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I. INTRODUCTION

The motion of an electron in the field of two Coulomb
centers �at a fixed distance R� is one of the fundamental
problem in quantum mechanics, which continues to attract
the interests of theoretical physicists. The nonrelativistic
two-Coulomb-center problem has been investigated thor-
oughly in �1–3� �see references therein�. The two-center
Dirac equation was solved for the first time by Müller and
Greiner �4�. There are various approximations for solving the
Dirac equation for the two-Coulomb-center problem �5–8�.

In this paper, we wish to discuss the relativistic two-center
problem with Coulomb vector and Coulomb-like scalar po-
tentials. There has been considerable interest in studying the
behavior of quantum systems of fermions at the presence of
electromagnetic �vector� and scalar external fields �see, for
example, �9–13�, and references therein�. These systems
have a number of extraordinary features, which essentially
do not exist in the case of the presence of the electromag-
netic field only.

The Dirac equation has the following form at the presence

of static scalar Ŝ�r�� and electrostatic V̂�r�� external fields

�c�� · p�̂ + ��m0c2 + Ŝ�r��� + V̂�r�����r�� = E��r�� . �1�

Let us point out that Ŝ�r�� is a Lorentz scalar, and V̂�r�� is the
zero component of a Lorentz vector. The solution and spec-
trum of the Dirac equation for the simple model of the inter-
action of fermions with Coulomb-like scalar and vector ex-
ternal fields,

Ŝ�r� = − �c
�S

r
, V̂�r� = − �c

�V

r
, �2�

have been found in Refs. �14,15�. In Eq. �2� �S and �V are
the scalar and electrostatic coupling constants, respectively.

It is significant that in the context of mixed scalar-vector
models the interaction between leptons and nuclei is carried
out by the exchange of two different types of a field quan-

tum. Namely, if the Coulomb interaction is conditioned by
the exchange of a virtual photon �by the quantum of an elec-
tromagnetic field�, the corresponding scalar interaction of a
lepton with a nuclei can be caused by the exchange of a
virtual neutral particle with spin 0. The main candidate for
this role is the scalar � meson. There are serious theoretical
arguments �see, for example, �16�, and references therein� in
the favor of existence of this particle. It should be mentioned
here that the idea of the existence of such a scalar meson
presumably was first expressed in 1959 �17�. However, it is
important to note that in 1934 De Broglie considered the
existence of a massive “scalar photon” �18�. Recently, two
experimental groups have reported �19,20� the observation of
an anomalous wide scalar resonance in the cascades of non-
leptonic decays of heavy �D , B, and J /V� mesons. In these
experiments the scalar meson has large mass �M
=390 MeV �19–21��, and therefore the scalar potential
which corresponds to the exchange of such a particle �poten-
tial of one-meson exchange� is actually short range �a
Yukawa-type potential�. Nevertheless, as noted in �14,15�
and �22� within the framework of such a relatively simple
model with the scalar-vector variant of the interaction �the
examined model �2��, it is possible to find many interesting
features of the spectrum of leptonic atoms, which would ex-
ist in more realistic models. The simple model �2� describes
the exchange of a virtual massless neutral particle with a
spin-0 photon �“scalar photon”� and a virtual photon �“vector
photon”�. A similar model has been considered for the de-
scription of interaction between a fermion and an antifer-
mion �23�. It should be stressed that the possibility of low-
energy zero-spin photon generation from high-energy �-ray
photons in pair production has been studied in �24�.

As it is well known �see �25,26�� that the essential theo-
retical parameters in the electrodynamics of super-strong
Coulomb fields are the critical charge of a nucleus Zcr and
the critical distance Rcr in the system of two colliding heavy
nuclei. If these parameters are attained, the ground level of
the electron spectrum descends to the boundary of the lower
continuum. Afterwards, i.e., at Z=Z1+Z2�Zcr or R	Rcr, the
spontaneous generation of positrons from the vacuum be-
comes possible. The experimental observation of this effect
would mean the verification of the status of QED and the
Dirac equation in the new region of super-strong fields,
rather than in the traditional direction of super high energies
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and small distances. Such experiments started almost one-
quarter of the century ago at GSI �Darmstadt, Germany� on
the accelerator of heavy ions UNILAC; however, they gave
no positive result in the search for this fundamental process.
In view of such a situation, a number of theorists �15,27�
have considered different modifications of QED and their
influence on the spontaneous generation of positrons. In this
connection, we would like to investigate a question on influ-
ence of additional Coulomb-like scalar potential on Zcr and
Rcr.

