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We specify the formally exact multiconfigurational time-dependent Hartree method originally developed for
systems of distinguishable degrees of freedom to mixtures consisting of two types of identical particles. All
three cases, Fermi-Fermi, Bose-Bose, and Bose-Fermi mixtures, are treated on an equal footing making explicit
use of the reduced one- and two-body density matrices of the mixture. The theory naturally contains as specific
cases the versions of the multiconfigurational time-dependent Hartree method for single-species fermions and
bosons. Explicit and compact equations of motion are derived and their properties and usage are briefly
discussed.

DOI: 10.1103/PhysRevA.76.062501 PACS number�s�: 31.15.Qg, 67.60.�g, 05.30.Fk, 05.30.Jp

I. INTRODUCTION

Identical particles fill our quantum world. Protons, neu-
trons in nuclei; electrons in atoms, molecules and quantum
dots; and atoms in quantum fluids and, more recently, in
degenerate quantum gases are abundant examples from
nuclear, atomic, molecular, and condensed-matter physics.
The exploration of quantum dynamics of many-particle sys-
tems is of fundamental and practical importance in modern
physics �1–5�.

The equation governing the dynamics of quantum par-
ticles is, in many cases, the well-known time-dependent
Schrödinger equation, which can scarcely be solved analyti-
cally or exactly. Thus, approximations are a must. The mul-
ticonfigurational time-dependent Hartree method �MCTDH�
�6,7� is considered at present the most efficient wave-packet
propagation approach for distinguishable particles and has
successfully and routinely been used for multidimensional
dynamical systems consisting of distinguishable degrees of
freedom �8–11�. The main idea behind the MCTDH method
is to expand the time-dependent many-body wave function
of distinguishable particles by time-dependent configurations
which are optimized according to the Dirac-Frenkel time-
dependent variational principle �12,13�. In this way, a much
larger effective subspace of the many-particle Hilbert space
can be spanned in practice in comparison to multiconfigura-
tional expansions with stationary configurations.

The MCTDH approach can treat efficiently dynamical
and—using imaginary time-propagation �11�—static proper-
ties of few-particle systems. Of course, the system under
investigation by MCTDH can consist of identical particles.
For instance, we mention that very recently ground- and
excited-state properties of weakly to strongly interacting
trapped few-boson systems have been studied on a quantita-
tive many-body level by propagating MCTDH in imaginary
time �14–16�. Yet, in treating a larger number of identical

particles it is essential to use their quantum statistics, Fermi-
Dirac or Bose-Einstein, to eliminate the large amount of re-
dundancies of coefficients in the distinguishable-particle
multiconfigurational expansion of the MCTDH wave func-
tion. Moreover, identical particles commonly interact via
two-body interactions, a property which can explicitly be
exploited in specifying the MCTDH method for systems of
identical particles. Thus, taking explicitly the antisymmetry
of the many-fermion wave function to permutations of any
two particles into account, the fermionic version of
MCTDH—MCTDHF—was independently developed by
several groups �17–19�. MCTDHF is currently successfully
employed to study many-body dynamics of few-electron sys-
tems with or without external fields �20–25�. Not long after,
the bosonic version of MCTDH—MCTDHB—was devel-
oped in �26,27�. This advancement is, in particular, valuable
since very-many bosons can reside in only a small number of
orbitals owing to Bose-Einstein statistics. Alternatively
speaking, by explicitly exploiting Bose-Einstein statistics it
is possible to successfully and quantitatively attack the dy-
namics of a much larger number of bosons with the MCT-
DHB theory. As a first application of MCTDHB, the role of
excited states in the splitting of a trapped interacting Bose-
Einstein condensate by a time-dependent barrier was studied
in �26�.

The next step was to unify the MCTDH method specified
for identical particles, either fermions �MCTDHF� or bosons
�MCTDHB�, under one formulation �28�. This unified view
is not only a compact representation of the problem, rather, it
has conceptual and practical advantages. Specifically, the
combination of indistinguishability and the two-body inter-
action leads to an appealing formulation of the propagation
equations in terms of the reduced one- and two-body density
matrices of the system. This opens up further possibilities for
approximate self-consistent-like propagation schemes �28�. It
is instructive to mention that reduced two-body density ma-
trices is a fruitful and vivid research area including theory
and applications in electronic structure of molecules, quan-
tum phase transitions, and ground-state nuclear motion
�29–35�.

The final step in the hierarchy of many-body propagation
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theories is the specification of the MCTDH approach to mix-
tures of two �or more� kinds of identical particles, which is
the purpose of this work. Mixtures appear in many disci-
plines of physics, for instance: �i� protons and neutrons in
nuclei; �ii� electrons and protons in molecules; �iii� fermionic
3He and bosonic 4He as interacting quantum fluids; �iv� elec-
trons and positrons in matter-antimatter systems; and �v�
various combinations of fermionic and/or bosonic atoms as
degenerate quantum gases. Depending on the quantum sta-
tistics of each species, there are three possible mixtures made
of two types of identical particles: Fermi-Fermi, Bose-Bose,
or Bose-Fermi mixtures. The multiconfigurational time-
dependent Hartree method for mixtures �denoted for brevity
by MCTDH-XY� is derived for the three types of mixtures in
a unified manner.

The structure of the paper is as follows. In Sec. II we
present the many-body Hamiltonian and multiconfigurational
ansatz of a mixture. In Sec. III we develop the working-
equations of MCTDH-XY in terms of the mixture’s reduced
one- and two-body density matrices. In Sec. IV we present
an extensive discussion and summary. Finally, in the Appen-
dix we collect relevant matrix elements.

