, we
have used Se�i�o= �i�o and So�i�e= �i�e. Also, for our case, So
=So=1, as can be seen from Eq. �36�, since Ho=H0

o.
For the two-photon case, we have

S�i� = SeSo�i�ee + SeSo�i�eo + SeSo�i�oo

= Se�i�ee + SeSo�i�eo + So�i�oo

� See�i�ee + Seo�i�eo + Soo�i�oo, �39�

where, again, both See, Seo=SeSo, can be calculated using
Eqs. �3�–�5�, and Soo=1.

With the decomposition relation established, we now con-
centrate on constructing Se and See for the nontrivial He in
the next two sections. And finally, we will use the solutions
of He to construct the two-mode two-photon scattering solu-
tions of H=He+Ho in Sec. VII.

V. ONE-PHOTON S MATRIX: Se

As a preparation of the two-photon solution, we first
briefly summarize the one-photon solution for the Hamil-
tonian He, which is needed for constructing the two-photon S
matrix later.

One could readily check that the full interacting one-
photon eigenstate for He takes the form �20,21�

�k+�e ��� dx� eikx

2�
���− x� + tk��x��ce

†�x�� + ek
+��0” ,− �

� � dx��x�ce
†�x��0” ,− � + ek
+�0” ,− � , �40�

where

tk �
k − � − i�/2
k − � + i�/2

. �41�

The single photon thus experiences resonance when its en-
ergy k is close to the transition energy � of the atom. �
�V2 characterizes the width of the resonance and is related
to the spontaneous emission lifetime of the atom, and ek

=V /2��k−�+ i� /2� is the excitation amplitude. �0” ,−� is
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the state where there is no photon, and the atom is in the
ground state.

The normalized in-state �k�e and the out-state �fk�e, con-
structed from �k+�e, as shown in Appendix A1, are

�k�e �� dx�i
k�x�ce

†�x��0” ,− � ,

�fk�e �� dx� f
k�x�ce

†�x��0” ,− � , �42�

with

�i
k�x� = e	x,− �fk�e =

1
2�

eikx,

� f
k�x� = e	x,− �fk�e = tk� 1

2�
eikx� = tk�i�x� , �43�

for all x. The normalization condition is

e	k�k��e = ��k − k�� . �44�

This demonstrates that one can “read off” the in-state one-
photon wave function �i�x�, and the out-state one-photon
wave functions � f�x�, respectively, from the “incoming” �x
�0� and the “outgoing” �x�0� part of the photon wave
function, ��x�.

Since the set 
�k�e� forms a complete set in the “e” sub-
space, the one-photon S matrix in the “e” subspace ��Se�
therefore is

Se � �
k

�fk�ee	k� = �
k

tk�k�ee	k�

= �
k
� � dxdx��tk�i

k�x��i
k*�x����ce

†�x��0” ,− �	0” ,− �ce�x��� .

�45�

For any two one-particle states

���e �� dx��x�ce
†�x��0” ,− � ,

���e �� dx��x�ce
†�x��0” ,− � , �46�

the transition amplitude is thereby given by

e	��Se���e = �
k

tke	��k�ee	k���e

= �
k
� � dxdx�tk�

*�x��i
k�x��i

k*�x����x�� .

�47�

We now proceed to solve for the one-photon properties
for the two-mode Hamiltonian H. Since Ho describes free
propagating photons, the one-mode one-photon S matrix in
the “o” sector is simply an identity operator in the o sub-
space, i.e.,

So = 1 = �
k

�k�oo	k� . �48�

According to the decomposition relation, Eq. �32�, the two-
mode one-photon S matrix is

S = �
k

tk�k�ee	k� + �
k

�k�oo	k� . �49�

For a normalized in state

�k��R �� dx
eik�x

2�
cR

†�x��0”�

=� dx
eik�x

2�

1
2

ce
†�x��0”� +� dx

eik�x

2�

1
2

co
†�x��0”�

=
1
2

�k��e +
1
2

�k��o, �50�

the out-state is

S�k��R =
1
2

�Se�k��e + So�k��o�

=
1
2��k

tk�k�ee	k�k��e + �
k

�k�oo	k�k��o�
=

1
2

�tk��k��e + �k��o�

=
1

2
�tk� + 1��k��R +

1

2
�tk� − 1��− k��L

� t̄k��k��R + r̄k��− k��L, �51�

where the two-mode transmission amplitude t̄k� and reflec-
tion amplitude r̄k� are

t̄k� =
1

2
�tk� + 1� =

k� − �

k� − � + i�/2
,

r̄k� =
1

2
�tk� − 1� =

− i�/2
k� − � + i�/2

, �52�

respectively, in agreement with previous calculations
�20,21�. In the derivations, we have used

�k��e =� dx
eik�x

2�
ce

†�x��0” ,− �

=� dx
eik�x

2�

1
2

�cR
†�x� + cL

†�− x���0” ,− �

=
1
2

��k��R + �− k��L�

�k��o =
1
2

��k��R − �− k��L� , �53�

and �=V2=2V̄2.
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Figure 5 plots the transmission and reflection spectrum.
On resonance �k=��, �t̄k�2 is 0, while �r̄k�2 is 1, and the par-
ticle is 100% reflected. Note that the effect of the spontane-
ous emission of the two-level system is explicitly included.
In the one-dimensional geometry, the spontaneous emission
therefore does not represent a loss mechanism, and is used
here to control the coherent transport property of a single
photon.

VI. TWO-PHOTON CASE: CONSTRUCTING See

Having solved the one-photon case, we now proceed to
construct the two-photon S matrix of the two-mode Hamil-
tonian H. Following the discussions in Eq. �32� in Sec. IV,
the key to this is to construct the two-photon S matrix, See,
for He, which we will undertake in this section.

Before we set out to construct the S matrix, See, we com-
ment on some of the general aspects of two-photon problem
that would be useful for this effort. As emphasized before in
Sec. II A, the See matrix is a mapping in the free two-photon
Hilbert space. This Hilbert space, in its real-space represen-
tation, consists of all symmetric functions of the coordinates
of the photons x1, x2, and is spanned by a complete basis

�Sk,p�ee :k� p� defined as

�Sk,p�ee �� � dx1dx2Sk,p�x1,x2�
1
2

ce
†�x1�ce

†�x2��0” ,− � ,

�54�

with

ee	x1,x2�Sk,p�ee = Sk,p�x1,x2�

�
1

2�

1
2

�eikx1eipx2 + eikx2eipx1�

=
2

2�
eiExc cos��x� , �55�

where

E = k + p �56�

is the total energy of the photon pair,

xc � �x1 + x2�/2,

x � x1 − x2, �57�

are the center-of-mass coordinate and the relative coordinate,
respectively.

� � �k − E/2� = �k − p�/2, �58�

measures the energy difference between two photons. The
completeness of 
�Sk,p�ee :k� p� is expressed by

1 = �
−�

�

dp�
−�

p

dk�Sk,p�eeee	Sk,p�

=
1

2
�

−�

�

dp�
−�

+�

dk�Sk,p�eeee	Sk,p� , �59�

using the fact that �Sp,k�= �Sk,p�. As a side note, in computa-
tions related to the two-photon Hilbert space below, we will
adopt two equivalent set of variables: �k , p�, with k� p, and
�� ,E�, with ���k− p� /2 and E�k+ p, and use the two sets
of variables interchangeably. The Jacobian between the two
sets is 1. Thus,

�
−�

�

dp�
−�

p

dk = �
−�

�

dE�
−�

E/2

dk = �
−�

�

dE�
−�

0

d� . �60�

Alternatively, the same Hilbert space can instead be
spanned by another basis 
�Ak,p�ee :k� p� defined as

�Ak,p�ee �� � dx1dx2Ak,p�x1,x2�
1
2

ce
†�x1�ce

†�x2��0” ,− � ,

�61�

with

ee	x1,x2�Ak,p�ee = Ak,p�x1,x2�

�
1

2�

1
2

sgn�x��eikx1eipx2 − eikx2eipx1�

=
2i

2�
sgn�x�eiExc sin��x� , �62�

where sgn�x����x�−��−x� is the sign function. By defini-
tion, one has �Ap,k�ee=−�Ak,p�ee. We emphasize that, while
both 
�Sk,p�ee :k� p� and 
�Ak,p�ee :k� p� are complete �29�,
arbitrary linear combination 
ak,p�Sk,p�ee+bk,p�Ak,p�ee :k� p�
may not be. The properties of the two complete sets

�Sk,p�ee :k� p� and 
�Ak,p�ee :k� p� are summarized in Ap-
pendix B. Here we only emphasize that the two states
�Sk1,p1

�ee and �Ak2,p2
�ee are not orthogonal to each other.

We now proceed to construct See as follows: we start in
Sec. VI A by deriving the real-space equations of motion
from the Schrödinger equation He���=E���. In Sec. VI B,
we then solve the real-space equations of motion using the
standard Bethe-ansatz approach to obtain a class of eigen-
states of the interacting Hamiltonian He. In Sec. VI C we
obtain the corresponding “in” and “out”states from the inter-
acting eigenstates using the Lippmann-Schwinger formalism
discussed in Sec. II A. Through a completeness check, we

FIG. 5. The single-photon transmission and the reflection spec-
trum. �t̄k�2 is indicated by the black curve, and �r̄k�2 is denoted by the
gray curve. The full width at half maximum for �r̄k�2 is �.
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show that the in states thus obtained are in fact not complete.
Instead, in order to span the two-photon free Hilbert space,
one must supplement it with another class of states: a two-
photon bound state. In Sec. VI D we show that the two-
photon bound state is also an eigenstate of See. This, together
with the completeness check upon the two classes of solu-
tions, allow us to determine the exact form of See. Finally, in
Sec. VI E, we discuss some of the properties of See.

A. Equations of motion and boundary conditions in real space

An eigenstate for He has the general form

�i+� � ���

� �� dx1dx2g�x1,x2�
1
2

ce
†�x1�ce

†�x2�

+� dxe�x�ce
†�x�
+��0” ,− � , �63�

where e�x� is the probability amplitude distribution of one
photon while the atom in the excited state. Due to the boson
statistics, the wave function satisfies g�x1 ,x2�= +g�x2 ,x1�,
and is continuous on the line x1=x2.

From He���=E���, by equating the coefficients of
ce

†ce
†�0” ,−� and ce

†
+�0” ,−�, respectively, we obtain the equa-
tions of motion

�− i
�

�x1
− i

�

�x2
− E�g�x1,x2� +

V
2

�e�x1���x2� + e�x2���x1��

= 0, �64a�

�− i
�

�x
− �E − ���e�x� +

V
2

�g�0,x� + g�x,0�� = 0,

�64b�

where g�0,x��1 /2�g�0−,x�+g�0+,x��=g�x ,0��1 /2�g�x ,
0−�+g�x ,0+��. The functions g�x1 ,x2� and e�x� are piecewise
continuous. For any such piecewise continuous function f�x�,
the derivative of f�x� is the ordinary derivative plus contri-
butions from the jump discontinuities. If x0 is such a discon-
tinuity, we add a term �30� �limx→x0

+ f�x�−limx→x0
− f�x����x

−x0�.
The interactions occur on the coordinate axes x1=0 and

x2=0. Applying the equations of motions on the boundaries
between adjacent quadrants gives the following boundary
conditions on the boundary of quadrants II and III �x1�0�:

− i�g�x1,0+� − g�x1,0−�� +
V
2

e�x1� = 0, �65a�

�− i
�

�x1
− �E − ���e�x1� +

V
2

�g�x1,0+� + g�x1,0−�� = 0;

�65b�

and on the boundary of quadrants II and I �x2�0�:

− i�g�0+,x2� − g�0−,x2�� +
V
2

e�x2� = 0, �66a�

�− i
�

�x2
− �E − ���e�x2� +

V
2

�g�0+,x2� + g�0−,x2�� = 0.