We should note that Eq. �1� with the potential �2� can be
used for describing the motion of a relativistic particle with
spin-1/2 and position-dependent mass m��r�=m0�1−�S
c /r�,
where 
c is the Compton wavelength. Similar approach has
been used to study the motion of the relativistic particle with
position-dependence mass in external fields �28�. Wave equa-
tions with a position-dependent mass play an important role
in many physical problems. They appear in the energy-
dependent functional approach to quantum many-body sys-
tems �e.g., nuclei, quantum liquids, 3He clusters, and metal
clusters� and are very useful in the description of electronic
properties of condensed-matter systems �29� �e.g., composi-
tionally graded crystals, quantum dots, and liquid crystals�.

II. ENERGY OF RELATIVISTIC TWO-CENTER SYSTEM
WITH SCALAR-VECTOR INTERACTION

A. Linear combination of atomic orbitals method

One of the simplest methods of calculating the energies of
electron states in molecules is the approximation of wave
functions by a linear combination of atomic orbitals
��LCAO� method� centered on the atoms. In the simplest
form of this method, only a single atomic orbital is used in
the calculation of the electron states; one can then simply
obtain many interesting properties: such as the energy of a
state having arbitrary translational symmetry, the density of
states as a function of energy, and the charge density of the
electrons between the atoms �30�.

The idea of optimizing the atomic orbitals used in the
LCAO method has previously been applied to calculations
on atoms and molecules. It has already been used by Finkel-
stein and Horowitz �31� in their calculations for a H2

+ mol-
ecule. Henceforth, the LCAO method is widely used to solve
the nonrelativistic �32,33� and relativistic two-center prob-
lems �34,35�, which allows us to apply the LCAO method to
calculate analytically the energy term for a hydrogen mo-
lecular ion and for a hydrogen molecule.

In this section we investigate the dependence of the elec-
tron binding energy of the relativistic two-center problem
with potential �2� on the value of the scalar coupling constant
�S. The Dirac equation with the potential of two fixed cen-
ters �2� does not permit complete separation of variables in
any orthogonal system of coordinates. Therefore, we use the
modification of the LCAO method which was first proposed
in �34� for the Dirac equation to find electron energy.

The distance between the nuclei is denoted by R, and the
distances between the electron and the nuclei are denoted by
r1 and r2, respectively. The motion of a relativistic electron
in the field of two fixed centers is described by the time-

independent Dirac equation �1� with the potentials

Ŝ�r�� = − �c��S1

r1
+

�S2

r2
�, V̂�r�� = − �c��V1

r1
+

�V2

r2
� .

�3�

In this paper we consider the symmetric case when �V1
=�V2=�V, �S1=�S2=�S. We will solve Eq. �1� with the po-
tentials �3� within the LCAO method for the ground state by
choosing the wave function in the form

��r�� = c1�1�r�� + c2�2�r�� ,

where �1 ��2� is the wave function of the electron moving
in the field of the first �second� center.

From the normalization conditions 	� j 
� j�=1 �j=1,2�
�32� and the fact that the ground state does not have zeroes,
it follows that

c1 = c2 =
1

�2�1 + G�
,

where G= 	�1 
�2� is an overlap integral and 	� j
= �� j
+� j

+�,


� j�= �� j

� j
�.

For the functions �1 and �2, we shall take the relativistic
wave functions of the atom �9,15� with Coulomb plus scalar
potentials:

� j = Agj�1

0
�, � j = iABgj� cos 
 j

ei� sin 
 j
�, gj = rj

�−1e−
rj ,

A =
�2
�3/2

2����2� + 1�
��m0c2 + E0��N + 1�

4m0c2N
�2
��−1,

B =�m0c2 − E0

m0c2 + E0
,


 =
��m0c2�2 − E0

2

�c
, N =

QVm0c2 + QSE0

�c

,

� = �1 − QV
2 + QS

2,

E0 = m0c2�− QVQS + �

1 + QS
2 � .

Here QS and QV are Ritz’s variational parameters. The details
of the application of the variational principle to the Dirac
equation are discussed in �36�.

The energy of an electron can be calculated as a matrix
element

E = 	�
ĤD
�� . �4�

Substituting these wave functions into Eq. �4�, we reduce the
expression for the energy term to a form involving five inte-
grals which can be expressed analytically in terms of the
complete ��x� and incomplete ��x ,y� Euler � functions.
Thus, we have
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E = E0 −
4�A2�R/2�2��c