II. MANY-BODY HAMILTONIAN AND
MULTICONFIGURATIONAL WAVE FUNCTION OF

MIXTURES

We consider a mixture of N=NA+NB particles; NA identi-
cal particles of type A and NB identical particles of type B.
We would like to treat in a unified manner the three generic
cases: �i� both the A and B species are fermions; �ii� both are
bosons; or �iii� one of the species is fermions and the
second is bosons. For this, we begin with the field operators

�̂�A��x� and �̂�B��y� of the A and B species, respectively,
satisfying the usual fermionic �bosonic� anticommutation
�commutation� relations,

�̂�A��x���̂�A��x���† ± ��̂�A��x���†�̂�A��x� = ��x − x�� ,

�̂�B��y���̂�B��y���† ± ��̂�B��y���†�̂�B��y� = ��y − y�� .

�1�

Of course, the field operators corresponding to different spe-

cies commute, ��̂�A��x� ,�̂�B��y��= ���̂�A��x��† ,�̂�B��y��=0.
The coordinates x��r ,�� and y��r , �̄� stand for spatial de-
grees of freedom and �possible� spin. Correspondingly, here
and hereafter the following shorthand notation implies: ��x
−x��=��r−r����,��, ��y−y��=��r−r����̄,�̄�, �dx��dr	�,
and �dy��dr	�̄. It is convenient to expand the field opera-
tors with two complete sets of orbitals, each comprised of
time-dependent orthonormal orbitals,

�̂�A��x� = 	
k

âk�t��k�x,t�, �̂�B��y� = 	
k̄

b̂k̄�t��k̄�y,t� .

�2�

The time-dependent annihilation and corresponding creation
operators obey the usual anti-commutation �commutation�

relations âk�t�âq
†�t�± âq

†�t�âk�t�=�kq, b̂k̄�t�b̂q̄
†�t�± b̂q̄

†�t�b̂k̄�t�
=�k̄q̄ for fermions �bosons� at any time. Of course, annihila-
tion, creation operators belonging to different species com-

mute, �âk�t� , b̂k̄�t��= �âq
†�t� , b̂k̄�t��=0, and orbitals belonging

to different species need not be orthogonal to one another.

Note that the one-particle indices k , k̄. . . refer to both spatial
and spin quantum numbers.

The many-body Hamiltonian of the two-species mixture
is conveniently divided into three parts as follows:

Ĥ�AB� = Ĥ�A� + Ĥ�B� + Ŵ�AB�,

Ĥ�A� = 	
k,q

hkq
�A�âk

†âq +
1

2 	
k,s,l,q

Wksql
�A� âk

†âs
†âlâq,

Ĥ�B� = 	
k̄,q̄

h
k̄q̄

�B�
b̂

k̄

†
b̂q̄ +

1

2 	
k̄,s̄,l̄,q̄

W
k̄s̄q̄l̄

�B�
b̂

k̄

†
b̂s̄

†b̂l̄b̂q̄,

Ŵ�AB� = 	
k,k̄,q,q̄

W
kk̄qq̄

�AB�
âk

†âqb̂
k̄

†
b̂q̄, �3�

where Ĥ�A� , Ĥ�B� are the Hamiltonians of species A ,B, and

Ŵ�AB� is the interspecies interaction. Here and hereafter, the
dependence on time of quantities is not shown explicitly
whenever unambiguous. The matrix elements of the one- and

two-body terms of Ĥ�AB� with respect to the orbitals ��k� and
��k̄� are given by

hkq
�A� =
 �k

*�x,t�ĥ�A��x��q�x,t�dx ,

Wksql
�A� =
 
 �k

*�x,t��s
*�x�,t�Ŵ�A��x,x���q�x,t��l�x�,t�dxdx�,

h
k̄q̄

�B�
=
 �

k̄

*�y,t�ĥ�B��y��q̄�y,t�dy ,

W
k̄s̄q̄l̄

�B�
=
 
 �

k̄

*�y,t��s̄
*�y�,t�Ŵ�B��y,y���q̄�y,t��l̄�y�,t�dydy�,

W
kk̄qq̄

�AB�
=
 
 �k

*�x,t��
k̄

*�y,t�Ŵ�AB��x,y��q�x,t��q̄�y,t�dxdy .

�4�

Owing to the time-dependent orbitals, the matrix elements
�4� are time-dependent quantities even for time-independent
one- and two-body operators. We note that the one-body

operators ĥ�A��x� and ĥ�B��y� may depend on spin and be
time dependent, and that the particle-particle interactions

Ŵ�A��x ,x��, Ŵ�B��y ,y��, and Ŵ�AB��x ,y� are general, physical
interactions which may also depend on spin and on external,
time-dependent fields. The derivation presented here applies
for this generic case.

To specify the MCTDH approach to mixtures of identical
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particles, the ansatz for the many-body wave function ��t� is
taken as a linear combination of products of time-dependent
configurations as follows:

���t�� = 	
n� ,m�

Cn�m� �t��n� ;t� � �m� ;t� � 	
n� ,m�

Cn�m� �t��n� ,m� ;t� ,

�n� ;t� � �n1,n2, . . . ,nM ;t�

=
1

n1!n2! ¯ nM!
„â1

†�t�…n1
„â2

†�t�…n2
¯ „âM

† �t�…nM�vac�A�� ,

�m� ;t� = �m1,m2, . . . ,mM̄ ;t� =
1

m1!m2! ¯ mM̄!

�„b̂1
†�t�…m1

„b̂2
†�t�…m2

¯ „b̂
M̄

† �t�…mM̄�vac�B�� , �5�

with the appropriate permutational symmetry. For fermions
one chooses the configurations �n� ; t�, �m� ; t� as Slater determi-
nants with time-dependent orbitals and for bosons one em-
ploys permanents assembled from time-dependent orbitals.
The summation over n� ,m� in Eq. �5� runs over all possible
configurations generated by distributing NA identical par-
ticles over the M orbitals ��k� and NB identical particles over

the M̄ orbitals ��k̄�. It is convenient to collect the individual
occupations in the vectors n� = �n1 ,n2 , . . . ,nM�, m�
= �m1 ,m2 , . . . ,mM̄� where, respectively, n1+n2+ ¯ +nM =NA

and m1+m2+ ¯ +mM̄ =NB. For fermions each occupation nk,
mk̄ can be either 0 or 1, in accordance with Fermi-Dirac
statistics, whereas for bosons nk, mk̄ can take any integer
value in the intervals �0,NA�, �0,NB� as stipulated by Bose-
Einstein statistics. �Cn�m� �t�� are the expansion coefficients.

