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Inverted box spectrum for the Nikitin model
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We demonstrate that the quantum-mechanical equations of the Nikitin exponential model can be exactly
solved at the energies coinciding with the inverted spectrum of an infinite box. Assuming specific potential
parameters, the N matrix has been derived for the second level in closed form. The general solution in the
Bessel representation has been found for the third and fourth levels. The results show a logarithmic anomaly in
the amplitude behavior at the threshold of three-channel-two-channel transformation.
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I. INTRODUCTION

For a long time nonadiabatic dynamics has been one of
the most popular topics in quantum mechanics [1-3]. Most
of the modern research in the field of atomic and molecular
physics deals with numerical simulations of the real systems
[4-12]; however, analytical studies of the physical models
are rather rare. The analytical results are useful to control
numerical codes and to describe complicated phenomena
where otherwise elaborate exact quantum-mechanical solu-
tions are required. Important examples of recent analytical
work can be found in the explicit determination of the Stokes
constant connection for the linear potential model [3], the
exact study of some special models with exponential poten-
tials [13-16], and the solution of the coupled equations for
conic and glancing intersection problems [17-20].

In general, problems that can be analytically solved re-
quire rigorous limitations for the model parameters. In par-
ticular, the results obtained in Ref. [16] are applicable only to
some special energy values and for a flat diabatic potential in
the excited state. In the same paper, we suggested that the
class of exactly solvable exponential models can be consid-
erably extended. The current paper is an extension of our
exponential model study in Ref. [16], which will be cited
below as paper 1. In the present paper, we demonstrate how
the model limitations can be significantly reduced.

The current paper is organized as follows: Section II for-
mulates the physical problem of the general Nikitin exponen-
tial model in the Bessel representation. In Sec. III, we reduce
the problem to the Heun equation, find its solution by the
Erdelyi method, and determine the spectrum for the solvable
cases. The details of the N-matrix calculation are presented
for the second level of this spectrum. Section IV gives the
solution in the coordinate representation, Sec. V describes
the asymptotic behavior of the basis set, and Sec. VI gives
the N-matrix closed expression. The conclusions and per-
spectives for further studies can be found in Sec. VII. The
Appendixes contain the formal solutions for the third and
fourth levels and also the evaluation of the main integrals.
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II. FORMULATION OF THE PROBLEM:
BESSEL REPRESENTATION

We take the Schrodinger equation for the general Nikitin
model in the form
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U2—Vze_w‘ lp_ lp
(1)

In the Nikitin model, the potential energy matrix is charac-

terized by the same exponent « appearing in the various

matrix elements. One example of a quantum-mechanically

exact analytical solution for a two-state exponential model,

in which the exponent of diabatic coupling is one-half of that

of the diabatic potential curve, can be found in Ref. [15].
As in paper I, the Bessel representation

Yio= § PFl,z(P)ZiV(PP)dP (2)
L

reduces system (1) to the equation
<d2 1+4u>  p*—dep®+ 2\
— +
dP2 4 1’2(172 - al)(P2 - a,)

where the variable

>f=0, 3)

) gmV
p = (ﬁa)2e ’ (4)
parameters

a 8m B ) 8m B ‘_&

Vz_ (ha)z(E Ul)’ M= (ha)z(E UZ)’ Bl_ V’
(5)

_ 2

al,zzﬂlzﬁz_ <ﬁ1232) +1, ©6)

1Bt B+ B+ Bor”)

(BB - D1 +4v)
1 +4u2 B

1+4u°

b}

(7)

and amplitudes

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.76.062705

V. I. OSHEROV AND V. G. USHAKOV

PHYSICAL REVIEW A 76, 062705 (2007)

£p) Lo 1-ivdp -V (-Bla
Fi(p)=—75 i F=B-pIFRp) ©) A+ =0,
p(p —a)(p”—ay) dg ¢ dl 4 {({-D({-ailay)
(11)
coincide completely with the corresponding ones in paper 1. ) o
The integrals (2) must converge, and the contour incre-  1he further variable substitution
ments must satisfy the conditions (-1 p-a,
7= = (12)
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The general Heun equation (see Refs. [21-24]) is given as
d? 0% € 1%
III. REDUCTION TO THE HEUN EQUATION: J2H@ +| T |2 H W)
SPECTRUM OF SOLVABLE CASES
apx—q
The substitution of the variable and the function + x(x—1)(x— a)H (x)=0, (14)
2 where the parameters are connected by Fuchs’s relation
é’:p— ¢:p—1/2+i1}f (10)
a’ v+do+e=a+pB+1. (15)
The Heun equation describes the exponential model with
transforms Eq. (3) to the Heun form [21] parametrization
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for Eq. (13). H=>.d W 20
Using the operator A (see Ref. [25]), % mem 20)
d? where W,, are the solutions of the associated hypergeometric
A=x(x- 1)(x—a)@+[y(x— (x-a) equation
d 2
+olx—a)+ex(x— D]~ +apr-q,  (I8) x(x_1>[%+(1+i)%}
dx dx* x x—-1/ dx
we try to find the solutions to the equation +(a+m)(B-e-m)W,=0. (21)
AH=0 (19) We will use the notations r,,, s,,, and ¢,, in place of a, b, and