1 + G
��1 − B2���sL − QSM�

+ �1 + B2���VL − QVM�� ,

L = I2 + I5, M =
I1 + I2

2
, I1 =

2��2��
a2� ,

I2 =
1

a2�
�2 −
a2

3�2� − 1����2�,a�

+ �1

3
+

a

3�2� − 1��a2�e−a� ,

I3 =
4���2��

a2�+1 ,

I4 =
1

a2�+1
�4� −
2a2�

3�2� − 1����2�,a�

+ �2 +
2a�

3�2� − 1��a2�e−a� ,

I5 =
1

a2�+1��a − ����2�,2a� + �a + ����2�� −
1

2
�2a�2�e−2a� ,

a = 
R, G = 2�A2�1 + B2��R/2�2�+1I4. �5�

In the case when �S=0 �a pure vector coupling�, QS=0 and
QV→Q�, �V→Z� are substituted into formula �5�, we ob-
tain

E =
2�A2�R/2�2�b

1 + G
�Q��I1 + I2� +

a�

2Q�
�I3 + I4�

− 2Z��I2 + I5�� ,

a = Q�R, b =
2

1 + �
, � = �1 − Q2�2,

G = 2�A2b�R/2�2�+1I4, �6�

where Q is an effective charge, �=1 /137 is the fine-structure
constant, and Z is the electric charge of the nuclei.

Now we derive the nonrelativistic limit from Eq. �6�. For
Q��1 ���1� we have

E = Q2�2F1�a� + Q�F2�a� , �7�

where

F1�a� =
1

2

1 + e−a�1 + a − a2/3�
1 + e−a�1 + a + a2/3�

,

F2�a� = − Z�
1 + 2e−a�1 + a� + 1/a − �1/a + 1�e−2a

1 + e−a�1 + a + a2/3�
.

Expression �7� at Z=1 coincides with the well-known Slater
formula for the ground state of hydrogen molecular ion. So
we see that formula �6� at Q��1 ���1� turns to formula
�7�, in contrast to formula �3� �34� in which error was evi-
dently admitted.

The variational parameters QV, QS are generally functions
of R, �V, and �S, that is QV,S=QV,S�R ,�V ,�S�. With a nu-
merical minimization of expressions �5� we find the follow-
ing behavior of variational parameters QV, QS in the limiting
cases R→0 and R→� �results of numerical minimization
are presented in Fig. 1�:

QV,S →
R→0

2�V,S,

α

α α

α

α α

α

α

FIG. 1. �a� The variational pa-
rameter QS as a function of R for
three different values of �S in the
case of �V=68 /137. �b� The
variational parameter QV as a
function of R for three different
values of �S in the case of �V

=68 /137 ��=m0=c=1�.
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QV,S →
R→�

�V,S.

The obtained energy term �5� is a function of R, �V, �S, and
variational parameters QV and QS. Figure 2�a� shows the be-
havior of the electron binding energy of the Er68+-Er68+ ��V

=68 /137� system as the function EBIN�R� of the value of the
scalar coupling constant �S. As we can see from Fig. 2�a�,
the binding energy increases with increasing value of �S. It is
interesting to investigate the limit cases �S=0 and �V=0. In
the case of �V=0 ��S=0.2� the electron binding energy
weakly depends on the internuclear distance R �see Fig.
2�b��.

Now we compare the electron energy obtained by formula
�6� for H2

+ �1�1 /2�g� at the internuclear distance R=2 a.u.
with numerical data from Table 1 of �37�. We find that our
results coincide with the high accuracy data with an accuracy
of 1.5%, which is a good agreement for the relatively simple
method.

Finally, we have achieved analytical formula �5� for the
energy term of the relativistic electron which moves in the
field with the potentials �3�. This formula is correct in a wide
range of internuclear distances and scalar and vector cou-
pling constants.

B. Asymptotic behavior of potential curves of two-center
problem in united-atom limit

The account of an additional number of atomic orbitals in
the LCAO method for calculation of the energy of the system
with the potentials �3� for arbitrary level �not only in the
ground state� will lead to a complication of the calculations.
Therefore, it is convenient to apply asymptotic methods in
some special cases. When the internuclear distance R goes to
zero, it is possible to consider the relativistic two-center
problem within the perturbation theory. We will examine the
symmetric case when the coupling constants �S1=�S2

=�S /2, �V1=�V2=�V /2 �in this section, these constants are
different from the coupling constants �V and �S of the united
atom in Sec. II A�. Let us represent the Hamiltonian of the
two-center problem with the potentials �3� by the sum of a

Hamiltonian of zero approximation ĤUA and a perturbation

Ŵ,

Ĥ = ĤUA + Ŵ . �8�

The Dirac Hamiltonian ĤUA of the united relativistic atom is
given by

ĤUA = c�� · p�̂ + ��m0c2 − �c
�S

r0
� − �c

�V

r0
, �9�

where the atom is placed on the z axis at the point O which
divides the internuclear distance R by one-half.

Let us introduce the spherical coordinate system
�r0 ;
0 ;�0�: its origin is at the point O, and the angle 
0 is
measured from the z axis, which is directed from center 1 to
center 2.