Finally, we obviously have to make use in our propaga-
tion theory of the time-derivative i �

�t operator. The time-
derivative i �

�t acts on the A-species orbitals ��k�t��, on the
B-species orbitals ��k̄�t��, and on the expansion coefficients
�Cn�m� �t��. Moreover, when acting on the A and B orbitals
�subspaces�, we find that it is convenient to express the time-
derivative operator as a one-body operator. These properties
are formally expressed by the following relations:

i
�

�t
⇒ �i

�

�t
��A�

+ �i
�

�t
��B�

+ �i
�

�t
��Cn�m� �

,

�i
�

�t
��A�

= 	
k,q

âk
†âq�i

�

�t
�

kq

�A�

,

�i
�

�t
�

kq

�A�

= i
 �k
*�x,t�

��q�x,t�
�t

dx ,

�i
�

�t
��B�

= 	
k̄,q̄

b̂
k̄

†
b̂q̄�i

�

�t
�

k̄q̄

�B�

,

�i
�

�t
�

k̄q̄

�B�

= i
 �
k̄

*�y,t�
��q̄�y,t�

�t
dy , �6�

where the arrow “⇒” indicates that other terms with respect
to time differentiation do not appear in the calculation.

III. WORKING EQUATIONS OF THE
MULTICONFIGURATIONAL TIME-DEPENDENT

HARTREE METHOD FOR MIXTURES (MCTDH-XY)

To derive the equations of motion of the multiconfigura-
tional time-dependent Hartree method for mixtures of iden-
tical particles we employ the Lagrangian formulation of the
time-dependent variational principle �36,37�; also see
�27,28�. Practically, we substitute the many-body ansatz �5�
into the functional action of the time-dependent Schrödinger
equation which reads

S��Cn�m� �t��,��k�x,t��,��k̄�y,t���

=
 dt����Ĥ�AB����

− 	
k,j=1

M

�kj
�A��t����k�x,t��� j�x,t�� − �kj�

− 	
k̄, j̄=1

M̄

�
k̄ j̄

�B��t����k̄�y,t��� j̄�y,t�� − �k̄ j̄�� , �7�

where

Ĥ�AB� = Ĥ�AB� − i
�

�t
. �8�

We call Ĥ�AB� the many-body Floquet Hamiltonian. The
time-dependent Lagrange multipliers �kj

�A��t� are introduced
to ensure that the time-dependent A-type orbitals ��k�x , t��
remain normalized and orthogonal to one another throughout

the propagation, and similarly the �
k̄ j̄

�B�
�t� are for ��k̄�y , t��.

The employment of the Lagrange multipliers allows us to

first evaluate the expectation value ���Ĥ�AB���� and only
subsequently perform the variation and require stationarity of
the action with respect to its arguments ��k�x , t��, ��k̄�y , t��,
and �Cn�m� �t��. Two points to remember with respect to the
functional action �7� are: the orbitals ��k�x , t��, ��k̄�y , t�� and
coefficients �Cn�m� �t�� are independent variables of the action
�7�, and the bra-ket integrations are both in spatial and spin
spaces.

To perform the variation of the action �7� with respect
to the orbitals we express the expectation value of the

many-body Floquet Hamiltonian Ĥ�AB� appearing in
S��Cn�m� �t�� , ��k�x , t�� , ��k̄�y , t��� in a form which explicitly
depends on the orbitals ��k�x , t��, ��k̄�y , t��. Here, we recruit
the reduced one- and two-body density matrices of the mix-
ture. Given the normalized wave function ��t�, the A and B
reduced one-body density matrices read

	�A��x1�x1�;t� = ���t����̂�A��x1���
†�̂�A��x1����t��

= 	
k,q=1

M

	kq
�A��t��k

*�x1�,t��q�x1,t� ,
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	�B��y1�y1�;t� = ���t����̂�B��y1���
†�̂�B��y1����t��

= 	
k̄,q̄=1

M̄

	
k̄q̄

�B��t��
k̄

*�y1�,t��q̄�y1,t� . �9�

For the matrix elements 	kq
�A��t�= ���âk

†âq��� and 	
k̄q̄

�B�
�t�

= ���b̂
k̄

†
b̂q̄��� of the A and B reduced one-body density ma-

trices see the Appendix. It is convenient to collect these ma-

trix elements as ��A��t�= �	kq
�A��t��, ��B��t�= �	

k̄q̄

�B�
�t��. Similarly,

the A, B and AB reduced two-body density matrices of ��t�
are defined by

	�A��x1,x2�x1�,x2�;t�

= ���t����̂�A��x1���
†��̂�A��x2���

†�̂�A��x2��̂�A��x1����t��

= 	
k,s,l,q=1

M

	kslq
�A� �t��k

*�x1�,t��s
*�x2�,t��l�x2,t��q�x1,t� ,

	�B��y1,y2�y1�,y2�;t�

= ���t����̂�B��y1���
†��̂�B��y2���

†�̂�B��y2��̂�B��y1����t��

= 	
k̄,s̄,l̄,q̄=1

M̄

	
k̄s̄l̄q̄

�B� �t��
k̄

*�y1�,t��s̄
*�y2�,t��l̄�y2,t��q̄�y1,t� , �10�

	�AB��x1,y1�x1�,y1�;t�

= ���t����̂�A��x1���
†�̂�A��x1���̂�B��y1���

†

��̂�B��y1����t�� = 	
k,q=1

M

	
k̄,q̄=1

M̄

	
kk̄qq̄

�AB��t�

��k
*�x1�,t��q�x1,t��

k̄

*�y1�,t��q̄�y1,t� ,

where the matrix elements 	kslq
�A� �t�= ���âk

†âs
†âlâq���, 	

k̄s̄l̄q̄

�B�
�t�

= ���b̂
k̄

†
b̂s̄

†b̂l̄b̂q̄���, and 	
kk̄qq̄

�AB�
�t�= ���âk

†âqb̂
k̄

†
b̂q̄��� of the A, B

and AB reduced two-body density matrices, respectively, are
prescribed in the Appendix.