�66b�

These boundary conditions must be supplemented by a fur-
ther condition

e�0−� = e�0+� , �67�

which arises directly from Eq. �64b� and ensures the self-
consistency. When there are more than two photons, this
condition gives rise to the Yang-Baxter relation �11,31�.

The x1 axis, x2 axis, and the line x1=x2 dissect the x1-x2
plane into six regions �Fig. 6�. When g�x1 ,x2� is given in
either one of the six regions, one could use the boundary
conditions to obtain g�x1 ,x2� in all other regions.

For example, at the boundary between quadrant II and III,
using Eq. �65a�, we have

g�x1,0+� = g�x1,0−� − i
V
2

e�x1� . �68�

Substituting this into Eq. �65b�, one obtains

− i
�

�x1
e�x1� = ��E − �� + i

�

2
�e�x1� − 2Vg�x1,0−� ,

�69�

which has the solution

e�x1� = ce+i��E−��+i�/2�x1 + ie+i��E−��+i�/2�x1

	�
−�

x1

e−i��E−��+i�/2�x�− 2Vg�x,0−��dx , �70�

where c is an integration constant. By requiring e�x� to be
zero when the coupling strength V is zero, we have c=0.
Hence

III

III IV

x2 > x1

x1 > x2

x1

x2

g(x1 x2),

2

3

1

6

54

FIG. 6. The x1 axis, x2 axis, and x1=x2 dissect the x1-x2 coor-
dinate plane into six regions, labeled by the numbers in circle.
When given g�x1 ,x2� in region 3 �lightly shaded area�, the boundary
condition is imposed to obtain g�x1 ,x2� in other regions, as denoted
by the arrows. g�x1 ,x2� in x1�x2 region �darkly shaded area� is
obtained from g�x1 ,x2� in x2�x1 region by the boson statistics.
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e�x1� = ie+i��E−��+i�/2�x1�
−�

x1

e−i��E−��+i�/2�x�− 2Vg�x,0−��dx .

�71�

B. Constructing eigenstates of He using Bethe ansatz

We now solve the two-photon equations of motions of He
in Sec. VI A using the Bethe ansatz. The Bethe ansatz usu-
ally postulates that the eigenstates are superpositions of a
few extended plane waves when all particles are away from
the impurity �32,33�. We shall also call these solutions of He
the Wiegmann-Andrei states, after the two authors who
worked out similar solutions for the Kondo model �8,9� and
for the Anderson model �11�.

For the two-particle case, the Bethe ansatz postulates that
in regions 1, 2, and 3 �Fig. 6�, the two-photon wave function
has the form

g�x1,x2� =�
B3eikx1+ipx2 + A3eipx1+ikx2,

in region 3 �x1 � x2 � 0� ,

B2eikx1+ipx2 + A2eipx1+ikx2,

in region 2 �x1 � 0,x2 � 0� ,

B1eikx1+ipx2 + A1eipx1+ikx2,

in region 1 �x2 � x1 � 0� .

� �72�

The wave function in other regions is defined by boson sym-
metry. The goal of the computations, based upon the Bethe
ansatz, is then to check that such a form indeed satisfies the
appropriate equations of motion, and in the process of check-
ing, to determine all constraints relating the A’s and B’s co-
efficients. Since by construction, g�x1 ,x2� already satisfies
the equations of motion in regions 1, 2, and 3,

�− i
�

�x1
− i

�

�x2
− E�g�x1,x2� = 0, �73�

for x1�0 and x2�0, all we need is to use the boundary
conditions �Eqs. �65� and �66�� and the self-consistency con-
dition �Eq. �67�� to determine the constraints on A’s and B’s.

At the boundary between quadrant II and III, since in
region 3 �x1�x2�0�, g�x1 ,x2�=B3eikx1+ipx2 +A3eipx1+ikx2, one
then has

g�x1,0−� = B3eikx1 + A3eipx1. �74�

Therefore, using Eq. �71�, we have, for x�0,

e�x� = 2V� B3eikx

p − � + i�/2
+

A3eipx

k − � + i�/2� . �75�

Plugging e�x� to Eq. �68�, we obtain

g�x1,0+� = g�x1,0−� − i
V
2

e�x1�

= B3eikx1 + A3eipx1 − i
V
2

�2V�

	� B3eikx1

p − � + i�/2
+

A3eipx1

k − � + i�/2�

= B3eikx1
p − � − i�/2
p − � + i�/2

+ A3eipx1
k − � − i�/2
k − � + i�/2

= tpB3eikx1 + tkA3eipx1, �76�

and therefore, in the whole quadrant II �x1�0, x2�0�, using
the Bethe ansatz form of g�x1 ,x2� �Eq. �72��, we have

B2 = tpB3, A2 = tkA3. �77�

One can understand this expression by realizing that when
going from quadrant III to quadrant II, x1 is unchanged,
while x2 :0−→0+. Consequently the part of the wave func-
tion B3eikx1+ipx2 acquires a transmission coefficient tp, and the
part of the wave function A3eipx1+ikx2 acquires a transmission
coefficient tk.

In addition, from the expression of e�x�0� �Eq. �75��, we
have

e�0−� = 2V� B3

p − � + i�/2
+

A3

k − � + i�/2� . �78�

We apply the same procedures to the next boundary. The
boundary conditions on the boundary of quadrants II and I
�x2�0� are �reproduced here from Eq. �66��

− i�g�0+,x2� − g�0−,x2�� +
V
2

e�x2� = 0,

�− i
�

�x2
− �E − ���e�x2� +

V
2

�g�0+,x2� + g�0−,x2�� = 0.

As previously, from the first equation, we have

g�0+,x2� = g�0−,x2� − i
V
2

e�x2� . �79�

Substitute into the second equation, we obtain

− i
�

�x2
e�x2� = ��E − �� + i

�

2
�e�x2� − 2Vg�0−,x2� .

�80�

Since

g�0−,x2� = tpB3eipx2 + tkA3eikx1, �81�

we have, for x�0,

e�x� = 2V� tpB3eipx

k − � + i�/2
+

tkA3eikx

p − � + i�/2� �82�

and

g�0+,x2� = g�0−,x2� − i
V
2

e�x2�

= �tpB3eipx2 + tkA3eikx1�

+ �− i��� tpB3eipx2

k − � + i�/2
+

tkA3eikx2

p − � + i�/2�
= �1 −

i�

k − � + i�/2�tpB3eipx2
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+ �1 −
i�

p − � + i�/2�tkB3eikx2

= tptk�B3eipx2 + A3eikx2�: �83�

Therefore, in region I �x2�x1 region of quadrant I�, using the
Bethe ansatz again,

B1 = tptkB3, A1 = tptkA3. �84�

One can understand this expression by realizing that when
going from quadrant II to quadrant I, x2 is unchanged, while
x1 :0−→0+. Consequently the part of the wave function
tpB3eikx1+ipx2 acquires a transmission coefficient tk, and the
part of the wave function tkA3eipx1+ikx2 acquires a transmis-
sion coefficient tp.

Also, from the expression of e�x�0� �Eq. �82��, one has

e�0+� = 2V� tpB3

k − � + i�/2
+

tkA3

p − � + i�/2� . �85�

Combining Eqs. �78� and �85�, together with the self-
consistency condition e�0−�=e�0+� �Eq. �67��, we can deter-
mine the ratio of B3 /A3 from

� B3

p − � + i�/2
+

A3

k − � + i�/2�
= � tpB3

k − � + i�/2
+

tkA3

p − � + i�/2� , �86�

which simplifies to

B3

A3
=

k − p − i�

k − p + i�
. �87�

As can be seen from Eq. �63�, the two-photon wave function
g�x1 ,x2� and the amplitude e�x� completely determine the
interacting eigenstate of He. Figure 7 summarizes the two-
photon wave function g�x1 ,x2� in the entire x1-x2 plane, as
well as e�x� for all x.

We now need to extract the information of the in and out
states from the interacting eigenstate �i+�. As shown in Ap-
pendix A, the in-state �i� and the out-state �f i� are

�i� � � dx1dx2gi�x1,x2�
1
2

ce
†�x1�ce

†�x2��0” ,− � ,

�f i� � � dx1dx2gf�x1,x2�
1
2

ce
†�x1�ce

†�x2��0” ,− � , �88�

where, for all x1 and x2,

gi�x1,x2� = g�x1 � 0,x2 � 0� �g�x1,x2� in quadrant III� ,

gf�x1,x2� = g�x1 � 0,x2 � 0� �g�x1,x2� in quadrant I� .

�89�

Note this result is consistent with the intuitive notion that the
in state is the “incoming” part, i.e., the x1 ,x2�0 region, of
the full interacting state; while the out state is the “outgoing”
part, i.e., the x1 ,x2�0 region, of the full interacting state.

The in and out states, when explicitly spelled out in real

space, have nontrivial structures. g�x1 ,x2� in the full quadrant
III �x1 ,x2�0� is

g�x1,x2� = �A3eikx1+ipx2 + B3eipx1+ikx2���x1 − x2�

+ �B3eikx1+ipx2 + A3eipx1+ikx2���x2 − x1�

� ��k − p + i��eikx1+ipx2 + �k − p − i��eipx1+ikx2�

	��x1 − x2� + ��k − p − i��eikx1+ipx2

+ �k − p + i��eipx1+ikx2���x2 − x1�

= �k − p��eikx1+ipx2 + eikx2+ipx1�

+ i��eikx1+ipx2 − eikx2+ipx1�sgn�x1 − x2�

� �k − p�Sk,p�x1,x2� + i�Ak,p�x1,x2� , �90�

where Sk,p�x1 ,x2� and Ak,p�x1 ,x2� are defined in Eqs. �55� and
�62�, respectively. Therefore, in the entire x1-x2 plane, the
in-state photon wave function gi�x1 ,x2� is

gi�x1,x2� � �k − p�Sk,p�x1,x2� + i�Ak,p�x1,x2� . �91�

Similarly, in the entire x1-x2 plane, the out-state photon wave
function gf�x1 ,x2� is

gf�x1,x2� � tktp��k − p�Sk,p�x1,x2� + i�Ak,p�x1,x2�� . �92�

Note that g�x1 ,x2� is equal to zero when k= p in the entire
x1-x2 plane.