Now we construct the unperturbed wave function of the
united atom. For the zero-order function we will choose the
unperturbed wave function of the united atom with the

Hamiltonian �9�. The eigenvalues of the operator ĤUA are
characterized by the spherical quantum numbers n, j, l, and
m; where n is the principal quantum number, j and l are the
total electron and orbital angular momenta, and m is the pro-
jection of j onto the internuclear axis z. The eigenfunctions

of the operator ĤUA have the following form �9,15�:

�njlm
UA �r0

→� = � f�r0�� jlm�
0,�0�

�− 1�1+l−l�/2g�r0�� jl�m�
0,�0� �, l = j ±
1

2
,

α

α α

α
α

α

a b

FIG. 2. �a� The ground-state
binding energy of the Er68+-Er68+

system obtained for three different
values of �S. �b� The ground-state
binding energy obtained for the
special cases �S=0 and �V=0 ��
=m0=c=1�.
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l� = 2j − l , �10�

where � jlm is a spherical spinor, the radial functions f and g
are the large and small components of a Dirac bispinor wave
function, respectively,

� f

g
� = ±

���2� + nr + 1�

��2� + 1��nr!
� m0c2 ± EUA

4m0c2N0�N0 − ��
�2
�3/2

��2
r0��−1e−
r0��N0 − ��F�− nr,2� + 1;2
r0�

� nrF�− nr + 1,2� + 1;2
r0�� , �11�

where


 =
��m0c2�2 − �EUA�2

�c
, N0 =

�Vm0c2 + �SEUA

�c

,

� = ��2 − �V
2 + �S

2, nr = n − j − 1
2 , � = ± � j + 1

2� ,

and F�a ,b ;z� is the confluent hypergeometric function.

The eigenvalues of the operator ĤUA are determined by
the formula �see, for example, �22��

EUA = m0c2� − �V�S

�V
2 + �n − j − 1/2 + ��2

+ 
� �V�S

�V
2 + �n − j − 1/2 + ��2�2

−
�S

2 − �n − j − 1/2 + ��2

�V
2 + �n − j − 1/2 + ��2�1/2� . �12�

Since the spectrum of the operator ĤUA is degenerated with
respect to l and m, in order to apply the perturbation theory,
it is necessary to construct the exact functions of the zero
approximation, for which the matrix of the perturbation op-

erator Ŵ is diagonal. We can show that the matrix �Wnjlm
njl�m��

of the perturbation operator will be diagonal for the functions
of the united atom �10� and �11�. Now we determine matrix
elements of the perturbation operator of the system,

Ŵ = �c��V + ��S�� 1

r0
−

1

2
r0
→ + R� /2


−
1

2
r0
→ − R� /2


� .

For this purpose we will use the expansion of Ŵ in terms of
the Legendre polynomials:

Ŵ = �c��V + ��S�� 1

r0
−

1

2��
s=0

�

�− 1�s�R/2�sr0
−s−1Ps�cos 
0� , r0 � 
R� /2


�
s=0

�

�− 1�s�R/2�−s−1r0
s Ps�cos 
0� , r0 	 
R� /2
 � −

1

2��
s=0

�

�R/2�sr0
−s−1Ps�cos 
0� , r0 � 
R� /2


�
s=0

�

�R/2�−s−1r0
s Ps�cos 
0� , r0 	 
R� /2
 �� .

�13�

The coefficient of r0
−2P1 for r0� 
R� /2
 is equal to zero. The

estimates of all the radial and angular integrals with the func-
tions �10� and �11� show that in the case of R→0, the matrix

�Wnjlm
njl�m��, which has the following components,

Wnjlm
njl�m� =� �njlm

UA+
�r0
→�Ŵ�njl�m�

UA �r0
→�dr0,

is diagonal up to O�R3� with respect to each group of mutu-
ally degenerated states, i.e.,

Wnjlm
njl�m� = �ll��mm��Wnjlm

njlm�2 + O�R3� .