as the expansion series

¢ for the Gauss equation parameters, and following Erdelyi
[25] take them in the form
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rp=a+m, s,=B-e-m, t,=v, (22)
where m is an integer number. Erdelyi has found the uniform
representation of Kummer’s solutions [26] W, ,, i=1,...,6,

such that the functional equation
A‘/Vi,m = AmWi,m—l + BmWi,m + CmWi,m+1 (23)

is satisfied at the following universal (independent of the
number i) values of the parameters A,,, B,,, and C,,;:
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Now, following the strategy of paper I, we take for the basis
set in Eq. (20) the solutions Wi ,:
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Substituting parameters from Eq. (22) we get
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X

The equation

2 dmA Wi,m =0 (29)

results in the recurrence relation [21,22,25]
Cm—ldm—l + Bmdm + Am+1dm+l =0. (30)

The conditions to find the solution as a finite sum of k hy-
pergeometric functions are given by
Cr_1=0, det(M)=0, (31)

where M is a three-diagonal k X k matrix,
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By, A,
C, B,
C
M= :
A3
Bz Aj
Cis Bia A
Ciz Bio
(32)
The solution to Eq. (30) is as follows:
d0: 1’ dlz_BO/Ab cee dm+1=_(Cm—ldm—1
+B,d) Ayt e (33)

The complete list of the Heun equation solutions includes
192 solutions (see Ref. [24]). Analysis of this list shows that,
as in paper I, the only parametrization which leads to the
physical solutions is that of Eq. (17). The parameters given
by Eq. (17) will be used below.

The first condition of Eq. (31) gives

v=—ik. (34)
This is an inverted box spectrum.
IV. SOLUTION TO THE EXPONENTIAL MODEL
FOR TWO ,F; FUNCTIONS

In paper I, we studied the first level (k=1) with the limi-
tation B,;=0 induced by this choice because of Eq. (31).

For k=2, the second condition of Eq. (31) results in the
following relation between energy and the potential param-
eter B;:

Bi=—. (35)
%

The expression for the coefficient d;,

- B +2i
d1='81 B l’ (36)
ar—da

follows from Eq. (33). The parameters ry, sg, and £, for the
associated hypergeometric equation with m=0,

=—, =—1-—, 1©,=0, 38
r > S 5 1 (38)
and the solution W5
‘ 1
Ws ymg = 272 2F1<‘ - ‘>, (39)
’ 2 2 z
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in in . 1)
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follow from the basic definitions given above. In expressions
(39) and (40) the coefficient

o2l
2 2
[(ip)

is omitted. As a result we get the solution to Eq. (11) in the
form

(41)

D) = H(Y) = Ws g+ d1 Ws ey - (42)

The solutions to the exponential model for the cases of
three and four hypergeometric functions are given in Appen-
dix A.

Calculating the diabatic wave functions ¢ 5(x) in coordi-
nate representation, we take, in analogy to paper I,

| . [ [ . 1
Li,= (le,l +i1%,Nay | +,Vay | + i), ZiV:H(2 )’

Lyy=(Nay —i®Nay + Nay — i),  Z;,= HY.
(43)

As in paper I we modify the integrals of Eq. (2) using ana-
lytical continuation of the functions Ws_,(z) in the neighbor-
hood of z=0 for the contours L; and L; and analytical con-
tinuation in the neighborhood of z=1 for the contours L, and
L, (see Ref. [26]). Considering the case when both of two
adiabatic channels are open at p— 2, i.e., the condition

a2>a| >0 (44)

is satisfied, we get the following four independent solutions
of the problem:

l/'In)(P) = "l,(n)(r0750?p) + CElpin)(rl’sl’p)a n= 1’ e ,4,
(45)
with
2-1i —-Br+2i 2-i
R Ry £ (46)
4(1+ip) a—a; 4(1+ip)
where we use the following definitions:
H? \”/a_ 2rs *
W (r,s.p) = C(r,S)(— : /(_ 0, ai/zf P
Va, a, —da, Va,