C. In and out states from the Wiegmann-Andrei state

Following the discussions of the previous section, we
therefore define

FIG. 7. The wave function of the interacting eigenstate �i+� of
He as constructed from the standard Bethe-ansatz approach. The
shaded region is obtained by symmetry, i.e., g�x2 ,x1�= +g�x1 ,x2�.
Also shown is e�x� for all x.
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�W̃k,p�ee � �k − p��Sk,p�ee + i��Ak,p�ee, �93�

and discuss some of the general properties of �W̃k,p�ee. These
states are obviously important for the scattering problems,
since they are the eigenstates of the S matrix, See, with ei-
genvalues tktp, as can be seen from Eqs. �91� and �92�. Each
state therefore is directly analogous to a so-called “scattering
channel” in the partial wave expansion �16,19�. Below we
will normalize these states and show that they are orthogonal
to each other �as expected, since they are, after all, eigen-
states of the S matrix with different eigenvalues�. Most im-

portantly, and perhaps surprisingly, even though they directly
arise from the standard Bethe-ansatz approach, they are in
fact incomplete and thereby cannot span the free two-photon
Hilbert space.

From the definition, Eq. �93�, it is clear that

�W̃k,p�ee = 0, when k = p , �94a�

�W̃p,k�ee = − �W̃k,p�ee, for any k,p . �94b�

The normalization and the check for orthogonality is
straightforward:

ee	W̃k1,p1
�W̃k2,p2

�ee = �k1 − p1��k2 − p2�ee	Sk1,p1
�Sk2,p2

�ee

+ �2
ee	Ak1,p1

�Ak2,p2
�ee + �k1 − p1��i�� ee	Sk1,p1

�Ak2,p2
�ee + �k2 − p2��− i�� ee	Ak1,p1

�Sk2,p2
�ee

= �k1 − p1��k2 − p2����k1 − k2���p1 − p2� + ��k1 − p2���p1 − k2��

+ �2���k1 − k2���p1 − p2� − ��k1 − p2���p1 − k2��

= ��k1 − p1��k2 − p2� + �2���k1 − k2���p1 − p2� + ��k1 − p1��k2 − p2� − �2���k1 − p2���p1 − k2� , �95�

where we have used the overlap between various �S�ee and
�A�ee states, as provided in Appendix B. One thus is led to the
definition of �Wk,p�ee:

�Wk,p�ee �
1

�k − p�2 + �2
�W̃k,p�ee

=
1

4�2 + �2
�W̃k,p�ee

=
1

4�2 + �2
�2��Sk,p�ee + i��Ak,p�ee� , �96�

with �Wk,p�ee being normalized to

ee	Wk1,p1
�Wk2,p2

�ee = ��k1 − k2���p1 − p2� , �97�

when k1� p1 and k2� p2, or k1� p1 and k2� p2. For other
cases, one has

ee	Wk1,p1
�Wk2,p2

�ee = − ��k1 − p2���p1 − k2� , �98�

which arises from Eq. �94b�.
Using the normalized �Wk,p�, the in state and out state thus

are

�i� = �Wk,p�ee �� dx1dx2Wk,p�x1,x2�
1
2

ce
†�x1�ce

†�x2��0” ,− � ,

�f i� = tktp�Wk,p�ee

=� dx1dx2tktpWk,p�x1,x2�
1
2

ce
†�x1�ce

†�x2��0” ,− � ,

�99�

with

Wk,p�x1,x2� = ee	x1,x2�Wk,p�ee

�
1

�k − p�2 + �2
��k − p�Sk,p�x1,x2�

+ i�Ak,p�x1,x2��

=
2

2�
eiExc�2� cos��x� − � sgn�x�sin��x�� .

�100�

In describing the scattering process, we will need to find
all the eigenvalues of the S matrix. The set of these eigen-
states then span the free two-photon Hilbert space. To check
whether 
�Wk�,p��ee :k�� p�� is complete, one could start with
an arbitrary state, for example, �Sk,p�ee, project out all �Wk�,p��
components, and calculate

��k,p� � �Sk,p�ee − �
k��p�

ee	Wk�,p��Sk,p�ee�Wk�,p��ee.

�101�

If the set 
�Wk�,p��ee :k�� p�� were complete, such a compu-
tation should yield ��k,p�=0 for arbitrary k and p. This com-
putation is performed in Appendix C. Surprisingly, indepen-
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dent of the choice of �Sk,p�ee, the computation results in
��k,p�� �BE�ee, where

�BE�ee �� dx1dx2BE�x1,x2�
1
2

ce
†�x1�ce

†�x2��0” ,− � ,

�102�

with

ee	x1,x2�BE�ee = BE�x1,x2� �
�

4�
eiExc−��/2��x�, �103�

and normalized as

ee	BE��BE�ee = ��E − E�� , �104�

where xc��x1+x2� /2 and x�x1−x2. The defining feature of
BE�xc ,x� is that, when x→ ��, �BE�xc ,x� � →0, and there-
fore �BE� is a two-photon bound state.

The set 
�Wk,p� : ∀k� p�� 
�BE�� together forms a com-
plete basis of states, and any symmetric functions of x1 and
x2 can be expanded using 
Wk,p�x1 ,x2� ,BE�x1 ,x2��. The com-
pleteness of this basis is crucial for discussing the transport
properties of scattering problems.

D. Two-photon bound state is an eigenstate of the S matrix

We now show that the two-photon bound state is an
eigenstate of the S matrix, with eigenvalue

tE =
E − 2� − 2i�

E − 2� + 2i�
. �105�

This therefore concludes the calculations of the S matrix.
Suppose that in region 3 �x1�x2�0�, g�x1 ,x2� takes the

following form

g�x1,x2� = eiExc+��/2�x = ei�E−i��x1/2ei�E+i��x2/2. �106�

We then apply the same procedures as previously to obtain
g�x1 ,x2� in any other regions. One first has

g�x1 � 0,0−� = eiEx1/2+�x1/2. �107�

With the same boundary conditions between quadrant III and
quadrant II, we have

e�x1 � 0� = ie+i�E−�+i�/2�x1

	�
−�

x1

e−i�E−�+i�/2�x��− 2V�eiEx�/2+�x�/2dx�

=
22V

E − 2� + 2i�
eiEx1/2+�x1/2, �108�

where we have used V2=�. Note that the resonance occurs at
E=2 �. This is in contrast to the single particle excitation in


�W̃k,p�ee� where the resonances occur at k=� or p=�.
Proceed as before,

g�x1,0+� = − i
V
2

e�x1� + g�x1,0−�

= − i
V
2

22V

E − 2� + 2i�
eiEx1/2+�x1/2 + eiEx1/2+�x1/2

=
E − 2�

E − 2� + 2i�
eiEx1/2+�x1/2. �109�

Therefore, in quadrant II �x1�0�x2�, in accord with the
Bethe ansatz, we postulate

g�x1 � 0,x2 � 0� =
E − 2�

E − 2� + 2i�
eiExc+�x/2. �110�

To extend to quadrant I, we first obtain g�0−,x2�0�:

g�0−,x2 � 0� =
E − 2�

E − 2� + 2i�
eiEx2/2−�x2/2, �111�

thus

e�x2 � 0� = ie+i�E−�+i�/2�x2�
−�

x2

e−i�E−�+i�/2�x�

	�− 2V�
E − 2�

E − 2� + 2i�
eiEx�/2−�x�/2dx�

=
22V

E − 2� + 2i�
eiEx2/2−�/2x2. �112�

From this, we obtain

g�0+,x2 � 0� = − i
V
2

e�x2� + g�0−,x2�

= �−
2i�

E − 2� + 2i�

+
E − 2�

E − 2� + 2i�
�eiEx2/2−�x2/2

=
E − 2� − 2i�

E − 2� + 2i�
eiEx2/2−�x2/2, �113�

and thus, in region I �x2�x1�0�, applying the Bethe ansatz
again,

g�x1,x2� =
E − 2� − 2i�

E − 2� + 2i�
eiExc+�x/2. �114�

Therefore, in the full quadrant I,

g�x1 � 0,x2 � 0� =
E − 2� − 2i�

E − 2� + 2i�
eiExc+�x/2��− x�

+
E − 2� − 2i�

E − 2� + 2i�
eiExc−�x/2��x�

=
E − 2� − 2i�

E − 2� + 2i�
eiExc−��x�/2 � tEeiExc−��x�/2.

�115�

While in the full quadrant III,
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g�x1 � 0,x2 � 0� = eiExc+�x/2��− x� + eiExc−�x/2��x�

= eiExc−��x�/2. �116�

Finally, note that for the two-photon bound state, the self-
consistency condition e�0−�=e�0+� is automatically satisfied.
This proves that See�BE�ee= tE�BE�ee, and therefore �BE�ee is an
eigenstate of See. Figure 8 summarizes g�x1 ,x2� in the entire
x1-x2 plane, as well as e�x� for all x, for the two-photon
bound state �BE�.

E. The S matrix for See

From the definition of the S matrix, See=��Xin��Xout�	Xin�,
the two-photon one-mode S matrix therefore is

See � �
k�p

tktp�Wk,p�eeee	Wk,p� + �
E

tE�BE�eeee	BE� .

�117�

For �Xin�= �Wk,p�ee, or �BE�ee, the out-state �Xout�= tktp�Wk,p�ee,
and tE�BE�ee, respectively.

It should be explicitly pointed out that the S matrix de-
fined above, Eq. �117�, describes the physical scattering pro-
cess that the photon in state is mapped to the out state via
�Xout�=See�Xin�. This definition of the S matrix is exactly the
same as that in the usual scattering theory. In the literatures
on Bethe ansatz, unfortunately, sometimes a different defini-
tion is adopted �11,22�. There, the S matrix is defined to be
Eq. �87�, the relative phase of the two plane waves of the
wave function in region 3.

Below we summarize several computations that are
needed for two-mode calculations later. The details for these
computations are provided in Appendix D. We first mention

the results of ee	Sk2,p2
�See�Sk1,p1

�ee, the momentum distribu-
tion of the out-state ee	Sk2,p2

�Xout� for in-state �Sk1,p1
�ee in ee

subspace:

ee	Sk2,p2
�See�Sk1,p1

�ee

= tk1
tp1

��k1 − k2���p1 − p2� + tk1
tp1

��k1 − p2���k2 − p1�

+ B��E1 − E2� , �118�

where the first two terms of product of � functions indicate
the uncorrelated part of the S matrix, which are simply the
direct and exchange terms of each individual incident mo-
mentum, and can also be written as tk1

tp1
���1−�2���E1

−E2�+ tk1
tp1

���1+�2���E1−E2�. The third term

B =
16i�2

�

E1 − 2� + i�

�4�1
2 − �E1 − 2� + i��2��4�2

2 − �E1 − 2� + i��2�
,

�119�

in contrast, indicates the strong correlations between the two
photons, and manifests as the background fluorescence due
to the scattering. Note that this term does not conserve indi-
vidual energy of each photon, but only the total energy.
When �1��2, �B�E1 ,�1 ,�2��2 is the probability density for
the outgoing photon pair in �E1 ,�2� state, when the incoming
photon pair is in �E1 ,�1� state.

The uncorrelated part in Eq. �118� comes entirely from the
first term in Eq. �117�, �k�ptktp�Wk,p�ee ee	Wk,p�; while the
correlated part in Eq. �118�, B��E1−E2�, has contributions
from both �Wk,p� and �BE� in Eq. �117�.

