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The mechanism of the shift, broadening, and quenching of the ammonia inversion frequency with gas
pressure has been a problem of lively interest for over 70 years. A simple quantum model of the ammonia
molecule perturbed by collisions with ideal gas molecules displays the essential features of the experimental
data for NH3 and for ND3. The model does not display the behavior expected from theories of environmental
decoherence. On the other hand, models of perturbed classical oscillators do display behavior similar to our
model and to experimental data. The quenching of the ammonia inversion transition cannot therefore be
interpreted as spatial localization of the wave function.
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INTRODUCTION

In chemistry, molecules have structures that can be de-
scribed classically in terms of the spatial localization of the
atoms. This is clearest in the case of enantiomorphic mol-
ecules which may be separated into dextro and laevo forms.
In contrast, in quantum mechanics, the ground states of mol-
ecules are eigenstates of energy which are, in general, super-
positions of spatially defined states �1�. How the chemical
molecular states arise is an example, and perhaps the most
acute example, of the problem of the emergence of the clas-
sical world from quantum theory, or the problem of measure-
ment. While there is no rigorous explanation of this emer-
gence, so that it is still best expressed without explanation by
von Neumann’s measurement or collapse axiom, decoher-
ence mechanisms are perhaps the most popular of putative
explanations of the appearance of classical behavior �for re-
views see Refs. �2–4��. Be that as it may, any explicit model
of measurement, collapse, or the emergence of the classical
world requires testing. The ammonia molecule is often used
for this, as it is light enough to display the inversion transi-
tion between the quantum ground and first excited states at
low pressure, while at higher pressures the inversion transi-
tion broadens, shifts to lower frequency, and then quenches
�the frequency goes to zero�. This quenching might be con-
sidered as a direct observation of quantum decoherence or
even quantum localization due to interaction with the envi-
ronment �2–4�. In this paper, we show that interaction with
the environment quenches the inversion transition for what
might be described as “classical” reasons. The broadening,
shift, and quenching of the inversion transition are simply
consequences of impacts and may be described within the
framework of a classical oscillator subject to noise from the
environment. There is no evidence for localization onto spa-
tial eigenstates.

Since the early days of microwave spectroscopy, the in-
version transition of the ammonia molecules NH3 and ND3
has been extensively studied experimentally and theoreti-
cally. The ammonia molecule has two spatial eigenstates �L�

and �R� with the nitrogen atom on one side or the other of the
plane of hydrogen atoms, and its energy ground and first
excited states �0� and �1� are the symmetric and antisymmet-
ric quantum superpositions of the spatial eigenstates �ignor-
ing rotational and vibrational states�. The ammonia maser is
based upon the transition between the energy eigenstates,
which may also be described as the Rabi oscillation between
the spatial eigenstates and which is a quantum phenomenon
with no classical analog.

BACKGROUND

At low pressures in the gas phase, the transition between
the energy eigenstates is observed near 24 GHz �0.8 cm−1� in
NH3 �5�. In ND3 �6� the transition is near 1.6 GHz
�0.053 cm−1�. In NH3, broadening is observed at pressures
above a few mm of mercury, with a shift to lower frequency,
and quenching is complete at about 1.7 bar. In ND3, pres-
sures about 15 times lower yield the same effects, in propor-
tion to the inversion transition frequency.

The first explanation of the shift and broadening of the
ammonia inversion transition frequency was given by Ander-
son �7� in terms of perturbation by the electric dipole-dipole
interaction between ammonia molecules. Anderson’s discus-
sion was only qualitative. Margenau investigated the quan-
tum states of two ammonia molecules coupled by their
dipole-dipole interaction in more detail �8�. He showed that
the interaction leads to the splitting of the transition into a
higher frequency component with reduced strength and a
lower frequency with increased strength. While this accounts
for the initial shift to lower frequency, it fails to account for
the quenching of the inversion transition at a higher pressure.
More recently, the existence of a phase transition to a super-
position of localized states has been suggested using a
dipole-dipole interaction model treated by a quantum mean-
field approximation as well as the coupling to a radiation
field. This model also yields a frequency shift and quenching
in the limiting case of infinitely many photons of the radia-
tion field, at pressures for NH3 and ND3 in good agreement
with experiment �9,10�. Further work shows the existence of
stable localized states when dissipation is included �11–13�.*Corresponding author.
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The standard theory of line-broadening by impact is given
by Van Vleck and Weisskopf �14�. It predicts a line-shape
function

f��� =
1

1 + b−2�� − �0�2 +
1

1 + b−2�� + �0�2 , �1�

where the width b is given by 1 /2�� for strong impacts
occurring at a mean interval of �, and therefore proportional
to the pressure. The theory does not predict any peak shift: �0
is a constant, the natural frequency of the oscillator. Ander-
son developed the theory further and obtained a shift of �0 to
lower frequency equal to the width b �15�. Fano recast the
problem of pressure broadening in the Liouville representa-
tion and obtained a shift to lower frequency independent of
the broadening �16�. Ben-Reuven used the Fano theory to
show that the ammonia spectra can be well-fitted with a re-
lated expression but with three independent parameters pro-
portional to the pressure. Two of them express the effects of
elastic collisions on the width and on the frequency shift as
in Eq. �1�, and the third parameter expresses the effect of
inelastic collisions �17�.