With these ingredients, the expectation value in the action
S��Cn�m� �t�� , ��k�x , t�� , ��k̄�y , t��� can be cast into the compact
form

���Ĥ�AB���� = 	
k,q=1

M

	kq
�A��hkq

�A� − �i
�

�t
�

kq

�A��
+

1

2 	
k,s,l,q=1

M

	kslq
�A� Wksql

�A�

+ 	
k̄,q̄=1

M̄

	
k̄q̄

�B��h
k̄q̄

�B�
− �i

�

�t
�

k̄q̄

�B��
+

1

2 	
k̄,s̄,l̄,q̄=1

M̄

	
k̄s̄l̄q̄

�B�
W

k̄s̄q̄l̄

�B�

+ 	
k,q=1

M

	
k̄,q̄=1

M̄

	
kk̄qq̄

�AB�
W

kk̄qq̄

�AB�
− i	

n�m�
Cn�m�

* �Cn�m�

�t
.

�11�

Expression �11� is appealing because it depends on the re-
duced one- and two-body density matrices 	�A��x1 �x1� ; t�,
	�B��y1 �y1� ; t� and 	�A��x1 ,x2 �x1� ,x2� ; t�, 	�B��y1 ,y2 �y1� ,y2� ; t�,
	�AB��x1 ,y1 �x1� ,y1� ; t�. Side by side, the only explicit depen-
dence of Eq. �11� on the orbitals ��k�x , t�� and ��k̄�y , t�� is

grouped into the matrix elements hkq
�A�, �i �

�t
�
kq

�A�
, Wksql

�A� ; h
k̄q̄

�B�
,

�i �
�t

�
k̄q̄

�B�
, W

k̄s̄q̄l̄

�B�
; and W

kk̄qq̄

�AB�
whereas the elements of the mix-

ture’s reduced one- and two-body density matrices do not
depend explicitly on the orbitals.

We can now perform the variation of the functional action
�7� with respect to the orbitals. Using the fact that the sets of
orbitals ��k�x , t��, ��k̄�y , t�� comprise orthonormal functions
we eliminate, respectively, the Lagrange multipliers �kj

�A��t�,
�

k̄ j̄

�B�
�t� and arrive at the following equations of motion for

the time-dependent orbitals, j=1, . . . ,M, j̄=1, . . . ,M̄:

P̂�A�i��̇ j� = P̂�A��ĥ�A��� j� + 	
k,q=1

M

���A��t�� jk
−1

��	
s,l=1

M

	kslq
�A� Ŵsl

�A� + 	
k̄,q̄=1

M̄

	
kk̄qq̄

�AB�
Ŵ

k̄q̄

�AB����q�� ,

P̂�B�i��̇ j̄� = P̂�B��ĥ�B��� j̄� + 	
k̄,q̄=1

M̄

���B��t��
j̄k̄

−1

��	
s̄,l̄=1

M̄

	
k̄s̄l̄q̄

�B�
Ŵ

s̄l̄

�B�
+ 	

k,q=1

M

	
kk̄qq̄

�AB�
Ŵkq

�BA����q̄�� .

�12�

Here,

P̂�A� = 1 − 	
j�=1

M

�� j���� j��, P̂�B� = 1 − 	
j̄�=1

M̄

�� j̄���� j̄�� �13�

are, respectively, projection operators onto the subspaces or-
thogonal to these spanned by the orbitals ��k�x , t��,
��k̄�y , t��,

Ŵsl
�A��x,t� =
 �s

*�x�,t�Ŵ�A��x,x���l�x�,t�dx�,

Ŵ
s̄l̄

�B��y,t� =
 �s̄
*�y�,t�Ŵ�B��y,y���l̄�y�,t�dy�,

Ŵ
k̄q̄

�AB��x,t� =
 �
k̄

*�y,t�Ŵ�AB��x,y��q̄�y,t�dy ,
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Ŵkq
�BA��y,t� =
 �k

*�x,t�Ŵ�AB��x,y��q�x,t�dx �14�

are �for spin-independent interactions� local time-dependent

potentials, and �̇ j �
�� j

�t , �̇ j̄ �
�� j̄

�t . Examining Eq. �12� we see

that eliminating the Lagrange multipliers �kj
�A��t�, �

k̄ j̄

�B�
�t� has

emerged as the projection operators P̂�A�, P̂�B�. These projec-
tion operators appear both on the left- and right-hand sides of
Eq. �12�, making Eq. �12� a cumbersome coupled system of
integrodifferential nonlinear equations.