X,Fy(1=r,1-5,2,2)HY ‘2)(pp)dp) . (47

o]
2rs  p
) 4
a,—a —

27 ¢ Vay

3(r,5,p) = C(T,S)<\”a2H(zl’2)(\’ar2P) -

X,F (1=r,1- s,Z,Z)H(zl’z)(pP)dP) + B,

(48)
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. H? w/a_
Y (rs.p) = e””c(r,s)(— e Q)

Va,
2rs i
+ —ailzf_ p R (1=71-5,2,1
ay—dap V“‘al
- z)H&"”(pp)dp), (49)

$9(r.5.p) = aWc(r,s)[ VayHS 2 (Vayp)

2 +jo0
—La}/zj p.Fi(l-r1-52,1
a)p—dap va,
- Z)ngnpp)dp} + B, (50)
I'(l+r-
c(r,s) = Qer=9 (51)

Fra-s)I'(1+r)°
The general solution will be used below in the form

P(p) = C1¢p)(p) + Cy % (p) + 39 (p) + Cof ¥ (p).
(52)

V. ASYMPTOTIC BEHAVIOR OF SOLUTIONS
A. Asymptotic behavior at p—0

We found the asymptotic form of the basis set "(p) at
p— 0 using the methodology of paper I. For this we isolate
the singularity +4i/x? of the Hankel functions H(zl’z)(x),

4i -
HYP ()= 7 — + H (). (53)
X
The behavior of the function fl(zl’z)(x) at x—0 is given by

(see Ref. [27])

171(21’2)()6)= - L'+i27'rii[4 ln(x/2)+4y—3:|x2
o 16 T

x— 0. (54)

+0(x),

The singular term 4i/mx? of the Hankel function expansion
generates the singularity of amplitudes (47)—(50) at p—0
and the constant term i/ 7 results in nonphysical behavior of
the first channel amplitudes. The contributions of these two
terms to the basis set (45) at p— 0 are expressed in terms of
the following functions:

a ©
2+2rsf_2Fl(l—r,l

\““le

an—
I(r,S)=5(r,S)\r’a:( !
a

—s,Z,Z)d—p>, (55)
p
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~ —[ ad,—a *
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where

P .
c(r,s)—c(r,s)ﬂ_(az_al). (61)

With the definitions

I=1(rg,80) + cgl(ry,s1), (62)
T=1(rg.50) + cgl(ry,sy), (63)
J=J(ro,s0) + ced(ry,s1), (64)
T =J(rg.s0) + cpl(r1,81), (65)
K =K(ro,s0) + cgK(ry,s1), (66)
K =K(rg,s0) + cgK(ry,51), (67)

we get the singular contributions to the basis set in the form

1~

—7
) p’
(z//“) |1 ’ (68)
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and the constant contributions to the first state functions in
the form

1 1
() _ (3) _ (4)

—I, I’ = ~ == —K.
5y 2 sy ¢ b5 4K

(72)

The regular behavior at p— 0 of the second channel ampli-

tudes is determined by the fl(zl’z)(x) contributions to Egs.
(47)—(50). In evaluating the regular terms we will use the
following definitions:

—
Va ~ |

B = g 2a ((az - anHs? (ap)
27 %1

- 2rsf_ WFi(1=r,1-52,2H(pp)p dp) ,
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/
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_zrsf 2F1(1—I’,]—S,Z,I—Z)ﬁ(zl)(pp)p dp)»

Val

(74)

Ja—

) Va ~
K] = e ((al - a5 (Vayp)
1~ %2

—joo
—2}"SJ_ JFi(1-r1-s2,1 —z)ﬁ(zz)(pp)p dp),

\“‘ﬂ]

(75)

and
](rm) = 151’2)(7’0,50) + CElﬁl’z)(”l’sl) > (76)
Jr=Jr(r0’sO)+CEJV(r1’s1)’ (77)
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KrzKr(rO’SO)+CEKr(r1’Sl)- (78)

Combining the singular and regular parts, we get

1~ 1 1
= STl np). o=l B+ 1,

(79)

1~ 1 1
W == ST I+ 0 np) ) ==l Bt 417

(80)

1~ 1 1
= T 0w ) = B+

(81)

1 1 1
= K- K O(p*Inp), "= 2Kt B! +K,.