We are interested in a dynamical theory of the transition
and of quenching and localization. It is important to know if
the dipole-dipole interaction of ammonia molecules is crucial
to the quenching, or if it merely influences the collision cross
section. In a dynamical model, one might also hope to ob-
serve decoherence or localization. Accordingly, we have set
up a molecular dynamics simulation in which the quantum
nature of the ammonia molecule is explicitly taken into ac-
count. We find that the model accounts for the shift, broad-
ening, and quenching of the inversions transition purely in
terms of perturbation by collision with ambient gas mol-
ecules, without any quantum localization.

AMMONIA QUANTUM MOLECULAR DYNAMICS
MODEL

We model the problem in one dimension. The model is
described in more detail in Ref. �18�. The ammonia molecule
is represented by a double-well potential, with the two time-
dependent spatial wave functions �L and �R. With a weak
coupling between the wells the Hamiltonian in the spatial
basis is

H = � �0
1
2�1

1
2�1 �0

� . �2�

Diagonalizing the Hamiltonian, the ground and first excited
states of the system are found to be �0 and �1 with a fre-
quency splitting of �1. The general state of the system is a
superposition, with

� = a�0 + b�1,

�a�2 + �b�2 = 1. �3�

Expanding this in the spatial basis set �L and �R, we have
time-varying coefficients,

� = ��t��L + ��t��R �4�

so that the amplitude of the wave function beats or oscillates
between the two wells. The squared amplitude ���t��2=��*

oscillates at the frequency �1 and with a beat amplitude that
depends on the initial values of a and b, from zero for, e.g.,
a=1, b=0 to a maximum amplitude of unity for, e.g., a=b
=1 /	2. This oscillation is the inversion transition or Rabi
oscillation of the molecule.

We model impacts, or interactions with the environment,
by a term which is diagonal in the spatial representation.
That is, we suppose that the double well is tilted during an
impact. If a gas atom coming in from the left raises the
energy of the left-hand well, the Hamiltonian during impact
is

H� = ��0 + �P
1
2�1

1
2�1 �0

� . �5�

Diagonalizing and expanding in the spatial basis set as be-
fore, we obtain the normalized eigenvectors u and v of H�.
Equations �3� and �4� become

�� = aP�0� + bP�1� = ���t��L + ���t��R. �6�

The Rabi oscillation is now at a much higher frequency and
a much smaller amplitude �for �P��1�. In reality, the per-
turbation rises and falls continuously in an impact, but we
approximate with a top-hat function, so that �P is switched
on at a time t0 and switched off again at t1. At these times,
we match the coefficients in the spatial basis, using ���t0�
=��t0� and ���t0�=��t0� to solve for aP and bP at the onset of
the perturbation, and then the new ��t1�=���t1�, ��t1�
=���t1� to solve for the new a and b at the end of the per-
turbation. These boundary conditions ensure that the ampli-
tude and phase of the wave function in each well do not
change discontinuously at the beginning and end of the per-
turbation. The resulting time evolution of the occupancy or
population term ��* is illustrated in Fig. 1.

To model NH3 and ND3, we can choose the units of time
so that the Rabi frequency is unity ��1=2��. The strength of
the perturbation is of the order of kBT, which at room tem-
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FIG. 1. The evolution of the occupancy of the left-hand well is
shown with two perturbations occurring at t=0.7 and 1.6. The units
of time are chosen so that the Rabi angular frequency �1 is 2�. The
perturbation is �P=60. The initial wave function is given by a=b
=1 /	2; after the two perturbations the values are a=0.54−0.73i,
and b=0.36+0.22i.