For the same in-state �Xin�= �Sk1,p1
�ee= �SE1,�1

�ee, one could
also write down the real-space representation of the out state:

ee	xc,x�Xout�ee = ee	xc,x�See�Xin�

= �
E2,�2�0

SE2,�2
�xc,x�ee	SE2,�2

�See�SE1,�1
�ee

= �
E2,�2�0

SE2,�2
�xc,x��tk1

tp1ee	SE2,�2
�SE1,�1

�ee

+ B��E2 − E1��

= tk1
tp1

SE1,�1
�xc,x� + �

�2�0
BSE1,�2

�xc,x�

= eiE1xc
2

2�
�tk1

tp1
cos��1x�

−
4�2

4�1
2 − �E1 − 2� + i��2ei�E1−2���x�/2−��x�/2�

�120�

which takes the form eiE1xc	x ���, where 	x ��� is the wave
function in the relative coordinate x. The deviation of the
out-state wave functions from that of interaction-free case is
large when �1� � �E1 /2−��, i.e., when at least one of the
incident photons is close to resonance.

FIG. 8. The wave function of the interacting eigenstate �i+� of
He cosisting of two-photon bound state. The shaded region is ob-
tained by symmetry, i.e., g�x2 ,x1�= +g�x1 ,x2�. Also shown is e�x�
for all x.
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VII. TWO-PHOTON CASE II: TWO-MODE MODEL

We now compute the two-mode two-photon scattering
properties. To analyze a two-photon scattering experiment,
one first projects the wave packets describing the two pho-
tons to each �Sk,p�, and applies the previous discussions to
each component. Specifically, consider an in state

�Xin� � �Sk1,p1
�RR

=� dx1dx2
1

2�2
�eik1x1+ip1x2

+ eik1x2+ip1x1�
1
2

cR
†�x1�cR

†�x2��0” ,− � , �121�

which describes two incident photons of plane waves from
the left with momenta k and p, respectively. To apply the
decomposition relation, Eq. �32�, we first decompose the in-
state �Sk1,p1

� to the components in ee, oo, and eo subspaces,
followed by computing the scattering states in each sub-
space, and finally transform the results back to RR, LL, and
RL spaces. The two-mode out state thus obtained is �please
refer to Appendix E for details�

�Xout� = S�Xin�

=� dx1dx2t2�x1,x2�
1
2

cR
†�x1�cR

†�x2��0” ,− �

+� dx1dx2r2�x1,x2�
1
2

cL
†�x1�cL

†�x2��0” ,− �

+� dx1dx2rt�x1,x2�cR
†�x1�cL

†�x2��0” ,− � , �122�

where

t2�x1,x2� = eiE1xc
2

2�
� t̄k1

t̄p1
cos��1x�

−
�2

4�1
2 − �E1 − 2� + i��2ei�E1−2���x�/2−��x�/2� ,

�123�

r2�x1,x2� = e−iE1xc
2

2�
�r̄k1

r̄p1
cos��1x�

−
�2

4�1
2 − �E1 − 2� + i��2ei�E1−2���x�/2−��x�/2� ,

�124�

and

rt�x1,x2� =
1

2�
ei�E1/2�x� t̄k1

r̄p1
e2i�1xc + r̄k1

t̄p1
e−2i�1xc

−
2�2

4�1
2 − �E1 − 2� + i��2ei�E1−2���xc�−��xc�� ,

�125�

where t̄k1
, t̄p1

are the two-mode single photon transmission
amplitudes, and r̄k1

, r̄p1
the two-mode single photon reflec-

tion amplitudes �Eq. �52��. Note the locations of x and xc in
rt�x1 ,x2� compared with t2�x1 ,x2� and r2�x1 ,x2�.

t2�x1 ,x2�, r2�x1 ,x2�, and rt�x1 ,x2� represent two-photon
wave functions in parts of the out state, in which either both
photons are transmitted or reflected, or one photon is trans-
mitted while the other reflected. Experimentally, at least in
principle, the magnitude of these wave functions can be mea-
sured in the setup shown in Fig. 9, where a beam splitter
with a single-photon counter on each of the output arm, is
placed at the entrance and the exit of the one-dimensional
waveguide. In the forward �backward� direction, these pho-
ton counters are labeled D1, D2 �D3, D4�, and are placed at a
distance x1, x2 from the beam splitter, respectively. The ex-
periments can be carried out by injecting a weak classical
beam such that the average numbers photons per pulse is far
smaller than 2, and such that the pulse repetition rate is much
smaller than the inverse of the spontaneous emission life-
time. It can also be carried out with two-photon sources.
�t2�x1 ,x2��2 corresponds to those events where both D1 and
D2 click simultaneously. The dependency on x1, x2 can be
measured by varying the distance of the photodetectors from
the beam splitters, since �t2�x1 ,x2��2 depends only upon x1

−x2. Similar coincidence detection can be used in the back-
ward direction to detect �r2�x1 ,x2��2. For �rt�x1 ,x2��2, one
could measure the coincidence rate for D1 in the forward
direction and D4 in the backward directions. Alternatively,
one could employ the Hanbury Brown and Twiss arrange-
ment wherein the two photodetectors on each side are kept at
the same distance from the beam splitter. In this setup one
measures the delay time �, which is proportional to x1−x2,
between two consecutive clicks on the two detectors.

In Fig. 10, we plot �t2�x1 ,x2��2, �r2�x1 ,x2��2, and
�rt�x1 ,x2��2 for various total energy detuning �E�E−2 �,
and energy difference ���k− p� /2. Before going into de-
tails, we mention some general properties of �t2�x1 ,x2��2,
�r2�x1 ,x2��2, and �rt�x1 ,x2��2, from the analytic expressions
�Eqs. �123�–�125��. First of all, all �t2�x1 ,x2��2, �r2�x1 ,x2��2,
and �rt�x1 ,x2��2 are even functions of E−2 � and of �, thus
it suffices to investigate only, say, the range where E−2�
�0, and ��0. Also, when x2=x1 �i.e., x=0�, r2�x1 ,x2� is
always zero for all E and �, i.e., the two photons are always
antibunching in the backward direction. Finally, when �1
=0, we always have �t2�x1 ,x2=x1��=2 /2�, regardless of the
photon pair energy, E.

BS

D3

D4

incoming
beam

BS
D1

D2

FIG. 9. �Color online�. Schematic experimental setups for con-
currence measurements of �a� �t2�x1 ,x2��2, �b� �r2�x1 ,x2��2, and �c�
�rt�x1 ,x2��2. D1, D2 are photodetectors with adjustable positions.
BS, beam splitter. The “�” symbol inside the one-dimensional
waveguide denotes the two-level quantum impurity.
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We now discuss the effects of varying both �E and �.
When the two incident photons are degenerate and on reso-
nance with the atom, i.e., �E=�=0, the out-wave functions
are

t2�x1,x2� =
2

2�
e+i2�xc�− e−��x�/2� ,

r2�x1,x2� =
2

2�
e−i2�xc�1 − e−��x�/2� ,

rt�x1,x2� =
1

2�
ei2��x1−x2�/2e−��x1+x2�/2�− 2� , �126�

as plotted in Fig. 10�a�. �t2�x1 ,x2��2 decays exponentially as
�x���x1−x2� becomes large, and thus the two transmitted
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FIG. 10. �t2�x1 ,x2��2, �r2�x1 ,x2��2, and �rt�x1 ,x2��2 for various photon-pair energy detuning �E�E−2 �, and energy difference �. �a�
�E=0, �=0, �b� �E=0, �=−0.3�, �c� �E=0, �=−0.4�, �d� �E=0, �=−0.5�, �e� �E=−1.5�, �=0, and �f� �E=−2.5�, �=0. x̄��x /2.
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photons are in a bound state. Moreover, when �x� is small,
�t2�2�1−��x� shows a cusp at x=0, while �r2�2�x2 does not.
This should manifest in the measurement of the g�2���� func-
tion in each case.

When the photon-pair energy is kept on resonance with
the quantum impurity ��E=0� while the energy difference
between the two photons, ���, is gradually increased from
zero to � /2, as shown in Figs. 10�a�–10�d�, the peak at x
=0 in �t2�x1 ,x2��2 reduces from its maximum to zero. The
transmitted photons thus change from bunching to anti-
bunching. Hence the quantum impurity can induce either an
effective repulsion or attraction between two photons.
�r2�x1 ,x2��2 is always zero when x1=x2, as previously men-
tioned. Both �t2�x1 ,x2��2 and �r2�x1 ,x2��2 are even functions of
x1−x2. On the other hand, �rt�x1 ,x2��2 can show asymmetry
as a function of x1+x2 when ��0. A symmetric peak at x1
+x2=0 occurs when �E=�=0 �Fig. 10�a�� and becomes
asymmetric when ��� increases �Figs. 10�b�–10�d��. When
��0, the maximum of �rt�x1 ,x2��2 always occurs at x1+x2
�0, which indicates the reflected photon leaves the impurity
earlier than the transmitted photon. In addition, at �E=0, �
�0, all the two-photon out-wave functions show oscillations
for large x1−x2 or x1+x2. On the other hand, when �E�0,
but �=0, the oscillations at large x1−x2 or x1+x2 disappear,
as shown in Figs. 10�e� and 10�f�.

The antibunching in r2�x1 ,x2� at x=0 for all �E and � in
fact has similar physical origin as the antibunching experi-
mentally observed in resonance fluorescence from a single
trapped ion �34�. Since r2�x1 ,x2� arises entirely from the
emission of the atom with no contribution from the incident
light, r2�x=0�=0 simply indicates that two photons cannot
be simultaneously emitted by a single atom. As a further
validation of this argument, as well as a somewhat indirect
experimental support of our theory, we note that our calcu-
lated �r2�x1 ,x2��2, as shown in Figs. 10�a�, 10�e�, and 10�f�, in
fact agrees excellently, after normalization, with the experi-
mentally measured g�2���� for a single trapped ion subject to
a weak beam �35�. On the other hand, the predictions here
for t2�x1 ,x2� and rt�x1 ,x2� involves interference between the
incident and emitted photons and therefore represent physi-
cal effects.

The momentum distributions in each case can also be
computed directly. In the forward direction, the momentum
distribution is �again, please refer to Appendix E for details�

RR	Sk2,p2
�S�Sk1,p1

�RR

= t̄k1
t̄p1

���k1 − k2���p1 − p2� + ��k1 − p2���p1 − k2��

+
1

4
B��E1 − E2� , �127�

and the momentum distribution in the backward direction,

LL	Sk2,p2
�S�Sk1,p1

�RR

= r̄k1
r̄p1

���k1 + k2���p1 + p2� + ��k1 + p2���p1 + k2��

+
1

4
B��E1 − E2� . �128�

Define

�k2
R,p2

L�RL �� dx1dx2
1

2�
eik2x1+ip2x2cR

†�x1�cL
†�x2��0” ,− � ,

�129�

the momentum distribution in the RL subspace is

RL	k2
R,p2

L�S�Sk1,p1
�RR

= t̄k1
r̄p1

��k2 − k1���p2 + p1� + r̄k1
t̄p1

��k2 − p1���p2 + k1�

+
1

4
B��E1 − E2� , �130�

where

B =
16i�2

�

E1 − 2� + i�

�4�1
2 − �E1 − 2� + i��2��4�2

2 − �E1 − 2� + i��2�
.