(82)
The integral calculation (see Appendix B) gives
I= Csc[4(_ 2- /.Ll + allbl’)(a2 - al)\"”a_l

i i a
><2F1< po_in |
2 2 a, — a;

) +ip(= pi + pa,
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i i a
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2 2 a, —a; +
i i a
Xe‘””/2a§/22F1(1+ﬁ, l—ﬁ, 3, 2 ) ,
2 2 a,—ap/
~ J
J=——, (84)
Bi

K= Csc'|:_ 4(_ lu’l + pas - 2)((12 - al)\/a_Ze_quu/2

i iu
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a,—da

i i a
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2 2 a,—ay/ _
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~ K
K=—-—, 85
3 (85)
with
C.- i(p+ 20)1 (i) (86)

- puNaas(ar — a,)? sinh(wuw/2)T2(iw/2)”

The argument of the hypergeometric functions in the expres-
sions for J and K, a,/(ay—a,), is greater than unity. The
indices + in Egs. (84) and (85) designate the upper and lower
sides of the complex plane cut drawn from unity to +.

Finally, the behavior of the basis set diabatic amplitudes
(45) at p—0 is given by the following expressions:

1 1 ,3

(1) _ . 2 (1) _ 4 _ P21
= + 1+ O(p” In p), =] 1,

(/f] (ﬁl 2 4) ( ) 2 r 1

(87)

11
Y = (—2 + —>1+ 0(*Inp), =17+ B

- 4 ! 4
(88)
11
52)=—(—2+—>J+0<p2 mp). v =1,-20,
Bip~ 4 4
(89)
1 B
= - — K+ 01 W=k, - =K
l//l (B]Pz + 4) + (p nP)’ 2 r 4 s
(90)

where the asymptotic behavior of the basis set’s regular parts
151), J,, 152), and K, is given by (see Appendix C)

L (p\* 1 [p\™
I£”=rr—r<3) +rT?(B) : 1)
Vu 4 Vu 4
1 (p\* 1 (p)\n
J,=r£?<2> +r§/——(e> , (92)
\JM 4 \,’M 4
1 (p\* 1 (p\
I(rz)=r_/——<l—)> +r;'/——<2) , (93)
V4 V4
L(p\* 1 (p\
K,.= r_?<2) +r2/——<£) (94)
v 4 Vi 4
with
R
r= ,
b Vasinh(m) (- 20)T(i/2)
. d \"Tctze_””/ZZi”l—‘z(i/L/Z +1/2)(ay — a))™*?
r] == o 7T2 ’
(n—2i)
(96)
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[ )
_ va,e _
ry=- l’—rrl , (97)
va,
rR=- e(_”'“)r], (98)
[ (~mw)
_ \Naje _
ry= ]’—ﬁr1 , (99)
Nay
\’CT
L0
ry=——=rj, (100)
2 \'/a_z 1
ry=-— e\t (101)
-
Na
ry=———=r (102)
va,

It follows from Egs. (87)—(90) that the basic condition for
the solution to have physical meaning has the form

(C, = C)I+ CyJ + C,K =0. (103)

B. Asymptotic behavior at p— o

The asymptotic form of the basis set at p— o0 is obtained
from the first term in large parentheses of Egs. (47)-(50) as

ei(\fuzp+77/4)

Wazp

=D, (104)

ei(\fazp+77/4)

—

Nayp

V= Dy(B, - ay) (105)

ei( vayp+/4)

N V/a_p ’

1

Y =-D, (106)

ei(\falp+77/4)

! ap

Nap

(22)=_D1(,81—611) (107)

3) e—i(y“‘a_zp+w/4)
Y =-D, \/? >
Vayp

e—i( Vaypt+l4)

\ \/a_p ’

2

(108)

$) =~ Dy(B - ay) (109)

e—i(Va1P+W/4)

Wap

e—i(y“alp+77/4)

¢(24)=D1(B1_a1) — >
Nap

=D, (110)

(111)

where
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22— p—dicg+dcpp)l(pi)exp(= mw/2) [ 2
e Ui/ 2) e — 20)

9
ma,

D= 2(2i — p+dicg—4egm)l(pi) | 2
2 T2(ip/2) ol — 20) ma,’

(112)

VI. N-MATRIX EVALUATION

To calculate the N matrix we change the diabatic basis set
to the adiabatic one by the rotation

(<P1 ) _ R(% )
© )
The matrix R diagonalizes the potential of the Eq. (1) and is
given by the expression

cos g, —sin
R:( 0s § g)’
sing, cosg

2Ve ™
Uy=U, = (V= Ve ™

(113)

(114)

where

tan 2g = (115)
The asymptotic amplitudes of the normalized incoming and
outgoing adiabatic waves are related by the N matrix.