I. M. HERBAUTS AND D. J. DUNSTAN PHYSICAL REVIEW A 76, 062506 �2007�

062506-2



perature is 208 cm−1. For NH3, therefore, we take �P
=208�1 /0.8=260�1 and for ND3, �P=208�1 /0.0.053
=3925�1. The duration 	t= t0− t1 of an impact is hard to
estimate. However, inspection of Fig. 1 shows that to achieve
a strong impact �in the sense of Van Vleck and Weisskopf
�14��, we need something of the order of one cycle of the
perturbed Rabi oscillation, i.e., �P	t
2�, while larger val-
ues will have no extra effect. We therefore take values of 	t
from a random distribution over the range 0 to 2� /�P. The
average frequency of impacts corresponds to the gas pres-
sure. We require an impact cross section to relate the fre-
quency of impacts to the gas pressure quantitatively. Bleaney
and Loubser �19� and other authors obtain impact cross sec-
tions from the pressure-broadening of the transition, assum-
ing strong impacts and using b=1 /2��. We shall see below
that such estimates are unreliable, and therefore in our simu-
lation we use the measure p impacts per Rabi cycle instead
of pressure, and we vary p over a wide range.

We calculate the values of �*� at discrete time intervals

t with 	t�
t�1. At each time interval we have a probabil-
ity 
t /� of having an impact, so that there are p=1 /� impacts
per cycle. If there is an impact, we use ���t0�=��t0� and
���t0�=��t0� to solve for aP and bP at the onset of the per-
turbation, and then calculate the new ��t1�=���t1�, ��t1�
=���t1� to solve for the new a and b at the end of the per-
turbation. Then the calculation of the list of values is re-
sumed. Examples are shown in Fig. 2 for medium �a� and
high �b� values of p. The numerical Fourier transforms of the
lists are calculated, shown in Figs. 2�c� and 2�d�, and fitted
with Af��� of Eq. �1�, with b, �0, and amplitude A as fitting
parameters. Our interest here is the fitted values of b and �0
as functions of p. In Fig. 3 these are compared with the
experimental data for NH3 �19� and ND3 �6� with the con-
stant of proportionality between p and pressure �correspond-
ing to the impact cross section� as a free parameter.

The NH3 data is plotted using the conversion factor of a
pressure P=1 bar being equivalent to p=4.5 impacts per
cycle. For ND3, the data fits equally well but with p=4.5

equivalent to the pressure P=1 /15 bar, consistent with the
15 times lower inversion frequency in ND3 given the same
impact parameter. In both cases, full quenching is observed
at about 6.5 impacts per cycle. The model presented here
accounts remarkably well for the shift and quenching of the
ammonia inversion transition peak. It accounts less well for
the broadening, which occurs initially at the rate b
0.25p in
the simulation and in the ND3 data while the broadening
occurs only at b
0.18p in the NH3 experimental data.
Above the quenching pressure the NH3 experimental broad-
ening continues to increase while the model broadening de-
creases. To gain a better understanding of this behavior, we
investigate how a simple classical oscillator behaves under
similar perturbations.

CLASSICAL PERTURBED HARMONIC OSCILLATOR

A classical oscillator may be perturbed by collision in a
large variety of well-defined ways. We evaluate two pertur-
bations here. We calculate the values of a sinusoid of fre-
quency �=1 at discrete time intervals 
t�1. At each time
interval we have a probability 
t /� of having an impact, so
that there are p=1 /� impacts per cycle. If there is an impact,
the sinusoid is modified accordingly, and then the calculation
of the list of values is resumed. The numerical Fourier trans-
form is calculated and we find that Af��� of Eq. �1� fits well
for a variety of definitions of the impacts, over a very wide
range of p, with b, �0, and A as fitting parameters. Our in-
terest here is in the fitted values of b and �0 as functions of p.

The strongest perturbation possible �in the sense of Van
Vleck and Weisskopf �14�� is a collision that destroys all
memory of position and speed �or amplitude and phase�. To
model this, at impact we pick the new amplitude A of the
sinusoid A cos�2��t+� at random from the range 0 to 1 and
the new phase  at random from the range 0 to 2�. In this
model, the peak is shifted to higher frequency, shown in Fig.
4�a�, before decreasing again. Then quenching occurs, i.e.,
the frequency collapses to zero. The width continues to in-
crease at still higher values of p, Fig. 4�c�. This is a stronger
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FIG. 2. The occupation of the left-hand well, y�t�=�*�, is plot-
ted against time as in Fig. 1, with the NH3 parameters, for �a� p
=3.5 impacts per cycle, below the quenching, and �b� p=7.5 im-
pacts per cycle, above the quenching. The Fourier transforms Y���
are shown in �c� and �d�, respectively, together with the fits using
Eq. �1�.
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FIG. 3. The solid curves show �a-a� the peak frequency and
�b-b� the broadening for NH3 as a function of the number of im-
pacts per cycle as described in the text. The data points show �a-a�
the peak frequency and �b-b� the broadening reported by Bleaney
and Loubser �19� for NH3 �solid circles�, and �a-a� the peak fre-
quency and �b-b� the broadening reported by Birnbaum and Maryott
�6� for ND3 �crosses� with both data sets scaled as described in the
text.
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impact than the impacts on the ammonia molecule, for the
quenching occurs at p=3.5 impacts per cycle and the initial
slope of the broadening is given by b
0.5p. It is interesting
to compare with the broadening assumed by Van Vleck and
Weisskopf for strong impacts of b=1 /2��, equivalent to b
=0.16p.