�131�

In each momentum distribution of Eqs. �127�, �128�, and
�130�, the � function terms correspond to the uncorrelated
part of the two-photon transport. The 1

4B��E1−E2� term,
however, is the signature of the strong correlation between
the two photons and represents the background fluorescence.
Specifically, B is the momentum distribution of the two pho-
tons scattered out of the original values k1 and p1. This term
originates from the ee subspace, and gives the same contri-
butions in the RR, LL, and RL subspaces. Figure 11 plots
normalized �B�E ,�1 ,�2��2 as a function of �1 and �2 for
various photon-pair energy E. Since the locations of the
poles in B are at k1,2= p1,2=�− i� /2, which correspond ap-
proximately to either one of the photons having an energy at
�, one can picture the background fluorescence as one pho-
ton inelastically scattering off a composite transient object
formed by the atom absorbing the other photon.

The out-state wave functions, t2�x1 ,x2�, r2�x1 ,x2�, and
rt�x1 ,x2� �Eqs. �123�–�125��, together with the corresponding
momentum distributions �Eqs. �127�, �128�, and �130�� pro-
vide a complete full quantum-mechanical description for the
two-photon in-state �Sk1,p1

�RR scattering off a two-level sys-
tem. In a classic paper, Mollow investigated the power spec-
trum of light scattered by two-level systems in a three-
dimensional system, using a semiclassical treatment, wherein
the two-level atom is driven near resonance by a monochro-
matic classical electric field �36�. We note that in Mollow’s
paper, the power spectrum of the scattered field, in the limit
of very low incident field intensity, has exactly the same line
shape as the momentum distribution LL	Sk2,p2

�S�Sk1,p1
�RR �Eq.

�130�� in the present work �37�. In particular, the inelastic
part of the power spectrum in Mollow’s paper corresponds
directly to the background fluorescence, �B�2. In his case,
however, the strength of inelastic scattering vanishes in the
weak-field limit, while in our case, strong inelastic scattering
occurs even with only two incident photons. Therefore, the
strong interference in one dimension greatly enhances the
inelastic components. Also, the full quantum-mechanical
treatment gives the correct g�2���� correlation function, and
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points out the connection between g�2���� correlation func-
tion and the background fluorescence, which could not be
obtained in the semiclassical treatment.

VIII. THREE-PHOTON CASE

The above procedures can be generalized to multiphoton
case. For example, when there are three photons and one
two-level system in the one-dimensional waveguide, the self-
consistency condition becomes

e�0−,0−� = e�0−,0+� = e�0+,0+� , �132�

which is the generalization of Eq. �67�. Here e�x1 ,x2� is the
two-photon amplitude when one photon is absorbed and the
two-level system is in the excited state. By equating the com-
ponents, Eq. �132� gives a set of six self-consistent equa-
tions. These equations are exactly the Yang-Baxter equations
�11,31�, and are connected with the integrability of the
Hamiltonian. The details will be presented elsewhere �38�.

IX. CONCLUSION AND OUTLOOK

In this paper, we present an exact and complete solution
of the transport properties of two-photons interacting with a
single two-level system, when the photons are confined to a
one-dimensional waveguide. Because the two-level system,
at a given time, can only absorb one photon, the solution
exhibits rich features, including, for example, the effects of
background fluorescence and two-photon bound states.

These results could be of relevance for many on-going quan-
tum optics experiments.

Also, from a formalism point of view, here we outline a
general approach, based upon the Bethe ansatz, to solve for
the transport properties of multiparticle states in a class of
quantum-impurity problem in one dimension. In particular,
we introduce a rigorous program to extract the “in” and
“out” states from the eigenstates of the interacting Hamil-
tonian, as well as a systematic approach to construct the
complete scattering matrix of the system based upon these in
and out states. This approach should be of general impor-
tance for a wide range of theoretical problems both in quan-
tum optics and in condensed matter physics.

A key observation from our solution is that the in and out
states, as obtained from the standard Bethe-ansatz solution,
is in fact not complete, at least for the photon Hamitonian �as
well as the Anderson Hamiltonian in the infinite-U limit�.
The completeness of the Bethe-ansatz solution for the inter-
acting Hamiltonian was a subject of debate �29,39,40� in the
first few years since the publication of the pioneering papers
by Wiegmann et al. �9–11� and by Andrei et al. �8� Here we
note that the proof of completeness by Schulz �29�, as cited
by a comprehensive review article in this area �41�, in fact
only proves that completeness of the Sk,p�x1 ,x2� and
Ak,p�x1 ,x2� states. Since the completeness of in and out states
is particularly important when constructing the full scattering
matrix, one needs to carefully reexamine the recent works of
applying Bethe ansatz to the interacting resonance level sys-
tem for open systems �14�, where the crucial property of
completeness of the solution is not explicitly checked.
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FIG. 11. �Color online� Background fluorescence as a function of �̄1 and �̄2 at various energy. �a� Ē=0. �b� Ē=2. �c� Ē=4. �d� Ē=6.

B̄��� /2�B, Ē��E−2�� / �� /2�, and �̄�� / �� /2�. For any given E, the in and out states can be completely specified by one quadrant in the
�1-�2 plane.
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APPENDIX A: COMPUTING THE IN-STATE �i‹ AND THE
OUT-STATE �fi‹ FROM THE INTERACTING

EIGENSTATE �i+
‹

In this appendix, we detail the derivations of the in state
and out state from the eigenstates of the interacting Hamil-
tonian for both the one-photon and the two-photon cases,
which are mentioned previously in Sec. V and Sec. VI B,
respectively. Since the discussions are in “e” and “ee” sub-
spaces, in this appendix, we suppress the label “e” and “ee”
when there is no confusion.

1. One-photon case

Here, we seek to prove the forms of one-photon in state
and out state, Eq. �42�, starting from the eigenstate �k+�e in
Eq. �40�. To do so, we first note that the real-space represen-
tation of the advanced Green’s function for H0

e =�dxce
†�x�

	�−i �
�x

�ce�x� and E�k is

	x,− �G0
A�x�,− � = 	x,− �

1

k − H0
e − i�

�x�,− �

= ��x� − x��+ i�eik�x−x��, �A1�

where

�x,− � � c†�x��0” ,− � �A2�

Let the out-state �fk� be

�fk� � � dx� f�x�c†�x��0” ,− � , �A3�

where � f�x�= 	x ,−�fk� is the one-photon wave function. Pro-
jecting the Lippmann-Schwinger equation, Eq. �4�, to 	x ,−�,
we have

� f�x� = ��x� − 	x,− �G0
AHint�k+� . �A4�

Inserting complete sets before and after Hint, since G0
A

does not excite the impurity, and Hint connects 	x� ,−� to the
state �0” ,+�, and does not vanish only when x�=0, we have

� f�x� = ��x� −� dx�	x,− �G0
A�x�,− �

		x�,− �Hint�0” , + �	+ ,0”��k+�

= ��x� − 	x,− �G0
A�0,− �Vek

= ��x� − ���− x��+ i�eikxV�� 1
2�

V

k − � + i�/2�
= ���− x�

eikx

2�
+ ��x�tk

eikx

2�
�

− ��− x�
eikx

2�

i�

k − � + i�/2

= ���− x� + ��x��tk
eikx

2�
= tk

eikx

2�
. �A5�

Thus the out-state one-photon wave function � f�x�= tk
eikx

2�
= tk	x �k� for all x. In the above derivations, we have used

	x�,− �Hint�0” , + � = 	x�,− � � dxV��x��c†�x�
 + c�x�
+��0” , + �

=� dxV��x�	0” ,− �c�x��c†�x�
�0” , + �

=� dxV��x���x� − x� = V��x�� �A6�

and

	0” , + �k+� = 	0” , + ��� dx��x�c†�x� + ek
+��0” ,− � = ek.

�A7�

Similarly, by using Eq. �3� and the retarded Green’s function

	x,− �G0
A�x�,− � = 	x,− �

1

k − H0
e + i�

�x�,− �

= ��x − x���− i�eik�x−x��, �A8�

the in state can be shown to be

�k� � � dx�i�x�c†�x��0” ,− � , �A9�

with �i�x�= 	x �k�= eikx

2�
for all x.

2. Two-photon case

The one-mode two-photon eigenstate �i+� for the Hmilto-
nian He is computed in Sec. VI B and VI D, and has the
following form:

�i+� =� dx1dx2g�x1,x2�
1
2

c†�x1�c†�x2��0” ,− �

+� dxe�x�c†�x��0” , + � , �A10�

with g�x1 ,x2� and e�x� being from either the extended
Wiegmann-Andrei state in Sec. VI B, as summarized in Fig.
7, or the bound state in Sec. VI D, as summarized in Fig. 8.
The aim here is to prove the forms of the in and out state,
i.e., Eq. �88� from Eq. �A10�.

Let the out state be �f� with the following form:

�f� � � dx1dx2gf�x1,x2�
1
2

c†�x1�c†�x2��0” ,− � �A11�

It is easy to see that
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�
�=�

� dx1dx2�x1,x2,��	�,x1,x2� , �A12�

where � labels the atomic state, is the identity operator in the
two-photon subspace.

Projecting 	x1 ,x2 ,−� from the left to Eq. �4�, and inserting
the identity operator in the form of Eq. �A12� between GA

0

and Hint, we have

gf�x1,x2� = g�x1,x2� −� dx1�dx2�dx�	x1,x2,− �GA
0 �x1�,x2�,− �

		x1�,x2�,− �Hint�x�, + �	x�, + �i+� , �A13�

where we have used the fact that GA
0 connects 	�� only to

���. Only the matrix element 	x1� ,x2� ,−�Hint �x� , + � appears
because of the form of Hint.

We compute each matrix element in the integral. First we
have

	x�, + �i+� =� dxe�x�	0” , + �c�x��c†�x��0” , + � = e�x��

�A14�

and

	x1�,x2�,− �Hint�x�, + �

=
1
2

	0” ,− �c�x2��c�x1�� � dxV��x�

	�c�x�
+ + c†�x�
−�c†�x���0” , + �

=
V
2
� dx��x�	0” ,− �c�x2��c�x1��c

†�x�c†�x���0” ,− �

=
V
2
� dx��x����x1� − x���x2� − x�� + ��x1� − x����x2� − x��

=
V
2

���x1����x2� − x�� + ��x1� − x����x2��� . �A15�

Putting back to Eq. �A13�, we have

gf�x1,x2� = g�x1,x2� −
V
2
� dx1�dx2�dx�	x1,x2,− �GA

0 �x1�,x2�,− �

	���x1����x2� − x�� + ��x1� − x����x2���e�x��

= g�x1,x2� −
V
2
� dx��	x1,x2,− �GA

0 �0,x�,− �

+ 	x1,x2,− �GA
0 �x�,0,− ��e�x��

= g�x1,x2� − 2V� dx�	x1,x2,− �GA
0 �0,x�,− �e�x�� .

�A16�

Let 	x1 ,x2 ,−�GA
0 �x1� ,x2� ,−��GA

0�x1 ,x2 ;x1� ,x2��. Since GA
0

satisfies

�E0 − H0
e − i��GA

0 = 1 , �A17�

we have

�E0 + i
�

�x1
+ i

�

�x2
− i��GA

0�x1,x2;x1�,x2�� = 	x1,x2�x1�,x2�� .