At p—0 the angle g=0 and adiabatic amplitudes coincide
with the diabatic ones. At p— % we have

-B,+a
cosgz\/L, (116)
ap)—da
—a; +
sing:—\/l—'gl, (117)
ar —a
and as a consequence
i(\fa_2p+77/4)
() _ m_pe -
(Pl _09 (PZ _12 ) (118)
Wayp
@) ei(y“‘a_]p+7'r/4) @
P =lJ1r—/_, ®) =0, (119)
Vap
) ) e—i(\s’a—zp+11'/4)
@ =0, @ =hL—F=", (120)
Wap
_e—i(\fa_lp+7r/4)
N (0
Nap
where
I=—2, I'=D(ay-ay)sing, L=-10, [=-1I.

(122)

It can be shown that
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(123)

The general physical solution in the adiabatic representation
has the following asymptotic behavior at p—0:

1 p —ip 1 p +ip
Y LT L
1\’/; 4 1\/; 4

(124)
and at p—
- oHilaprid) . o ilayprmid)
1=4d3 \ erp 3 \/VTP ,

e+i(\fazp+77/4)

+ _
o=t F—+a,—F——, p—2. (125)
Wagp Wagp

Taking the N-matrix definition

e—i(€a2p+7r/4)

cflr a,
a; |=N|a; |, (126)
a3 as
and using the relations
aI = ClrI + Czrg + C3r§ + C4r1,
ay=Cri+ Cyry + C3rs + Cyry,
ay = Csly,
a; = C4ZI,
a; = C]l+,
a3 =Gl (127)

which follow from Egs. (52), (87)—(94), and (118)—(121) and
condition (103), we finally obtain

—

__nru Va, = INay) 58
Nl] -7 _ - .\ (1 )
ri(INae™™ + JVa,)

rJ \/a_z(— e TH 1 ™)

= ) (129)
2T BN + Jay)
IiNa,
Ny = , (130)
T AW e ™+ Nay)
e‘“‘(h/a_g + I\E)
Nyp=——7= = (131)

INajem™ + JVa,

ria, (e ™+ 1)(J + K)
N13: " /— o N (132)
I[(INaye "+J\/a—2)
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FIG. 1. Probability of transition between channels 1 and 2.

lTI\/a_z
Ny =— , (133)
i i \/a_le'”'“ +J \/a_z)
[(e"™—1) Va,
= - (134)

L(INaye ™ + Iay)”

IZ\Ee_”"(J+ K)
N23 = () (135)
ZT(I\/a_le_”" +JVa,)

Nae ™ - K\a,

Nyz=——F= —.
WNae ™+ JNa,

(136)

The N matrix is unitary and symmetric. The symmetry proof
is given in Appendix D.

In the physical case, when channel 3 is closed, the value
of a, is negative. It can be shown that in this case the correct
2 X2 N matrix is also given by matrix elements (128)—(131)
when the negative variable a, is replaced by |a;|exp(+i).

The shapes of the Nj,, N3, and N,; surfaces above the
plane (u,a;) are depicted in Figs. 1-3. All of the N-matrix
elements have a singularity along the line a;=0. The behav-
ior of N,j is given by the following limit:

2m
lim Ny;= e~H2 (137)
=0 2a,p
In—
uo+4

VII. CONCLUSION

The energy spectrum and solutions to the exponential Ni-
kitin model as contour Bessel integrals of hypergeometric
function finite series are the main results of this work. The
levels obtained coincide with the inverted spectrum of the
infinite potential box, the size of which is determined by the
model characteristic length. The solution for the first level
has been considered in Ref. [16]. Here we have found the
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FIG. 2. Probability of transition between channels 1 and 3.

closed expression of the N matrix for the second level and
the Bessel representation of the solutions for the third and
fourth levels.

The general exponential Nikitin model contains four di-
mensionless parameters. In the present paper, we demon-
strate a method aimed at the exact solution to basic equations
when these parameters are subject to two conditions that de-
pend on the level number and vary along the spectrum. The
results obtained can be used for a large number of physical
situations by applying the proper N-matrix parametrization.
In particular, the N-matrix analytical representation as a
function of two physical variables—the momentum u in the
lower channel at x — % and the adiabatic potential amplitude
a, in the upper channel at x — —c—can be conveniently ap-
plied to similar problems. In these coordinates, the N surface
has a singularity along the line dividing attractive and repul-
sive upper state potentials. Upon a normal approach to this
line, the system undergoes a three-channel-two-channel

FIG. 3. Probability of transition between channels 2 and 3.
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transformation and the N-matrix amplitudes show logarith-
mic behavior. These results are of interest if the transitions in
complicated systems are studied by dimension truncation.