The leading term �Wnjlm
njlm�2 of the expansion of the diagonal

matrix element of Ŵ is determined by the expansion �13� for

r0� 
R� /2
, where the integration over r0 is carried out from
zero:

�Wnjlm
njlm�2 = − ��V�c

4
R2�� 
�njlm

UA �r0
→�
2r0

−3P2�cos 
0�dr0
→ − ��S�c

4
R2�� �njlm

UA+
�r0
→���njlm

UA �r0
→�r0

−3P2�cos 
0�dr0
→

=
�3m2 − j�j + 1��
3

4j�j + 1�2���2 − 1��4�2 − 1�m0c2N0
R2�c��V�3�N0

2 − �2��V�c
 − 3�m0c2�� + nr� + N0m0c2�2�2 + 1��

+ �S�3�N0
2 − �2��S�c
 + N0�2�2 + 1�EUA − 3�EUA�nr + ���� . �14�
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The formulas �12� and �14� determine the two first terms of
the expansion for small R of total energy, which includes the
rest energy of the electron of the system,

Enjlm��V,�S;R� = EUA + �Wnjlm
njlm�2 + O�R3� . �15�

C. Asymptotic behavior of potential curves of two-center
problem in separated-atom limit

We shall determine the energy E�R� and the wave func-
tion ��r� ;R� of the electron in the other limit case, when the
distance R between the centers is large. This distance should
be so large that the quantum penetrability of the potential
barrier, which separates the atomic particles, would be much
smaller than a unity. When the constants of the vector �V1
and �V2 and scalar �S1, �S2 coupling are different, the eigen-
values E�R� of the two-center problem are divided into two
classes in the asymptotic limit R→�: EI and EII—potential
curves that for R→� transform into the energy levels of
isolated atoms 1 and 2, respectively.

The criterion of applicability of the expansion given be-
low is a requirement that the wave function of the �1 state,
for instance, of atom 1 should not be strongly perturbed by
the other particle. The distortion of the dependence of this
function on the coordinates should be small. This is related
to the energy shift of the state which is induced by the inter-
action with perturbing particle 2. To be able to apply the
perturbation theory, the external field of particle 2 must be
weak compared to typical intra-atomic fields.

Similarly to Eq. �8� we represent the complete Hamil-
tonian of the two-center problem by a Hamiltonian zero ap-

proximation ĤSA and a perturbation V̂,

Ĥ = ĤSA + V̂ .

Let us introduce the spherical coordinate system �r1 ;
1 ;�1�:
its origin is at center 1, and the angle 
1 is measured from the
axis directed from center 1 to center 2. The Hamiltonian of

the separated atom 1 will act as ĤSA:

ĤSA = c�� · p�̂ + ��m0c2 − �c
�S1

r1
� − �c

�V1

r1
.

At large internuclear distances, the operator of the interaction

between the electron and the second center V̂=−�c
��S2+�V2


r1
→−R� 


can be considered as a small perturbation to the Hamiltonian

ĤSA.

The eigenvalues of the operator ĤSA similarly to ĤUA are
characterized by the set of the quantum numbers n1, j1, l1,

and m1. The eigenfunctions �n1j1l1m1

SA �r1
→� are represented by

the formulas which are obtained from Eqs. �10� and �11� by

substituting r0
→→r1

→ and introducing index 1 in the other for-

mulas. The eigenvalues of the operator ĤSA are determined
by the formula �see, for example, �22��

E1 = m0c2� − �V1�S1

�V1
2 + �n1 − j1 − 1/2 + �1�2

+ 
� �V1�S1

�V1
2 + �n1 − j1 − 1/2 + �1�2�2

−
�S1

2 − �n1 − j1 − 1/2 + �1�2

�V1
2 + �n1 − j1 − 1/2 + �1�2�1/2� .

The matrix elements of the operator V̂ can be determined
from the expansion

V̂ = − �c��V2 + ��S2���
s=0

�

Rsr1
−s−1Ps�cos 
1� , r1 � 
R� 


�
s=0

�

R−s−1r1
s Ps�cos 
1� , r1 	 
R� 
 � .

�16�

The matrix �Vn1j1l1m1

n1j1l1�m1��, which consists of the following matrix
elements,

Vn1j1l1m1

n1j1l1�m1� =� �n1j1l1m1

SA+
�r1
→�V̂�n1j1l1�m1�

SA �r1
→�dr1

→,

is not diagonal with respect to l1 �however, it is diagonal
with respect to m1�, which is different from the case of the
united atom. For the wave functions of the zero-order ap-
proximation we can write

�0 = �
l1�m1�

Cl1�m1�
l1m1�R��n1j1l1�m1�

SA �r1
→� . �17�

By substituting expansion �17� into the Dirac equation with

Hamiltonian Ĥ, multiplying by �n1j1l1m1

SA+
�r�1� at the left-hand

side, and integrating over the electron coordinates, we
achieve the secular equation

�
l1�m1�

��EI − E1��l1l1�
�m1m1�

− Vn1j1l1m1

n1j1l1�m1��Cl1�m1�
l1m1�R� = 0, �18�

where �lm is the Kronecker �.
Obviously, the first term in expansion �16� for the pertur-

bation operator is diagonal with respect to mutually degen-
erated states, the second term contains the following nonzero
off-diagonal elements:

Vn1j1j1+1/2m1

n1j1j1+1/2m1 = Vn1j1j1−1/2m1

n1j1j1−1/2m1 = −
�c

R
��V2 +

�S2E1

m0c2 � , �19�

Vn1j1j1+1/2m1

n1j1j1−1/2m1 = − Vn1j1j1−1/2m1

n1j1j1+1/2m1

=
�c

R2

im1
�N1

2 − �1
2

4j1�j1 + 1�
1m0c2N1
��V2�E1N1

+ 2m0c2�nr1
+ �1�� + �S2�2�nr1

+ �1�E1

+ N1m0c2�� . �20�

By using matrix elements �19� and �20� and solving the
equation, which is obtained from the condition that the de-
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terminant �18� equals zero, we obtain the expression for the
energy terms within the first-order perturbation theory,

EI�R� = E1 −
�c

R
��V2 +

�S2E1

m0c2 � +
�c�1

R2 + O�R−3� ,

�1 = ±
m1

�N1
2 − �1

2

4
1j1�j1 + 1�N1m0c2 ��V2�E1N1 + 2m0c2�nr1
+ �1��

+ �S2�2E1�nr1
+ �1� + N1m0c2�� , �21�

where “±” corresponds to the state with l1= j1±1 /2.
The asymptotic expansion of the potential curve EII is

obtained from EI by substituting E1→E2, �V1,2→�V2,1;
�S1,2→�S2,1; n1 ,�1 , j1 ,m1→n2 ,�2 , j2 ,m2.

D. Comparing results

It is interesting to compare the results obtained by the
variational formula �5� with the results of more precise
asymptotic formulas �15� and �21� within the limits of their
applicability. As a result, the energy term �5� for the ground
state and parameters R=0.05, �S=0.8, and �V=68 /137
amounts to 2.01�10−4% of the energy �15�. The energy �5�
for parameters R=15, �S=0.8, and �V=68 /137 amounts to
2.7�10−3% of the energy �21�. These comparisons clearly
show us a good accuracy of the LCAO method for finding
electron binding energy. Dependences of the electron binding
energy on R are presented in Fig. 3 for the ground states of
the Er68+-Er68+ system, which have been calculated by means
of the formulas obtained within the LCAO method �5� and
the perturbation theory �Eqs. �15� and �21��.

It is important to note that the analytical formulas ob-
tained here for the energy �15� and �21� coincide with the
corresponding results of Ref. �8� when �S=0.

III. CRITICAL PHENOMENA

A. Critical charge of nucleus

In Sec. II A we have demonstrated a strong influence of
scalar interaction on the electron binding energy �Fig. 2�.
Therefore, it is natural to expect significant influence �S on
the parameters Zcr and Rcr of the theory.

In this section we use the effective-potential method pro-
posed by Popov �38� for obtaining the critical nuclear charge
within the model �2� in the limit L=ln�1 /rn��1, when the
cutoff radius rn is arbitrarily small compared to the electron
Compton wavelength �so-called logarithmic approximation�.
Assuming that the potentials of the system are spherical sym-
metric, we can derive the coupled radial differential equa-
tions in the usual way �22� �in this section the relativistic
units �=m0=c=1 are used�:

dF

dr
= −

�

r
F + �� + 1 + Ŝ�r� − V̂�r��G ,

dG

dr
=

�

r
G − �� − 1 − Ŝ�r� − V̂�r��F , �22�

where

F�r� = rf�r�, G�r� = rg�r� ,

and �=E /m0c2 is the electron energy.
We consider the region r�0, where the constant terms

proportional to the mass and energy can be neglected. Using
the transformation

�F

G
� = �i�r��V � S, i = 1,2,

we can reduce Eq. �22� to the form of a self-adjoint
Shrödinger equation

(a) (b)

FIG. 3. �a� The ground-state
binding energy of the Er+68-Er+68

system obtained for �S=0.8 in the
united-atom limit: curve I, calcu-
lations by asymptotic formula
�15�; curve II, calculations by the
LCAO method �5�. �b� The bind-
ing energy obtained for �S=0.8 in
the separated-atom limit: curve
III, calculations by asymptotic for-
mula �21�; curve IV, calculations
by the LCAO method �5� ��=m0

=c=1�.

SIMPLE MODEL OF SCALAR-VECTOR INTERACTION FOR … PHYSICAL REVIEW A 76, 062507 �2007�

062507-7



�i� + ki
2�r��i = 0, �23�

where

ki
2�r� =

r→0
V2 − S2 +

�V � S��
2�V � S�

−
3

4

��V � S���2

�V � S�2 �
�

r

�V � S��
�V � S�

�
��±� + 1�

r2 .