�A18�

Inserting the identity,

1 =
1

2
� �

−�

+�

dkdp�Sk,p�	Sk,p� , �A19�

we have

�E0 + i
�

�x1
+ i

�

�x2
− i��GA

0�x1,x2;x1�,x2��

=
1

2
� � dkdp	x1,x2�Sk,p�	Sk,p�x1�,x2�� , �A20�

which can be solved by Fourier expanding GA
0�x1 ,x2 ;x1� ,x2��

using Sk,p�x1 ,x2�:

GA
0�x1,x2;x1�,x2�� = 	x1,x2,− �GA

0 �x1�,x2�,− �

=� � 	x1,x2�Sk,p�	Sk,p�GA
0 �x1�,x2��dkdp

�� � 	x1,x2�Sk,p�Gk,p�x1�,x2��dkdp .

�A21�

We have suppressed the idle atomic degree of freedom “�.”
Inserting Eq. �A21� into Eq. �A20�, we then have

�E0 − �k + p� − i��Gk,p�x1�,x2�� =
1

2
	Sk,p�x1�,x2�� �A22�

⇒Gk,p�x1�,x2�� =
1

2

1

E0 − �k + p� − i�
	Sk,p�x1�,x2�� �A23�

⇒GA
0�x1,x2;x1�,x2�� =� � 1

2

1

E0 − �k + p� − i�
	Sk,p�x1�,x2��

		x1,x2�Sk,p�dkdp . �A24�

Therefore,
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GA
0�x1,x2;0,x�� =� � 1

2

1

E0 − �k + p� − i�
	Sk,p�0,x��	x1,x2�Sk,p�dkdp

=� � dkdp
1

2

1

E0 − �k + p� − i�� 1

2�2
�2

�e−ipx� + e−ikx���eikx1+ipx2 + eipx1+ikx2�

=� � dkdp
1

2

1

E0 − �k + p� − i�
� 2

2�
�2

e−iEx�/2 cos �x�eiExc cos �x

= −
1

�2��2��
−�

�

d� cos �x� cos �x���
−�

�

dE
1

E − E0 + i�
eiE�xc−x�/2��

= −
1

�2��2 �����x + x�� + ��x − x�������x�/2 − xc��− 2�i�eiE0�xc−x�/2��

=
i

2
��x�/2 − xc�eiE0�xc−x�/2����x + x�� + ��x − x��� , �A25�

where again x�x1−x2, xc��x1+x2� /2. In this calculation, we have used

�
−�

�

d� cos �x� cos �x = 2�
0

�

d� cos �x� cos �x = �
0

�

d��cos ��x + x�� + cos ��x − x��� = ����x + x�� + ��x − x��� .

�A26�

Putting back to Eq. �A16�, we have

gf�x1,x2� = g�x1,x2� −
i

2
V���− x/2 − xc�eiE0�xc+x/2�e�− x� + ��x/2 − xc�eiE0�xc−x/2�e�x��

= g�x1,x2� −
i

2
V���− x1�eiE0x1e�x2 − x1� + ��− x2�eiE0x2e�x1 − x2�� . �A27�

Using Eq. �A27�, one can compute the out state directly. Here we perform the explicit check for the case when �i+� is the
extended Wiegmann-Andrei state in Sec. VI C. The photon wave function g�x1 ,x2�, and e�x�, are shown in Fig. 7. The
calculations are done separately in the four quadrants of the x1-x2 plane.

�1� In the x1�0 and x2�0 region, due to the step functions, ��−x1� and ��−x2� in Eq. �A27�, gf�x1 ,x2�=g�x1 ,x2�
= tktp�B3eikx1+ipx2 +A3eipx1+ikx2�.

�2� In the x1�0 and x2�0 region, since x2−x1�0, we have

gf�x1,x2� = g�x1,x2� −
i

2
VeiE0x1e�x2 − x1�

= �tpB3eikx1+ipx2 + tkA3eipx1+ikx2� − i�eiE0x1� tpB3eip�x2−x1�

k − � + i�/2
+

tkA3eik�x2−x1�

p − � + i�/2�
= �tpB3eikx1+ipx2 + tkA3eipx1+ikx2� − i�� tpB3eikx1+ipx2

k − � + i�/2
+

tkA3eipx1+ikx2

p − � + i�/2�
= tpB3eikx1+ipx2�1 −

i�

k − � + i�/2� + tkA3eipx1+ikx2�1 −
i�

p − � + i�/2�
= tktp�B3eikx1+ipx2 + A3eipx1+ikx2� , �A28�

where we have used eiE0x1eip�x2−x1�=ei�k+p�x1eip�x2−x1�=eikx1+ipx2, and eiE0x1eik�x2−x1�=ei�k+p�x1eik�x2−x1�=eipx1+ikx2.
�3� In the x1�x2�0 region, we have
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gf�x1,x2� = g�x1,x2� −
i

2
V�eiE0x1e�x2 − x1� + eiE0x2e�x1 − x2��

= �B3eikx1+ipx2 + A3eipx1+ikx2� − i��eiE0x1� tpB3eip�x2−x1�

k − � + i�/2
+

tkA3eik�x2−x1�

p − � + i�/2� + eiE0x2� B3eik�x1−x2�

p − � + i�/2
+

A3eip�x1−x2�

k − � + i�/2��
= �B3eikx1+ipx2 + A3eipx1+ikx2� − i�� tpB3eikx1+ipx2

k − � + i�/2
+

tkA3eipx1+ikx2

p − � + i�/2
+

B3e�ikx1+ipx2�

p − � + i�/2
+

A3e�ipx1+ikx2�

k − � + i�/2�
= B3eikx1+ipx2�1 −

i�tp

k − � + i�/2
−

i�

p − � + i�/2� + A3eipx1+ikx2�1 −
i�tk

p − � + i�/2
−

i�

k − � + i�/2�
= tktp�B3eikx1+ipx2 + A3eipx1+ikx2� . �A29�

The x1�x2 region is obtained by gf�x2 ,x1�= +gf�x1 ,x2�.
Thus, we explicitly demonstrate that for the interacting

eigenstate of the extended Wiegmann-Andrei form in Sec.
VI C, the out-state photon wave function gf�x1 ,x2� is
tktp�B3eikx1+ipx2 +A3eipx1+ikx2�, in the entire x1-x2 plane. This is
consistent with the usual “read off” of the out state by taking
the x1, x2�0 region of the interacting eigenstate and extend-
ing it to the entire x1-x2 plane.

The in state can be computed in exactly the same fashion
by starting from Eq. �3� and shown to be gi�x1 ,x2�
=B3eikx1+ipx2 +A3eipx1+ikx2, in the entire x1-x2 plane. Again, it
is consistent with the usual read off of the in-state by taking
the x1, x2�0 region of the interacting eigenstate and extend-
ing it to the entire x1-x2 plane. Similar computations have
been done for the two-photon bound state �BE�, and the same
conclusion has been reached.

APPENDIX B: OVERLAPS OF VARIOUS STATES

In this appendix, we summarize the properties of the two
complete sets 
�Sk,p�ee :k� p� and 
�Ak,p�ee :k� p� defined in
Sec. VI. These properties are used to normalized the
Wiegmann-Andrei state in Sec. VI C as well as in the com-
pleteness check in Appendix C. In this section, we suppress
the ee label since there is no confusion.

We first mention the following identities:

�
0

�

�cos kx�dk = ���x� , �B1a�

�
0

�

�sin kx�dk = P1

x
, �B1b�

where P denotes the Cauchy principal value. Recall that

	x1,x2�Sk,p� �
1

2�

1
2

�eikx1eipx2 + eikx2eipx1� =
2

2�
eiExc cos��x� ,

	x1,x2�Ak,p� �
1

2�

1
2

sgn�x��eikx1eipx2 − eikx2eipx1�

=
2i

2�
sgn�x�eiExc sin��x� , �B2�

where ���k− p� /2=k−E /2.
The overlap between �Sk1,p1

� and �Ak2,p2
� is

	Sk1,p1
�Ak2,p2

�

= � 1

2�
�2

2�2i��
−�

�

dxce
�E2−E1�xc

	�
−�

�

dx sgn�x�cos �1x sin �2x

=
i

2�2 �2���E2 − E1��2�
0

�

dx cos �1x sin �2x

=
i

�
��E2 − E1�2�

0

�

dx�1

2
sin���2 + �1�x�

+
1

2
sin���2 − �1�x��

=
i

�
��E2 − E1��P 1

�2 + �1

+ P 1

�2 − �1
�

=
i

�
��E2 − E1��2�2�P 1

�2
2 − �1

2 . �B3�

The overlap between �Sk1,p1
� and �Sk2,p2

� is
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	Sk1,p1
�Sk2,p2

� = � 1

2�
�2

�2�2�
−�

�

dxce
�E2−E1�xc�

−�

�

dx cos �1x cos �2x

=
1

2�2 �2���E2 − E1��2�
0

�

dx�1

2
cos���1 − �2�x� +

1

2
cos���1 + �2�x��

=
1

�
��E2 − E1������1 − �2� + ���1 + �2��

= ��E2 − E1�����1 − �2� + ���1 + �2��

= ��k1 − k2���p1 − p2� + ��k1 − p2���k2 − p1�

= direct term + exchange term. �B4�

The overlap between �Ak1,p1
� and �Ak2,p2

� is

	Ak1,p1
�Ak2,p2

� = � 1

2�
�2

�− 2i��2i��
−�

�

dxce
�E2−E1�xc�

−�

�

dx sin �1x sin �2x

=
1

2�2 �2���E2 − E1��2�
0

�

dx�1

2
cos���1 − �2�x� −

1

2
cos���1 + �2�x��

=
1

�
��E2 − E1������1 − �2� − ���1 + �2��

= ��E2 − E1�����1 − �2� − ���1 + �2��

= ��k1 − k2���p1 − p2� − ��k1 − p2���k2 − p1�

= direct term − exchange term. �B5�

Various calculations in this paper involve evaluation of overlap with the state �Eq. �96��,

�Wk,p� =
1

4�2 + �2
�2��Sk,p� + i��Ak,p�� . �B6�

For example,

	Wk,p�Sk1,p1
� =

1
4�2 + �2

�2�	Sk,p�Sk1,p1
� − i�	Ak,p�Sk1,p1

�� =
2�

4�2 + �2���� − �1� + ��� + �1� −
�

�
P 1

�2 − �1
2���E − E1� ,

�B7�

where P denotes Cauchy principal value.
In both the completeness check, as well as in the evaluation of the S matrix, one needs to calculate the product

	Sk2,p2
�Wk,p�	Wk,p �Sk1,p1

�. Using Eq. �B7�, we have

	Sk2,p2
�Wk,p�	Wk,p�Sk1,p1

� =
4�2

4�2 + �2��E − E1���E − E2� 	 ����� − �1� + ��� + �1������ − �2� + ��� + �2�� �term 1�

+ �−
�

�
����� − �1� + ��� + �1��P 1

�2 − �2
2 �term 2�

+ �−
�

�
����� − �2� + ��� + �2��P 1

�2 − �1
2 �term 3� + ��

�
�2

P 1

�2 − �1
2P

1

�2 − �2
2 �term 4�� .