To simplify the equations of motion �12� we note that the
many-body wave function �5� is invariant under independent
unitary transformations of the A and B orbitals, compensated
by the “reverse” transformations of the coefficients �Cn�m� �t��.
Fortunately, there exists one specific unitary transformation,
which guarantees without introducing further constraints that
the conditions �6,7,28�

��k�x,t���̇q�x,t�� = 0, k,q = 1, . . . ,M ,

��k̄�y,t���̇q̄�y,t�� = 0, k̄, q̄ = 1, . . . ,M̄ �15�

are satisfied at any point in time. Obviously, when conditions
�15� are satisfied at any time, the A, and independently, the B
orbitals remain orthonormal functions at any time. This rep-
resentation simplifies considerably the equations of motion

�12� which now read, j=1, . . . ,M, j̄=1, . . . ,M̄,

i��̇ j� = P̂�A��ĥ�A��� j� + 	
k,q=1

M

���A��t�� jk
−1

��	
s,l=1

M

	kslq
�A� Ŵsl

�A� + 	
k̄,q̄=1

M̄

	
kk̄qq̄

�AB�
Ŵ

k̄q̄

�AB����q�� ,

i��̇ j̄� = P̂�B��ĥ�B��� j̄� + 	
k̄,q̄=1

M̄

���B��t��
j̄k̄

−1

��	
s̄,l̄=1

M̄

	
k̄s̄l̄q̄

�B�
Ŵ

s̄l̄

�B�
+ 	

k,q=1

M

	
kk̄qq̄

�AB�
Ŵkq

�BA����q̄�� .

�16�

The projection operators P̂�A�, P̂�B� remaining on the right-
hand side of Eq. �16� make it clear that conditions �15� are
satisfied at any point in time throughout the propagation of
the orbitals ��k�x , t��, ��k̄�y , t��. In practice, the meaning of

the conditions ��k�x , t� � �̇q�x , t��=0 and ��k̄�y , t� � �̇q̄�y , t��
=0 is that the temporal changes of the orbitals ��k�x , t��,
��k̄�y , t�� are always orthogonal to ��k�x , t��, ��k̄�y , t�� them-
selves. This property originally introduced by the MCTDH
developers �6,7� generally makes the time propagation of Eq.
�16� robust and stable and can thus be exploited to maintain
accurate propagation results at lower computational costs.

To complete the derivation, we perform the variation of
Eq. �7� with respect to the coefficients �Cn�m� �t��, which is

easily done after expressing the expectation value of Ĥ�AB� in
a form which explicitly depends on the �Cn�m� �t��,

���Ĥ�AB����

= 	
n� ,m�

Cn� ,m�
* � 	

n��,m� �

�n� ,m� ;t�Ĥ�AB��n��,m� �;t�Cn��,m� � − i
�Cn� ,m�

�t � .

�17�

The following result then straightforwardly emerges:

H�AB��t�C�t� = i
�C�t�

�t
,

Hn�m� ,n��m� �
�AB� �t� = �n� ,m� ;t�Ĥ�AB��n��,m� �;t� , �18�

where the vector C�t� collects the coefficients �Cn�m� �t��. The

matrix elements of the many-body Floquet operator Ĥ�AB�

with respect to two general configurations �n� ,m� ; t� and
�n�� ,m� � ; t� are prescribed in a unified manner in the Appendix
for the three possible types of mixtures: Fermi-Fermi, Bose-
Bose, or Bose-Fermi. Finally, making use of conditions �15�
we obtain the familiar MCTDH form of the equations of
motion for the propagation of the coefficients,

H�AB��t�C�t� = i
�C�t�

�t
, Hn�m� ,n��m� �

�AB� �t� = �n� ,m� ;t�Ĥ�AB��n��m� �;t� .

�19�

The coupled equations of motion �12� for the orbitals
�� j�x , t��, �� j̄�y , t�� and Eq. �18� for the expansion coeffi-
cients �Cn� ,m� �t��, or, respectively, Eqs. �16� and �19� constitute
the multiconfigurational time-dependent Hartree method for
mixtures consisting of two types of identical particles
�MCTDH-XY�; let them be Fermi-Fermi, Bose-Bose, or
Bose-Fermi mixtures.

IV. DISCUSSION AND SUMMARY

A many-body propagation theory for mixtures consisting
of two types of identical particles �MCTDH-XY� has been
derived by specifying the multiconfigurational time-
dependent Hartree method �MCTDH� originally developed
for distinguishable particles. The recent successful applica-
tions of the single-species propagation approaches for fermi-
onic �MCTDHF� and bosonic �MCTDHB� systems, in com-
bination with the employment of reduced one- and two-body
density matrices, solicit the application of the present theory
for studying the many-body quantum dynamics of mixtures.

A. General aspects of MCTDH-XY

In the MCTDH-XY theory, the ansatz for the many-
particle wave function is taken as a linear combination of all
possible time-dependent configurations made by distributing
the A-species particles over M time-dependent orbitals

��k�x , t�� and distributing the B-species particles over M̄
time-dependent orbitals ��k̄�y , t��. The evolution of the
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many-body wave function is then determined by utilizing a
standard time-dependent variational principle within the La-
grangian formulation. Performing the variation, we arrive at
two sets of coupled equations of motion, one for the orbitals
and one for the expansion coefficients. The first, Eq. �12� or
Eq. �16�, is for the evolution of the orbitals ��k�x , t��,
��k̄�y , t��, which assemble the configurations �n� ,m� ; t�. The
second, Eq. �18� or Eq. �19�, is for the expansion coefficients
�Cn�m� �t�� in the multiconfigurational wave function ���t��. In
the most general case, the particles in the mixture have also
spin degrees of freedom. This is fully accounted for in the
MCTDH-XY theory by employing orbitals ��k�x , t��,
��k̄�y , t�� that depend on spatial and spin coordinates, i.e.,
spin orbitals.

There are three possible propagation schemes—for Fermi-
Fermi �MCTDH-FF�, for Bose-Bose �MCTDH-BB�, and for
Bose-Fermi �MCTDH-BF� mixtures—and the formulation
we employ treats them all in a unified manner. Indeed, the
only difference in particle statistics appears in our derivation
explicitly only in the first of the above equations, namely,

Eq. �1� for the field operators �̂�A��x� and �̂�B��y�. Implic-
itly, the differences in particle statistics translate themselves
into the form of the reduced one-body 	�A��x1 �x1� ; t�,
	�B��y1 �y1� ; t� and two-body 	�A��x1 ,x2 �x1� ,x2� ; t�,
	�B��y1 ,y2 �y1� ,y2� ; t�, 	�AB��x1 ,y1 �x1� ,y1� ; t� density matrices
and the matrix representation of the many-body Floquet

Hamiltonian Ĥ�AB� evaluated between two general configu-
rations �n� ,m� ; t� and �n�� ,m� � ; t�. We prescribe in the Appendix
these matrix elements for the three types of mixtures in a
unified manner.