Let potentials Ŝ�r� and V̂�r� have the form �2� at small r; thus

ki
2�r� �

�V
2 − �S

2 − j�j + 1�
r2 .

The form of the wave function can be obtained from �23� at
small distances r,

��r� � r�, �1,2 = 1
2 ± �, � = ��2 − �V

2 + �S
2.

Let us first suppose that �V
2 −�S

2	�2; hence, �1 and �2 are
real and �1��2. Thus, from two solutions, we must choose
one which becomes infinite less rapidly. Next, let �V

2 −�S
2

��2; therefore, �1,2= 1
2 ± i� are complex, and both solutions

have the form

��r� =
r→0�r sin�g ln r + const�, g = i� = ��V

2 − �S
2 − �2.

�24�

The presence of oscillating asymptotics �24� indicates that
the level with �=−1 exists. Therefore, using the terminology
from �38�, we will call the value 
�V cr

p 
=��2+�S
2 as a “criti-

cal charge” of a pointlike nucleus. At �S→0 we reach Zcr
p

=137�V cr
p =137�j+1 /2�, which coincides with the results

from �38�.
Now we will demonstrate how to find �V cr in the cutoff

potential. For simplicity, we will consider the case when rn
�
c=� /m0c2 �more exactly L=ln�1 /rn��1�. On the one
hand, the wave function in the region rn	r�1 has the form
�24�. On the other hand, the ground-state wave function
�0�r� cannot have zeros; wherefrom

gL 	 � .

The maximum of the value g=gcr=� /L corresponds to the
moment when the lowest level with this j has reached �
=−1 �in the case g�gcr, ��r� would have a zero, which is
impossible�. From the condition gcr=� /L, we find that


�V cr
 = 
Zcr�
 =��2 + �S
2 + ��

L
�2

. �25�

Therefore, the following asymptotic formula can be ob-
tained:


�V cr
 = ��2 + �S
2�1 +

�2

2��2 + �S
2�L2� + O�L−3� .

The first term of this expansion defines the value of the criti-
cal charge of the pointlike nucleus, and the second term takes
into account a finite size of the nucleus. At �S→0 this for-
mula coincides with the result by Popov �38�. In the same
work, it has been shown that this approach has a good accu-

racy even at rn=10−12 cm, L=3.5. Equation �25� is transcen-
dental with respect to �V cr. To solve it, we accept that rn
=r0A1/3, where r0=1.1 fm and the dependence of A on the
charge of the nucleus is defined by the formula A=2.6Z fol-
lowing �40� �see curve II in Fig. 5�. The solution of Eq. �25�
for different values �S is given in Fig. 4. In accordance with
Eq. �25�, we observe that the critical charge Zcr increases
with increasing the scalar coupling constant �S.

The formula �25� at �S=0 gives the value Zcr=185 �which
exceeds the exact value Zcr�170�, so the obtained formulas
can be used only for the qualitative description of the depen-
dence of the critical charge Zcr on �S. Better results can be
obtained within the more strict investigation of the Dirac
equation with potentials �2� �43�.

B. Critical distance for colliding nuclei

In this section we investigate the influence of scalar cou-
pling constant �S on the value of critical distance Rcr in
collisions of heavy ions. The critical distance Rcr is the maxi-
mal separation between the heavy ions at which spontaneous
positron production may occur. For this purpose we use a
method of matching the asymptotics proposed in �41�. The
configuration space in the two-center problem can be divided
into three regions: r1�R or r2�R �region I�; r1 ,r2�R �re-
gion II�; r1 and r2�R �region III�. We shall find the solution
of the Dirac equation in region I and region II ��I and �II
accordingly�. In Ref. �42� it was shown that the solutions �I
and �II must be sewn under the condition �=−1. For this
purpose it is necessary to consider the behavior of �I and
�II in intermediate region III.

Let us investigate the wave function � at �=−1 near to
nuclei �region I�. For this purpose we shall write the Dirac
equation in the following form:

��� · p�̂�� = − �V̂�r�� − Ŝ�r���� ,

δ

α

FIG. 4. The dependence of the ratio �= �Zcr�S+V / �Zcr�V on the
scalar coupling constant �S, where �Zcr�S+V ��Zcr�V� is the critical
charge which takes into account �neglects� the scalar interaction.
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��� · p�̂�� = − �V̂�r�� + Ŝ�r�� + 2�� , �26�

where � and � are upper and lower bispinor components,

respectively. The substitution �= �V̂− Ŝ�−1/2� transforms
these equations into one which is similar to the Schrödinger

equation with an effective potential Û,

�� − 2Û�� = 0, �27�

where

Û = − V̂ + Ŝ +
Ŝ2 − V̂2

2
+

��V̂ − Ŝ�

4�V̂ − Ŝ�
+

3

8��� �V̂ − Ŝ�

V̂ − Ŝ
�2

−
�� ��� �V̂ − Ŝ�,p�̂�

2�V̂ − Ŝ�
.