�B8�
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We now evaluate these terms.
�a� Term 2: including the prefactor 4�2

4�2+�2 , term 2 can be
simplified as

�−
�

�
� 4�1

2

4�1
2 + �2P

1

�1
2 − �2

2��E − E1���E − E2�

	���� − �1� + ��� + �1�� . �B9�

�b� Term 3: including the prefactor 4�2

4�2+�2 , term 3 can be
simplified as

�−
�

�
� 4�2

2

4�2
2 + �2P

1

�2
2 − �1

2��E − E1���E − E2����� − �2�

+ ��� + �2�� . �B10�

�c� Term 4: in evaluating term 4, we first note the
Poincaré-Bertrand formula �42�,

P 1

X − Y
P 1

X − Z
= P 1

Y − Z
�P 1

X − Y
− P 1

X − Z
�

+ �2��X − Y���X − Z� , �B11�

for three arbitrary variables, X, Y, and Z. Hence,

P 1

�2 − �1
2P

1

�2 − �2
2

= P 1

�1
2 − �2

2�P 1

�2 − �1
2 − P 1

�2 − �2
2�

+ �2���2 − �1
2����2 − �2

2�

= P 1

�1
2 − �2

2�P 1

�2 − �1
2 − P 1

�2 − �2
2�

+
�2

4��1���2�
���� − �1� + ��� + �1��

	���� − �2� + ��� + �2�� . �B12�

The terms with � functions in Eq. �B12�, including all pref-
actors in Eq. �B8�, yield

4�2

4�2 + �2��

�
�2� �2

4��1���2�
���� − �1� + ��� + �1��

	���� − �2� + ��� + �2���
=

4�2

4�2 + �2 ���� − �1� + ��� + �1��

	���� − �2� + ��� + �2�� , �B13�

which can be combined together with term 1 in Eq. �B8� to
yield

��E − E1���E − E2�
���� − �1� + ��� + �1��

	���� − �2� + ��� + �2��� . �B14�

Therefore, the end result is

	Sk2,p2
�Wk,p�	Wk,p�Sk1,p1

� = ��E − E1���E − E2� 	 ����� − �1� + ��� + �1������ − �2� + ��� + �2��

+ �−
�

�
� 4�1

2

4�1
2 + �2P

1

�1
2 − �2

2 ���� − �1� + ��� + �1��

+ �−
�

�
� 4�2

2

4�2
2 + �2P

1

�2
2 − �1

2 ���� − �2� + ��� + �2��

+ ��

�
�2 4�2

4�2 + �2P
1

�1
2 − �2

2�P 1

�2 − �1
2 − P 1

�2 − �2
2�� . �B15�

APPENDIX C: COMPLETENESS CHECK

In this appendix, we carry out the explicit check of the
completeness of the eigenstates 
�Wk,p� , �BE�� in Sec. VI C.
Again, since the discussions below are in the ee subspace,
we omit the subscript when there is no confusion.

As noted in Sec. VI C, to check whether 
�Wk,p� :k� p� is
complete, one could start with an arbitrary state, for ex-
ample, �Sk1,p1

�, project out all �Wk,p� components and calcu-
late

��k1,p1
� � �Sk1,p1

� − �
k�p

	Wk,p�Sk1,p1
��Wk,p� . �C1�

If the set 
�Wk,p� :k� p� were complete, such a computation
should yield ��k1,p1

�=0 for arbitrary k1 and p1. To calculate
��k1,p1

�, we first project ��k1,p1
� to 	Sk2,p2

�:
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	Sk2,p2
��k1,p1

� = 	Sk2,p2
�Sk1,p1

� − �
k�p

	Wk,p�Sk1,p1
�	Sk2,p2

�Wk,p� .

�C2�

The first term in the right-hand side is �from Eq. �B4��

	Sk2,p2
�Sk1,p1

� = ��k1 − k2���p1 − p2� + ��k1 − p2���p1 − k2� ,

�C3�

while in the second term, the restriction k� p can be
dropped, using the symmetry property of �Wk,p�, Eq. �94b�:

�
k,p,k�p

	Sk2,p2
�Wk,p�	Wk,p�Sk1,p1

�

=
1

2�
k,p

	Sk2,p2
�Wk,p�	Wk,p�Sk1,p1

� . �C4�

Using Eq. �B15� for 	Sk2,p2
�Wk,p�	Wk,p �Sk1,p1

�, the second
term becomes

1

2�
k,p

	Sk2,p2
�Wk,p�	Wk,p�Sk1,p1

� =
1

2
�

−�

+�

dE�
−�

+�

d���E − E1���E − E2� 	 ����� − �1� + ��� + �1������ − �2� + ��� + �2��

+ �−
�

�
� 4�1

2

4�1
2 + �2P

1

�1
2 − �2

2 ���� − �1� + ��� + �1��

+ �−
�

�
� 4�2

2

4�2
2 + �2P

1

�2
2 − �1

2 ���� − �2� + ��� + �2��

+ ��

�
�2 4�2

4�2 + �2P
1

�1
2 − �2

2�P 1

�2 − �1
2 − P 1

�2 − �2
2�� . �C5�

The first term in Eq. �C5� yields

��E1 − E2�����1 − �2� + ���1 + �2�� = ��k1 − k2���p1 − p2�

+ ��k1 − p2���k2 − p1� = 	Sk2,p2
�Sk1,p1

� . �C6�

The integrations of the second and third terms are straight-
forward, and the sum of both terms give

−
4�3

�

1

4�1
2 + �2

1

4�2
2 + �2��E1 − E2� . �C7�

The last term can be calculated using a contour integral. The
only nonvanishing contribution comes from the pole at �=
+ i� /2, when the integration contour is chosen to be com-
pleted in the upper half plane. Hence the integration yields

�1

2
2�i��

�
�2�−

�2

4i�
�P 1

�1
2 − �2

2

	� 1

�i�/2�2 − �2
2 −

1

�i�/2�2 − �1
2����E1 − E2�

= −
4�3

�

1

4�1
2 + �2

1

4�2
2 + �2��E1 − E2� . �C8�

The final result therefore is

�
k,p,k�p

	Sk2,p2
�Wk,p�	Wk,p�Sk1,p1

�

= ��k1 − k2���p1 − p2� + ��k1 − p2���k2 − p1�

+ �−
8�3

�
� 1

4�1
2 + �2

1

4�2
2 + �2��E1 − E2� . �C9�

Thus

	Sk2,p2
��k1,p1

� = �+
8�3

�
� 1

4�1
2 + �2

1

4�2
2 + �2��E1 − E2�

= �+
8�3

�
� 1

�k1 − p1�2 + �2

1

�k2 − p2�2 + �2

	��E1 − E2� . �C10�

Since 	Sk2,p2
��k1,p1

��0, this directly proves that the set

�Wk,p� :k� p� is incomplete.

A very important observation regarding Eq. �C10� is that,
independent of the choice of k1, p1, the resulting state

��k1,p1

�� calculated in Eq. �C10� is always proportional to the
same state

��k1,p1
� =

1

2
�

−�

+�

dE2�
−�

+�

d�2	Sk2,p2
��k1,p1

��Sk2,p2
�

� �
−�

+�

dE2�
−�

+�

d�2
1

4�2
2 + �2 �Sk2,p2

���E1 − E2�

� �B̃E1
� , �C11�
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Therefore, the set 
��k1,p1
�� in fact forms a one-dimensional

Hilbert space. Thus, only one extra state �B̃E� is needed in
order to span the two-photon Hilbert space. Since

	B̃E�B̃E�� = 2�
−�

+�

d�� 1

4�2 + �2�2

��E − E�� =
�

2�3��E − E�� ,

�C12�

this extra state, when normalized, is

�BE� =2�3

�
�

−�

�

d�
1

4�2 + �2 �Sk,p� . �C13�

This concludes the proof that 
�Wk,p� , �BE�� forms a complete
basis of the two-photon Hilbert space.

To see the physical meaning of �BE�, we rewrite Eq. �C13�
as

�BE� =� dxcdxBE�x1,x2�
1
2

c†�x1�c†�x1��0” ,− � , �C14�

with

BE�x1,x2� � BE�xc,x� = eiExc
�

4�
e−�/2�x�. �C15�

In the above derivation, we have used

�
−�

�

d�
1

4�2 + �2 cos��x� =
�

2�
e−�/2�x�. �C16�

Thus, the state �BE� in fact defines a two-photon bound state.

APPENDIX D: DERIVATIONS OF S MATRIX

In this appendix, we provide the detailed calculations of
Eq. �118�, the matrix element of the S matrix in the ee sub-
space, See. Again, since the discussions below are in the ee
subspace, we omit the subscript when there is no confusion.

The S matrix in the ee subspace, See is defined in Eq.
�117�:

See � �
k�p

tktp�Wk,p�	Wk,p� + �
E

tE�BE�	BE� . �D1�

Our goal is to compute the matrix element, Eq. �118�,

	Sk2,p2
�See�Sk1,p1

� = 	Sk2,p2
���

k�p

tktp�Wk,p�	Wk,p���Sk1,p1
�

+ 	Sk2,p2
���

E

tE�BE�	BE���Sk1,p1
� . �D2�

We will compute the two terms on the right-hand side sepa-
rately in the following.

1. First term of Eq. (D2)

Using Eq. �B15� for 	Sk2,p2
�Wk,p�	Wk,p �Sk1,p1

�, the first
term in Eq. �D2� becomes

�
k�p

tktp	Sk2,p2
�Wk,p�	Wk,p�Sk1,p1

�

=
1

2�
k,p

tktp	Sk2,p2
�Wk,p�	Wk,p�Sk1,p1

�

=
1

2
�

−�

+�

dE�
−�

+�

d���E − E1���E − E2�

	 tktp����� − �1� + ��� + �1��

	���� − �2� + ��� + �2��

+ �−
�

�
� 4�1

2

4�1
2 + �2P

1

�1
2 − �2

2 ���� − �1� + ��� + �1��

+ �−
�

�
� 4�2

2

4�2
2 + �2P

1

�2
2 − �1

2 ���� − �2� + ��� + �2��

+ ��

�
�2 4�2

4�2 + �2P
1

�1
2 − �2

2�P 1

�2 − �1
2 − P 1

�2 − �2
2�� .

�D3�

Note that

tktp = t�+E/2t−�+E/2

= �� + �E − 2��/2 − i�/2
� + �E − 2��/2 + i�/2��− � + �E − 2��/2 − i�/2

− � + �E − 2��/2 + i�/2�
= �� + �E − 2��/2 − i�/2

� + �E − 2��/2 + i�/2��� − �E − 2��/2 + i�/2
� − �E − 2��/2 − i�/2� ,

�D4�

the first term in Eq. �D3� can be evaluated as

tk1
tp1

��E1 − E2�����1 − �2� + ���1 − �2��

= tk1
tp1

��k1 − k2���p1 − p2� + tk1
tp1

��k1 − p2���p1 − k2� .