The equations of motion of MCTDH-XY, Eqs. �12� and
�18�, or Eqs. �16� and �19� become an exact representation of
the time-dependent many-particle Schrödinger equation in

the limit where the number of orbitals M ,M̄ goes to infinity.

In practice, one has of course to limit M ,M̄ where the em-
ployment of time-dependent orbitals, which is at the heart
and success of MCTDH, MCTDHF, and MCTDHB, is of
great advantage. Still, even with time-dependent orbitals the
actual size of the Hilbert subspace rapidly increases with the

number of particles NA ,NB and the number of orbitals M ,M̄
employed. Thus, for large systems and for strong interpar-
ticle interactions it is instructive to devise strategies for fur-
ther approximations atop the multiconfigurational expansion
�5�, which utilizes complete Hilbert subspaces, i.e., all con-
figurations resulting by distributing NA ,NB particles over

M ,M̄ orbitals are explicitly taken into account. We mention
here in brief that, owing to the structure of the MCTDH-XY
equations, there are two natural strategies to devise approxi-
mations: one is based on restricting the number of configu-
rations taken into account in the many-body wave function
�5�; the other is based on writing equations of motion for the
reduced one- and two-body density matrices �9� and �10�
themselves and approximating them. Developing these strat-
egies for the quantum dynamics of mixtures is a theme be-
yond this work.

Two final remarks. In the absence of interspecies interac-
tions the MCTDH-XY equations boil down to two sets of
single-species equations, either for fermions �MCTDHF

�17–19,28�� and/or for bosons �MCTDHB �26–28��, depend-
ing on the particles in the mixture. The extension of
MCTDH-XY to mixtures consisting of three or more types of
identical particles is straightforwardly performed along the
lines presented here.

B. Mixtures of polarized particles

For a general many-body Hamiltonian Ĥ�AB�, the forces
between the particles may be spin dependent. In such a case
the dynamics of the mixture would involve changes in both
spatial and spin degrees of freedom. We remind that the
equations of motion �16� and �19� �or Eqs. �12� and �18�;
hereafter not referred to for brevity� of the MCTDH-XY are
fully equipped to describe the time evolution of the generic
case.

Next, consider a mixture of polarized particles, say spin-
half fermions with spin projection Sz= + 1

2 �species A� and

spin-one bosons with spin projection S̄z=−1 �species B� pre-
pared initially at t=0. Furthermore, suppose that the many-

body Hamiltonian Ĥ�AB� preserves the spin projection of each
species, i.e., there are no spin-orbit and spin-spin coupling
terms, nor external fields which lead to spin flips. We can of
course use equations of motion �16� and �19� to propagate
the dynamics of this system and obtain, as anticipated due to

Ĥ�AB�, that no other spin projections are populated in time.
As symmetry is usually helpful in simplifying the treat-

ment of quantum systems, see, e.g., �2�, it can help us here as
well. Specifically, in such a case there is no need to work
with the �full� spin orbitals ��k�x , t��, ��k̄�y , t��. Instead, we
can work with the respective components ��k�r ,�= + 1

2 , t��,
��k̄�r , �̄=−1, t�� of the spin orbitals only. In practice, the
orbitals ��k�r ,�= + 1

2 , t��, ��k̄�r , �̄=−1, t�� satisfy the same
MCTDH-XY equations of motion �16� and �19� when ex-
cluding therein summation over the spin coordinates 	�, 	�̄

and leaving the spatial integrations �dr only. In turn, Eqs.
�16� and �19� are now to be utilized with the one-body hkq

�A�,

h
k̄q̄

�B�
and two-body Wksql

�A� , W
k̄s̄q̄l̄

�B�
, W

kk̄qq̄

�AB�
matrix elements, the

projection operators P̂�A�, P̂�B�, and the time-dependent ma-

trix elements of Ĥ�AB� between two general configurations
which are all to be evaluated with orbitals, rather than with
spin orbitals, thus saving unnecessary effort.

Next, we examine a single-species system comprised of
particles with spin S, either fermions or bosons. We assume
spin-independent interactions. We can treat the evolution of
the single-species system in two ways. In the first, we recruit
the single-species MCTDHF or MCTDHB approaches for
fermions or bosons. In this case, the orbitals in use are, in
general, spin orbitals. It is well known, however, that identi-
cal particles with different spin projections can be treated as
distinguishable particles �38�. Thus, we also can treat single-
species spin-S particles with the multiconfigurational time-
dependent Hartree approach for mixtures. Taking a system
comprised of electrons as an example, the spin-up and spin-
down electrons would house now the A and B species in the
“mixture.” Where is the advantage? The orbitals of each spe-
cies are purely spatial functions now, which saves the same
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type of overheads described in the previous example.
Combining the above two examples, we finally look at

different mixtures comprising two kinds of identical particles
with or without spin, such as �i� mixtures of spinless bosons;
�ii� mixtures of spinless bosons and unpolarized or polarized
spin-half fermions; �iii� mixtures of two kinds of spin-half

fermions; and �iv� mixtures of spin S bosons and spin S̄
bosons; etc. Spin-independent interactions are assumed. We
may now time propagate these systems in two ways: �1�
using the MCTDH-XY equations of motion �16� and �19�
with spin orbitals ��k�x , t��, ��k̄�y , t��, or �2� counting the
total number of spin projections in the mixture and treating

the system as a “new” mixture with, in general 2�S+ S̄+1�
“species.” This would transform the spin-orbitals to purely
spatial functions thus simplifying the equations of motion.
The propagation equations of such “multicomponent” mix-
tures are straightforwardly derived along the lines presented
in this work.