The results obtained can be applied to study the accuracy
of the adiabatic approximation. For the model considered,
this fundamental problem can be formulated in the low-
energy range. It includes finding the Erdelyi basis set asymp-
totes, the asymptotic solution of the recurrence relations, and
the study of convergence in the Heun function series.

We believe that the current approach will be helpful for
other model studies.

APPENDIX A

1. Parameters of the Bessel representation for the third level:
Three ,F; functions

In the case k=3 we get the equations

v=-3i, (A1)

1
Bo== B+ DB+ B -16).  (A2)

and the parameters r, sq, and 7, for the hypergeometric equa-
tion with m=0,
3 in 1 iu

70=—_+_, So=<-— "> t0=0,

A3
2 2 2 2 (A3)

the parameters ry, s, and t; for the hypergeometric equation
with m=1,

1 i
r1=——+ﬁ,

o
—_B =0, (a4)
272

SITT, T, h

the parameters r,, s,, and t, for the hypergeometric equation
with m=2,

I i 3 iu
=—+—, == -, t—O, A5
Iy 2 2 S 2 2 2 ( )
and solutions Ws,
. 1 iu 3 iu 1
We o= 3/2—iu/2 F(—_+_, -+ 14+ i _>’
Sm=0=% N2 2 T2 2 o
(A6)
i3—ipm) 1/2-iu/2
5.m=1~ X
4
1 iu 1 iu 1)
XoF\ o+, -5+, L+ip, —|,
2‘(2 27 272 L
(A7)
Wi, = i(3- i/-L)(ir‘f - 1)x-1/2-i,u2
i 162 +ipn)
3 i 1 ip 1)
X Fil=+—, —+—, 3+iu, —|, (A8
21(2 2o at g 3rim ) (AY)
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H(E) = Ws oo+ d\ Ws ey + dyWs s (A9)
The coefficients d; and d, are obtained in the form
—i +2i-3i0 + 2iA
d = i(Qu . i—3iQ +2i ),u’ (A10)
(-i+u(A-1)
1 . N2 A2 . .
dy= 5[— w(3i+ p)(p = 3i)°0° = 2ip(p - 3i)
X(u+5)(1+A)Q+2(4A - 1)+ u)?
+32Au)/[(—i+ w) i+ p)(A=1)%] (A11)
with
A=a1/a2, Q=B1/(12. (AIZ)

2. Parameters of the Bessel representation for the fourth level:
Four ,F; functions

In this case we set k=4 and get the following equations:

v=—4i, (A13)
1 Ny, 1
Ba="—=Bi4+u" )4 F B = —pu, (A14)
48 4
parameters
in i
==2 -, =1——, I—O, AIS
ro 2 S0 2 0 ( )
in in
=—1 -, ==, t =0, A16
r 5 S 3 1 ( )
in in
”2—?, S2__1_?7 t2=07 (A17)
in in
=1+—, =-2-—, =0, Al8
r3 5 S3 3 3 ( )

and solutions

. i i 1
Wsln:():xz_lM/Z 2Fl<—1+_M, —2+_M, —2+l',U/, _>,
' 2 2 Z

(A19)

4—ip

i ip iw 1
w. m=1= —xl inl2 F (_» -1+ s M, _>,
5,m=1 41— i) 211 M

2 2 z
(A20)

4—ip)ip=-2)
= BN =2)
: 16(1 + u2)

o |
><2F1<1+l—’u, Boovin —), (A21)
2 2 z
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(4 i) (D ‘
W = ip( l.,Uv)(l,U« 2) "
’ 6403 +iw)(1+ u”)

. . |
><2F1<2+%‘, 1+%’“, 4+iu, Z)’ (A22)

H({) = Ws 0+ d\Ws ey + dyWs ey + d3Ws 3.
(A23)

Here the coefficients d;, d,, and d; are obtained in the form

(—ipQ -40+3+3A4)(u+1i)
(A=1)(n—1)

dl = 5 (A24)

1
dy= [+ m)(16+ pA)(4i— p)Q% = 4i(1+ A)(p+5i) (i + w)

X (= 4i)Q + 12i(5u +4i)A + 6(2i + w)*(1 + AD)]/[(4
+u)(A-1)7, (A25)

dy= é[i(l 116+ p)2(4i = w0+ (1 +A)(1 + D16

+ )G+ 280) (e —4i) 0% +2i(3u’ + 24iu> - 78
+96i — 81 A + 50i *A — 260uA + 320iA + 3 A

+ 24iA% u? — T8 uA* + 96iA) (u — 4i) (i + ) Q + 12(i + )
X(1+A)Qu+ i+ 16)(u—4i)A — 6 (i + ) (2i

+ W (1 +A)(1+ AV [p@ + p?) i - p)(A-1)].