�D5�

The second and the third term in Eq. �D3� can be combined
to give

�

�
�tk2

tp2

4�2
2

4�2
2 + �2P

1

�1
2 − �2

2 + tk1
tp1

4�1
2

4�1
2 + �2P

1

�2
2 − �1

2�
	��E1 − E2� . �D6�

In evaluating the fourth term in Eq. �D3�, we use a contour
integral, by completing the contour in the upper half plane.
The only poles that give nonzero contributions are located at
�= �E−2�+ i�� /2, and �= i� /2. The result is

JUNG-TSUNG SHEN AND SHANHUI FAN PHYSICAL REVIEW A 76, 062709 �2007�

062709-26



��E1 − E2��−
4�3

�

E1 − 2� − 2i�

E1 − 2� + 2i�

1

4�1
2 + �2

1

4�2
2 + �2 −

16�3

�

E1 − 2� + i�

E1 − 2� + 2i�

1

4�1
2 − �E1 − 2� + i��2

1

4�2
2 − �E1 − 2� + i��2� .

�D7�

Summing Eqs. �D5�–�D7� together, we thus have

	Sk2,p2
���

k�p

tktp�Wk,p�	Wk,p���Sk1,p1
� = tk1

tp1
��k1 − k2���p1 − p2� + tk1

tp1
��k1 − p2���p1 − k2�

+
�

�
��E1 − E2��tk2

tp2

4�2
2

4�2
2 + �2P

1

�1
2 − �2

2 + tk1
tp1

4�1
2

4�1
2 + �2P

1

�2
2 − �1

2�
+ ��E1 − E2��−

4�3

�

E1 − 2� − 2i�

E1 − 2� + 2i�

1

4�1
2 + �2

1

4�2
2 + �2

−
16�3

�

E1 − 2� + i�

E1 − 2� + 2i�

1

4�1
2 − �E1 − 2� + i��2

1

4�2
2 − �E1 − 2� + i��2� . �D8�

2. Second term of Eq. (D2)

We first evaluate the overlap between �BE� and �Sk1,p1
�:

	BE�Sk1,p1
� =

�

4�
�

−�

�

dxc�
−�

�

dx�e−iExc−�/2�x��� 1

2�

1
2

eiE1xc�ei�1x + e−i�1x��
=

�

4�

1

2�

1
2

2���E1 − E�2�
0

�

dx�e�i�1−�/2�x + e�−i�1−�/2�x�

=
�

2�
��E1 − E�� − 1

i�1 − �/2
+

− 1

− i�1 − �/2� =
�

2�

4�

4�1
2 + �2��E1 − E� . �D9�

Thus, the second term of Eq. �D2�, the bound state contribution, is

	Sk2,p2
���

E

tE�BE�	BE���Sk1,p1
� =

�

2�
�

−�

� �E − 2� − 2i�

E − 2� + 2i�
� 4�

4�1
2 + �2

4�

4�2
2 + �2��E − E1���E − E2�

=
8�3

�

E1 − 2� − 2i�

E1 − 2� + 2i�

1

4�1
2 + �2

1

4�2
2 + �2��E1 − E2� . �D10�

Summing Eqs. �D8� and �D10�, we obtain the S matrix 	Sk2,p2
�See�Sk1,p1

�, Eq. �118�,

	Sk2,p2
�See�Sk1,p1

� = tk1
tp1

��k1 − k2���p1 − p2�

+ tk1
tp1

��k1 − p2���k2 − p1� + B��E1 − E2� , �D11�

with

B =
16i�2

�

E1 − 2� + i�

�4�1
2 − �E1 − 2� + i��2��4�2

2 − �E1 − 2� + i��2�
. �D12�

APPENDIX E: DERIVATIONS OF TWO-MODE OUT STATE

In this appendix, we present the details of the derivations of the two-mode out-state two-photon wave funciton, t2�x1 ,x2�
�Eq. �123��, r2�x1 ,x2� �Eq. �124��, and rt�x1 ,x2� �Eq. �125��.

The in state is a state of two right-going photons, �Sk1,p1
�RR. We first decompose the in-state into ee, oo, and eo subspaces:
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�Xin� � �Sk1,p1
�RR =� dx1dx2

1

2�2
�eikx1+ipx2 + eikx2+ipx1�

1
2

cR
†�x1�cR

†�x2��0” ,− �

=� dx1dx2
1

2�2
�eikx1+ipx2 + eikx2+ipx1�

1
2

1

2
�ce

†�x1� + co
†�x1���ce

†�x2� + co
†�x2���0” ,− �

=
1

2
� dx1dx2

1

2�2
�eikx1+ipx2 + eikx2+ipx1�

1
2

ce
†�x1�ce

†�x2��0” ,− �

+
1

2
� dx1dx2

1

2�2
�eikx1+ipx2 + eikx2+ipx1�

1
2

co
†�x1�co

†�x2��0” ,− �

+
1

2

1
2
� dx1dx2

1

2�2
�eikx1+ipx2 + eikx2+ipx1��ce

†�x1�co
†�x2� + co

†�x1�ce
†�x2���0” ,− �

=
1

2
�Sk1,p1

�ee +
1

2
�Sk1,p1

�oo +
1

2

1
2
� dx1dx2

2

2�2
�eikx1+ipx2 + eikx2+ipx1�ce

†�x1�co
†�x2��0” ,− � � �Xin�ee + �Xin�oo + �Xin�eo.

�E1�

Employing the decomposition relation, Eq. �32�, we carry
out the calculations in each individual subspace,

S�Xin�ee = See�Xin�ee = See
1

2
�Sk1,p1

�ee

=
1

2 �
E2,�2�0

�SE2,�2
�eeee	SE2,�2

�See�Sk1,p1
�ee

=
1

2�tk1
tp1

�Sk1,p1
�ee + �

�2�0
B�SE1,�2

�ee�
=

1

2
� dx1dx2ee	xc,x�Xout�ee

1
2

ce
†�x1�ce

†�x2��0” ,− �

�
1

2
� dx1dx2�ee�x1,x2�

1
2

ce
†�x1�ce

†�x2��0” ,− � ,

�E2�

�ee�x1 ,x2� is the out-state wave function in ee subspace, Eq.
�120�.

S�Xin�oo = Soo�Xin�oo = Soo
1

2
�Sk1,p1

�oo =
1

2
�Sk1,p1

�oo

=
1

2
� dx1dx2oo	x1,x2�Sk1,p1

�oo

1
2

co
†�x1�co

†�x2��0” ,− �

�
1

2
� dx1dx2Sk1,p1

1
2

co
†�x1�co

†�x2��0” ,− � �E3�

and

S�Xin�eo = Seo�Xin�eo

= Seo�1

2

1
2
� dx1dx2

1

2�2
�eikx1+ipx2 + eikx2+ipx1�

	�ce
†�x1�co

†�x2� + co
†�x1�ce

†�x2���0��
=

1
2
� dx1dx2

1

2�2
�tke

ikx1+ipx2

+ tpeikx2+ipx1�ce
†�x1�co

†�x2��0” ,− � . �E4�

Using the transformation formula, Eq. �27�, and collect
terms according to the operators in Eq. �122�, we obtain
t2�x1 ,x2�, r2�x1 ,x2�, and rt�x1 ,x2�,

t2�x1,x2� =
1

4
��ee�x1,x2� + Sk1,p1

�x1,x2� + �tk + tp�Sk1,p1
�x1,x2��

=
1

4�tk1
tp1

Sk1,p1
�x1,x2� + �

�2�0
BSE1,�2

�xc,x�

+ Sk1,p1
�x1,x2� + �tk + tp�Sk1,p1

�x1,x2��
=

1

4��1 + tk1
��1 + tp1

�Sk1,p1
�x1,x2�

+ �
�2�0

BSE1,�2
�xc,x�� �E5�
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= t̄k1
t̄p1

Sk1,p1
�x1,x2� +

1

4 �
�2�0

BSE1,�2
�xc,x�

= eiE1xc
2

2�
� t̄k1

t̄p1
cos��1x�

−
�2

4�1
2 − �E1 − 2� + i��2ei�E1−2���x�/2−��x�/2� , �E6�

r2�x1,x2� =
1

4
��ee�− x1,− x2� + Sk1,p1

�− x1,− x2�

− �tk + tp�Sk1,p1
�− x1,− x2��

=
1

4��1 − tk1
��1 − tp1

�Sk1,p1
�− x1,− x2�

+ �
�2�0

BSE1,�2
�− xc,− x��

= r̄k1
r̄p1

Sk1,p1
�− x1,− x2� +

1

4 �
�2�0

BSE1,�2
�− xc,− x�

= e−iE1xc
2

2�
�r̄k1

r̄p1
cos��1x�

−
�2

4�1
2 − �E1 − 2� + i��2ei�E1−2���x�/2−��x�/2� ,

�E7�

and

rt�x1,x2� =
1

42
��ee�x1,− x2� − Sk1,p1

�x1,− x2�

+ �tp − tk�
1

2�2
�eikx1−ipx2 − e−ikx2+ipx1��

=
1

2�
ei�E1/2�x� t̄k1

r̄p1
e2i�1xc + r̄k1

t̄p1
e−2i�1xc

−
2�2

4�1
2 − �E1 − 2� + i��2ei�E1−2���xc�−��xc�� .

�E8�

The momentum distributions can be computed directly. In
the forward direction,

RR	Sk2,p2
�S�Sk1,p1

�RR =� dx1dx2Sk2,p2

* �x1,x2�t2�x1,x2�

=
1

4
�RR	Sk2,p2

�Xout�RR + RR	Sk2,p2
�Sk1,p1

�RR

+ tk1
tp1RR	Sk2,p2

�Sk1,p1
�RR�

=
1

4

�tk1

+ 1��tp1
+ 1����k1 − k2���p1 − p2�

+ ��k1 − p2���p1 − k2�� + B��E1 − E2��

= t̄k1
t̄p1

���k1 − k2���p1 − p2� + ��k1 − p2�

	��p1 − k2�� +
1

4
B��E1 − E2� . �E9�

In the backward direction,

LL	Sk2,p2
�S�Sk1,p1

�RR =� dx1dx2Sk2,p2

* �x1,x2�r2�x1,x2�

=
1

4

�1 − tk1

��1 − tp1
����k1 + k2���p1 + p2�

+ ��k1 + p2���p1 + k2�� + B��E1 − E2��

= r̄k1
r̄p1

���k1 + k2���p1 + p2� + ��k1

+ p2���p1 + k2�� +
1

4
B��E1 − E2� ,

�E10�

while in the RL subspace,

RL	k2
R,p2

L�S�Sk1,p1
�RR =� dx1dx2� 1

2�
eik2x1+ip2x2�*

rt�x1,x2�

= t̄k1
r̄p1

��k2 − k1���p2 + p1�

+ r̄k1
t̄p1

��k2 − p1���p2 + k1�

+
1

4
B��E1 − E2� . �E11�

In the above calculations, we have adopted the following
sign convention for the left-moving photons:

�k�L �� dx
eikx

2�
cL

†�x��0” ,− �, with k � 0,

�Sk,p�LL �� � dx1dx2
1

2�2
�eikx1+ipx2

+ eikx2+ipx1�
1
2

cL
†�x1�cL

†�x2��0” ,− �, with k,p � 0,

�kR,pL�RL �� � dx1dx2
1

2�
eikx1+ipx2cR

†�x1�

	cL
†�x2��0” ,− �, with k � 0,p � 0.

�E12�
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