C. Stationary many-body states of mixtures

The presently developed multiconfigurational time-
dependent propagation theory can be applied via imaginary-
time propagation to compute ground- and excited-state prop-
erties of mixtures. In the spirit of Refs. �11,39�, one may also
arrive at a multiconfigurational self-consistent theory for sta-
tionary properties of mixtures. Setting t→−it, the left-hand
sides of Eqs. �12� and �16� decay to zero in time. Then, by

translating back from the projection operators P̂�A�, P̂�B� to

the Lagrange multipliers �kj
�A�, �

k̄ j̄

�B�
, we arrive at the multi-

configurational self-consistent �time-independent� working
equations for the orbitals as follows:

	
j=1

M �	kj
�A�ĥ�A� + 	

s,l=1

M

	kslj
�A� Ŵsl

�A� + 	
k̄,q̄=1

M̄

	
kk̄jq̄

�AB�
Ŵ

k̄q̄

�AB���� j�

= 	
j=1

M

�kj
�A��� j� , k = 1, . . . ,M ,

	
j̄=1

M̄ �	
k̄ j̄

�B�
ĥ�B� + 	

s̄,l̄=1

M̄

	
k̄s̄l̄ j̄

�B�
Ŵ

s̄l̄

�B�
+ 	

k,q=1

M

	
kk̄qj̄

�AB�
Ŵkq

�BA���� j̄�

= 	
j̄=1

M̄

�
k̄ j̄

�B��� j̄�, k̄ = 1, . . . ,M̄ . �20�

Making use of the fact that the matrices of Lagrange multi-

pliers ��kj
�A��, ��

k̄ j̄

�B�
� are Hermitian �for stationary states�, one

may work in a representation of Eq. �20� in which these

matrices are taken to be diagonal. The reason, as mentioned
above, is that the multiconfigurational wave function �see
Eq. �5�� is invariant under independent unitary transforma-
tions of the A and B orbitals, which can be exploited to
independently diagonalize the matrices of the Lagrange mul-

tipliers ��kj
�A��, ��

k̄ j̄

�B�
�. Last, setting t→−it and on similar

grounds, Eqs. �18� and �19� reduce to the �time-independent�
eigenvalue problem

H�AB�C = 
C , �21�

where 
 is the eigenenergy of the mixture.
Equations �20� and �21� constitute a multiconfigurational

self-consistent theory for mixtures. This theory generalizes
the available multiconfigurational self-consistent-field theo-
ries for fermions �40,41� and for bosons �39�.
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APPENDIX: EVALUATING MATRIX ELEMENTS OF
OPERATORS AND REDUCED DENSITY MATRICES WITH

MULTICONFIGURATIONAL WAVEFUNCTIONS OF
MIXTURES

The equations of motion of the MCTDH-XY theory em-
ploy two types of matrix elements: matrix elements of the
mixture’s reduced density matrices with respect to the orbit-
als ��k�x , t��, ��k̄�y , t��, and matrix elements of the many-
body Floquet Hamiltonian with respect to the configurations
�n� ,m� ; t�. In this appendix we prescribe the evaluation of
these matrix elements.

The matrix elements themselves depend on the particles’
statistics. As we saw in the main text, there are three cases:
Fermi-Fermi �MCTDH-FF�, Bose-Bose �MCTDH-BB�, and
Bose-Fermi �MCTDH-BF�. We can treat the matrix elements
in all three cases together, in the spirit of unifying the single-
species �MCTDHF and MCTDHB� matrix elements done in
Ref. �28�. In Ref. �28� we prescribed the elements of the
reduced one- and two-body density matrices for single-
species multiconfigurational fermionic �42� and bosonic �39�
wave functions, ���t��=	n�Cn��t��n1 ,n2 , . . . ,nM ; t�, in a uni-
fied manner. Aiming at an economical account, we present
and discuss here only the differences and additions to the
single-species �fermions or bosons� matrix elements unified
in �28�.

We begin with the matrix elements of the A and B reduced
density matrices, Eqs. �9� and �10�. Owing to the many-body
wave function being expressed as the sum of products of
single-species configurations, the mixture’s reduced A and B
density matrices take on a form resembling the single-
species reduced density matrices as follows:

	kq
�A��t� = ���âk

†âq��� = 	
n� ,n��

�	
m�

Cn� ,m�
* Cn��,m���n� ;t�âk

†âq�n��;t� ,
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k̄q̄

�B��t� = ���b̂
k̄

†
b̂q̄��� = 	

m� ,m� �
�	

n�
Cn� ,m�

* Cn� ,m� ���m� ;t�b̂
k̄

†
b̂q̄�m� �;t� ,

	kslq
�A� �t� = ���âk

†âs
†âlâq���

= 	
n� ,n��

�	
m�

Cn� ,m�
* Cn��,m���n� ;t�âk

†âs
†âlâq�n��;t� ,

	
k̄s̄l̄q̄

�B� �t� = ���b̂
k̄

†
b̂s̄

†b̂l̄b̂q̄���

= 	
m� ,m� �

�	
n�

Cn� ,m�
* Cn� ,m� ���m� ;t�b̂

k̄

†
b̂s̄

†b̂l̄b̂q̄�m� �;t� .

�A1�

In other words, the matrix element of the mixture’s A and B
reduced density matrices can be directly read from the matrix
elements of the single-species ones �28� by writing instead of
the single-species expansion coefficients Cn� the respective
Cn� ,m� coefficients of the mixture and adding summation over
the second-species occupations—m� �n�� for the A �B� species.