(A26)
APPENDIX B
Here we use the integrals
* 1
f JFi(1=r1=5,2,—x)dx=—, (B1)
0 rs
* dx T(-rI(-
f 2F1(l—r,1—s,2,—x)x Al L)
0 x+c TI(l-r-y)
X, Fi(=r,—s,1=r—s,1-c¢), (B2)
* xdx T(A-1T(1-y)
Fi(l=r1-s2— -
fo il =rd=s x)(x+c)2 re-r-s)
X Fi(1=-r1=s52-r—s,1-c¢), (B3)
and the relations
r+s=ro+so=ri+s;=—1. (B4)

For calculating / and 7, we use the transformations

2
p —a

9
a —da

X=—27z=

dp 1 dx 1 X
— 1- dx,
xX+c
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dp 1 dx_l(d_p xdx)
PP 2ay-a) (x+c)* cla—a)\p  2x+c)?)’
(B5)
with
c=—22 <, (B6)
a) —ay

and for calculating J, .7, K, and 1? we use

2
p —a
a1—az’

d, 1 d 1
TN

x=—1+z=

xX+c
dp 1 dx_l(d_p xdx)
P3 - 2(a; —ay) (x+ C)2 - clay—a)\ p  2(x+ C)2 '
(B7)
with
c=—4 <. (B8)
ay—dap
For the contour
p € (ay, +ix) (BY)
the singularity
xX=-c¢ (B10)

is located above the integration contour in the complex plane

of the variable x. We deform the contour to the line
x € (0,0) (B11)

and displace the singularity above this line. Thus, in this case
we take

a;
c= —ig, >0, &—0. (B12)
ay—das
For the contour
p € (ay,~ i) (B13)
the singularity
xX=-c (B14)

is located below the integration contour in the complex plane

of the variable x. We deform the contour to the line
x € (0,0) (B15)

and displace the singularity below this line. Thus, in this case
we take

a

c= +ie, >0, &£—0. (B16)

ap—dap

As a result we get the expressions in Egs. (83)—(85).
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APPENDIX C

To find the necessary integrals for the first and third solu-
tions, we use the variable

2
p —a
01—02’

(C1

X=z=

and the accurate relations

2p d
EzFl(_ r,—s,1,x)

d
—Fi(=r—s5,1,x) =
dp ay—dap

2
P rsyFi(1=r,1-15,2,x).
ay—das
(c2)

Modifying the integral in Eq. (73),

J_zFl(l -r1- s,2,x)l-1(21’2)(pp)p dp

Vay
a)—dap

© d _
_—f_<_ Fl(_ r’_silrx))H(Zl’z)(pp)dp
N

2rs ) g \dp 2

[’

ay—a| ~
=21 H(ZI’Z)(\’ZPHJ oF1(=r= s, 1.x)
2rs Va,

r7(1,2)
“ ‘“L’;Tlg"’)d@p)) , (C3)

we obtain

o0

11(r,5) == c(r,s) \a:f _,Fi(-a,~b,1.%)
V‘Jﬂz
o dHY? (pp)
d(pp)

For the second and fourth solutions, an analogous proce-
dure with the variable

dpp), arglx)=m. (C4)

x=1-z= (C5)

results in the expressions

o0

T,(r.s) == e™c(r,.s)\a, f JFi(=r,—s,1,%)
vay
dI:'I(l)
% 2 (PP)

W arg(x) =0, (Co6)

d(pp),

[

Kr(r7s)=_eiwrc(r»s)\/a_1f 2F1(_ r,— sal’x)
Jay
dH (pp)

W arg(x) =2r. (CT7)

d(pp),
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To calculate the integrals in the expressions (C4), (C6), and
(C7) we replace the hypergeometric function by its
asymptotic value at |x| — o:

I'(r-s)
TC)T(+n)™s"