In an alternative definition of impact which is in closer
accordance with the ammonia model and Fig. 1, we define
the impact at t0 by taking the position x�t0� as unchanged by
the impact, the new amplitude A as random in the range x�t0�
to 1, and the new phase  such that the speed ẋ�t0� is a
random variable in the range consistent with the new ampli-
tude. In this model, the peak shift in Fig. 4�b� and width in
Fig. 4�d� behave in very much the same way as the ammonia
results of Fig. 3, with the initial broadening b
0.2p. How-
ever, the impact is weaker than in the ammonia model, for
quenching occurs at p=10.5 impacts per cycle. Above
quenching, b decreases again.

RESULTS AND DISCUSSION

Figure 4 shows that the details of the peak shift and the
broadening are very sensitive to the exact nature of the
boundary conditions between the periods of unperturbed free
oscillation. A more complete description of the impact �in-
cluding, for example, inelastic collisions as in Ben-Reuven
�17�� might well account for the discrepancies between data
and model in Fig. 3. However, we do not know of any way to
predict the initial slope of b�p�, nor its functional form below
and above the quenching, from a specification of the bound-
ary conditions. Neither the mathematics of the noisy oscilla-
tor �see, e.g., the book by Gittenberg �20�� nor of the classi-
cal kicked rotor appear to answer this question.

The key result is that the ammonia model �Fig. 3� and
even the broken sinusoid of Fig. 4�c� both show the Rabi

oscillation frequency shifting to lower frequency, broaden-
ing, and quenching—going to zero frequency—as the impact
rate is increased, in agreement with experiment. Although
the model is only one-dimensional, the generality of the be-
havior seen in Fig. 4 implies that a more complete three-
dimensional model would behave in the same way. It is im-
portant to note that the state vector shows no evidence of
localization. In Fig. 5 we plot the time-dependence of a di-
agonal and an off-diagonal element of the single-molecule
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FIG. 4. The peak frequency and the peak width are plotted for the broken sinusoids with unity frequency as described in the text. In �a�
the peak frequency is shown for the strongest possible impact, with phase and amplitude completely randomized by the impact. In �b� the
peak frequency is shown for the weaker impact in which the boundary condition at impact keeps the sinusoid continuous but changes the
phase and amplitude at random within that constraint. The corresponding peak widths are shown in �c� and �d�, respectively

�b�

�a�

Time, t

�
C
o
h
er
en
ce
te
rm
,
Α
Β

0 5 10 15 20 25 30
0

0.2

0.4

0.6

Time, t

P
o
p
u
la
ti
o
n
te
rm
,
Α
Α�

0 5 10 15 20 25 30

0

0.5

1

FIG. 5. Two elements of the NH3 single-molecule density ma-
trix calculated as for Fig. 2 are plotted against time under a high
impact rate p=12, well above the quenching impact rate. In �a�, the
diagonal term, �*�, varies randomly between 0 and 1. In �b�, the
off-diagonal element �*� varies randomly between 0 and 0.5.
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density matrix for our model for an impact rate well above
quenching. The decoherence program predicts that the off-
diagonal elements of the density matrix will decay or relax to
zero. We do not observe that in Fig. 5�b�. Of course, the
decoherence program describes an ensemble of possible evo-
lutions, and the vanishing of the diagonal elements is the
result of an averaging over those possible histories. In our
model such an averaging would always yield zero and it is
not clear what events would be required to set up a nonzero
average. Then the question of what would bring about the
vanishing of the off-diagonal terms is therefore left open.
Quantum state diffusion �21� predicts that the state vector
will diffuse to one or the other of the spatial eigenstates
because the interaction with the environment here depends
on the spatial configuration of the ammonia molecule. This
predicts that either �*� or �*� will tend towards unity while

the other elements of the single-molecule density matrix
should tend to zero. We do not observe that in either Figs.
5�a� and 5�b�. It remains open what changes to the model
would induce this.

We have presented a dynamical model describing the evo-
lution of an individual wave function according to standard
quantum mechanics. It shows that the ammonia shift and
quenching are fully accounted for in terms of a perturbed
oscillator, and should not therefore be cited as an experimen-
tal observation of either decoherence or quantum localiza-
tion.
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