It is convenient to investigate Eq. �27� using the elliptic co-
ordinates �� ; � ; ��. The wave function near to the nuclei
has the following form �42�:

���,�� � ��2 − �2��. �28�

Inserting Eq. �28� into Eq. �27� and taking into account only
terms �R−2 �R�1�, we obtain

� = − 1
2 ± �, � = �1 − �V

2 + �S
2.

Thus, near the nuclei

�I,�I � ��2 − �2��−1

�from two solutions we must choose one which becomes
infinite less rapidly�. We can obtain the wave function in
exterior region II from the Dirac equation with the potential

V̂ + �Ŝ = −
�V

r
− �

�S

r
��V,S = 2�V,S� .

The equations for the radial functions of the ground state
have the following form at r�1:

dF

dr
=

F

r
+

�V − �S

r
G ,

dG

dr
= −

G

r
−

�V + �S

r
F . �29�

Solving this system, we will obtain

F = sin�� − g2 ln
2r

R
�, G = − sin��̃ − g2 ln

2r

R
� ,

where

�̃ − � = arctan g1, g1 = ���V − �S�2 − 1, g2 = ��V
2 − �S

2 − 1.

By comparing our result with the exact solution of the Dirac
equation, we have defined the phase �=arg ��1+2ig2�
−g2 ln���V−�S�R�.

It is easy to show that at R�r�1,

�II � �−�1+g2 cot ��, �II � �−�1+g2 cot �̃�.

After matching the probability-distribution density �=�†�,
which is integrated over the spinor indexes, in region III
R�r�1 �for details see �42��, we obtain the formula for Rcr,

Rcr =
1

2��V − �S�
exp
−

1

g2
��

2
− arctan �̃

− arg ��1 + 2ig2��� , �30�

here

�̃ =
�1 − 2��g1 + ��V − �S − 1�g2

g2g1 + �2� − 1���V − �S − 1�
.

Expression �30� at �S=0 coincides with the well-known
Popov formula �11� �42�.

The results obtained by means of formula �30� for the
ground states of three different systems of colliding heavy
nuclei U92+-U92+, Np93+-Np93+, Pu94+-Pu94+ are shown in Fig.
5. From this figure it is clear that the function Rcr has maxi-
mum at �S�0.06−0.08 and afterwards monotonously falls
down with increasing �S.

In the end of the paper we would like to check an accu-
racy of the method of matching the asymptotics. For this
purpose we have considered the problem of the critical
charge of the nucleus within the model �2� and have checked
the formula obtained with the exact results of work �43�.
Thus, the following formula was obtained for the critical
charge �V cr of a spherical nucleus with the radius rn,

rn =
1

2��V cr − �S�
exp�−

1

g0

�

2
− arctan�−

�

g0
�

− arg ��1 + 2g0��� , �31�

where

FIG. 5. The dependence of the critical distance Rcr �fm� on the
scalar coupling constant �S for three different systems of colliding
heavy nuclei.
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g0 = ��V cr
2 − �S

2 − 1, � = 
�rF�/F�
r=rn
.

Equation �31� is transcendental with respect to �V cr=Zcr�.
The numerical solution of Eq. �31� is shown in Fig. 6 �curve
III�. The function Zcr��S� has a minimum at �S�0.08−0.1
and grows dramatically with increasing �S. The comparison
of expression �31� with the results of the exact calculations
�see Eq. �45� in �43�� reveals that this formula provides Zcr to

a percent precision. Expression �31� at �S=0 coincides with
the Popov formula �11� �42�.

It is necessary to note that following �43� we used the
rectangular cutoff model of the potentials �2�. The logarith-
mic derivative can be found analytically �for the ground
state� within this simple model

� = ��V cr
2 − �S

2 cot��V cr
2 − �S

2.

IV. CONCLUSIONS

In this paper we investigate the two-center problem for
the Dirac equation with a Coulomb and scalar potential. By
means of the LCAO method, we calculate the ground-state
wave function and the energy term of the electron as func-
tions of the internuclear distance R and the coupling con-
stants �V and �S. The expressions for the energy in the
united-atom and separated-atom limits are obtained for arbi-
trary states of the two-center system by means of the pertur-
bation theory. The obtained analytic results show that the
energy increases with increasing the value �S. Apart from the
fundamental results obtained for the two-center problem, we
investigate the dependence of the critical charge Zcr and the
critical distance Rcr on �S. A strong influence of the Lorentz
structure of the interaction potentials on the critical charge
and the critical distance is revealed.
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