I'(s-r)
I'nNl'+s) e

2F1(_ r?_s517'x) =

ws = (x_'ei”)"zFl(— r=rl+s—rx ) =xlem,

m[ I'(r—s) ((az—al)P

F'(=s)I'(1+7r) 2

J(r,s) =—e™c(r,s) \"a_lf
y

0

2

K (r.s) == &™e(r.s)\ay J
y

o LT(=9'(1+r)

At p—0, only those terms of the integrals (C9)—(C11) are
significant that contain the pure imaginary » or s. Using for
these integrals the accurate expressions

® dﬁ(l) 22i,ue—7w,/21-*2i 2
f itz 0, _# @i2) g
0 dy 2ar(u + 2i)
*  dHY 2T (142
[yt (w2 )
0 dy 27r( + 2i)
we finally get
[ mul2e—i ip/2
4 M20=itt( g )ik .
151)(},0’80): \'(128 ((12. Zl) plu’ (C14)
wosinh(arp) (u— 20T (iu/2)
V/a_e_”"
T (rg,50) = = ——=—1"(ry,50), (C15)
Na,
12(rg.50) = = ™1 (rg. ). (C16)
/a_e_”"
Kr(ro,SO)Z A ]/— IE,I)(T(),S()), (C17)
Na,
0 16Vaye ™22 I X (iw/2 +312)
I (rs) = 3 PRI
i(1+ip)(4+ )772(02—‘11)m
(C18)
’f_
Vai,a)
J(ry,s1) = =1 (r,s1), (C19)
Va,

- { I'(r-s) ((02_01)P2
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we= (1™, F (= s,— 5,1 +r—s,x71) = (x" 1™,
(C8)

The result is as follows:

w{ I'(r—s) ((02—01)P2>_r

F=s)(1+r) 2

151’2)(r,s) =—c(r,s) \"aif
y

0

bl

I'(s-7) ((az—a1>p2>*]dﬁ9’”<y> .
)

" I'=rnI'(1+s y? dy
(C9)
2)-* o D(s=1) (<a2—a1>p2>-f _,.m]dﬁé“@)
e+ 5 e ——dy,
(-1 +s) y dy
(C10)
)-r vm . T(s=1) <<az—a1>p2)-s +,.m}dﬁ<£><y>
emm + > e ———dy.
I'-rnT1+s) y dy
(C11)
|
1P(r1,50) == ™10 (ry,51). (C20)
Va,
Kr(r1,51)=_/_—11(r1)(’"1,51)~ (C21)
Nay
APPENDIX D

The symmetry of the N matrix is represented by the rela-
tions:

N12=N21:(EWM—E_WM)VII’T—(IZ)2=O, (Dl)

Niy=Nyy = Va,(e7™ + 1)(J + K)rirt + (D)2 Wa, = 0,

(D2)
N23 = N32 = I(e_w'u - 1)\’/61_2([;—)2 - (J + K)e_w“(l;)zy"’a_] = 0-
(D3)

These three equations are mutually dependent. Equation
(D2) is a combination of Egs. (D1) and (D3). The proof of
Eq. (D1) is straightforward. To check Eq. (D3) we have to
calculate the sum J+K. This sum contains the difference
between hypergeometric functions on the upper and lower
sides of the complex plane cut. To calculate the difference
we use the analytical continuation of the hypergeometric
functions in the vicinity of unity (see [26]).
At

(D4)

we get
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i i i i
2F1<?M, —?M, 2, z+i8)—2F1(?ﬂ, —?M, 2, z—ie)

Cim(l=2)? P 2+ iw2, 2-iw2, 3, 1-2)

D5
(- iw/2)T(iu/2) (D)
and
2F1<1+’§, 1—’?“, 3, z+is>
j i
—2F1(1+%, 1—?“, 3, Z—i&‘)
_—4im(l-2) LF (2 +ip/2, 2-iw2, 2, 1-72)
- T(1—iw2)T(1 +ip/2) '
(D6)

Further simplification is possible:

PHYSICAL REVIEW A 76, 062705 (2007)

Fi(Gw?2, —iu2, 2, z
JFI2+iw2, 2—iu/2, 2, Z)=2 (i i )

(1-2)? ’
(D7)
2402, 2—ip/2, 3, 2)
Fi(l+iw?2, 1-iu/2, 3, z
_ o +ip 2 ). (D8)
1-z
Finally we get
ay -
J+K=I\]—(1-e™). (D9)
a

Using this expression and Eq. (123), the proof of Eq. (D3) is
straightforward.
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