To evaluate the AB reduced two-body density matrix �and
later on the matrix elements of the interspecies interaction

term Ŵ�AB�� we need a shorthand notation for
configurations in mixtures of identical particles. Let
the reference configuration be denoted by �n� ,m� ; t�
= �n1 , . . . , nk , . . . , nq , . . . , nM :m1 , . . . , mk̄ , . . . , mq̄ , . . . ,mM̄ ; t�.
Then, the configuration denoted by �n�k

q ,m� ; t�= �n1 , . . . ,nk
−1, . . . ,nq+1, . . . ,nM :m1 , . . . ,mk̄ , . . . ,mq̄ , . . . ,mM̄ ; t� differs
from �n� ,m� ; t� by a transfer of one A particle from the
kth to the qth orbital of the A species;
�n� ,m�

k̄

q̄
; t� = �n1 , . . . ,nk , . . . ,nq , . . . ,nM : m1 , . . . ,mk̄−1, . . . ,mq̄

+1, . . . ,mM̄ ; t� differs from �n� ,m� ; t� by a transfer of one

B particle from the k̄th to the q̄th orbital of the B species;
and �n�k

q ,m�
k̄

q̄
; t�= �n1 , . . . ,nk−1, . . . ,nq+1, . . . ,nM :m1 , . . . ,mk̄

−1, . . . ,mq̄+1, . . . ,mM̄ ; t� differs from �n� ,m� ; t� by a transfer
of one A and one B particles, an A particle from the kth to the

qth orbital of the A species, and a B particle from the k̄th to
the q̄th orbital of the B species. Note that we employ a no-
menclature in which the same ordering of the orbitals
�1 ,�2 , . . . ,�M and �1 ,�2 , . . . ,�M̄ as in Eq. �5� is kept in all
configurations. Next, to represent in a unified way the restric-
tion on the maximal number of particles per orbitals for fer-
mionic and bosonic species we employ the following nota-
tion. Let pA , pB be the maximal number of particles per
orbitals of the A ,B species. Obviously pA=1, pB=1 for fer-
mionic atoms and pA=NA, pB=NB for bosonic atoms. We
define �n�A=n if 0�n� pA and �n�A=0 otherwise, and simi-
larly �m�B=m if 0�m� pB and �m�B=0 otherwise. Finally,
we define the “distance” between the kth and qth entries, k
�q, in the A species configuration �n� ; t� as dn�

kq=	l=k+1
q nl, nl

�n� . Similarly, we define the distance between the k̄th and

q̄th entries, k̄� q̄, in the B species configuration �m� ; t� as

dm�
k̄q̄=	

l̄=k̄+1

q̄
ml̄, ml̄�m� . The quantities dn�

kq ,dm�
k̄q̄ are needed for

fermionic-species matrix elements due to the anticommuta-
tion relation between fermionic creation operators. In the

equations below the upper sign refers to fermionic species
and the lower sign to bosonic species.

With these conventions, the matrix elements of the AB
reduce two-body density matrix 	�AB��x1 ,y1 �x1� ,y1� ; t� given
the multiconfigurational wave function 	n� ,m� Cn� ,m� �t� �n� ,m� ; t�
are

	kk̄kk̄ = 	
n� ,m�

Cn� ,m�
* Cn� ,m� nkmk̄,

	kk̄qk̄ = 	
n� ,m�

Cn� ,m�
* Cn�k

q,m�
nk�nq + 1�Amk̄�1��dn�

kq�, k � q

	kk̄kq̄ = 	
n� ,m�

Cn� ,m�
* Cn� ,m�

k̄

q̄mk̄�mq̄ + 1�Bnk�1��dm�
k̄q̄�, k̄ � q̄

	kk̄qq̄ = 	
n� ,m�

Cn� ,m�
* Cn�k

q,m�
k̄

q̄nk�nq + 1�Amk̄�mq̄ + 1�B

�� �1��dn�
kq+dm�

k̄q̄�, k � q, k̄ � q̄

�1��dn�
kq+dm�

q̄k̄−1�, k � q, q̄ � k̄ .
� �A2�

All other nonvanishing matrix elements can be computed
due to the hermicity of the density 	

kk̄qq̄

*
=	qq̄kk̄.

We now move to the matrix elements of the many-body
Floquet Hamiltonian �see Eqs. �3� and �8�� with respect to
the configurations �n� ,m� ; t�. In Ref. �28� we presented in a
unified manner Slater-Condon rules for evaluating matrix el-
ements with determinants �40� and their bosonic analog for
evaluating matrix elements with permanents �39�. We pro-
ceed with this line here, expressing the matrix elements of
the many-body Floquet Hamiltonian �8� of Fermi-Fermi,
Bose-Bose, and Bose-Fermi mixtures in a unified manner.

Owing to the structure of the many-body Hamiltonian Ĥ�AB�,
and combining Eqs. �3�, �6�, and �8�, we get for the many-
body Floquet Hamiltonian,

�n� ,m� ;t�Ĥ�AB��n��m� �;t� = �n� ,m� ;t�Ĥ�A� + Ĥ�B� + Ŵ�AB��n��m� �;t� ,

�A3�

where Ĥ�A�= Ĥ�A�− �i �
�t

��A� and Ĥ�B�= Ĥ�B�− �i �
�t

��B�. Conse-
quently, we obviously have for the first two, single-species
terms,

�n� ,m� ;t�Ĥ�A��n��m� �;t� = �m� ,m� ��n� ;t�Ĥ�A��n��;t� ,

�n� ,m� ;t�Ĥ�B��n��m� �;t� = �n� ,n���m� ;t�Ĥ�B��m� �;t� . �A4�

These matrix elements are obviously read from the single-
species ones �28�.

Finally, with the above conventions and the matrix ele-

ments W
kk̄qq̄

�AB�
of the interspecies interaction potential

Ŵ�AB��x ,y� with respect to the orbitals �see Eq. �4��, the non-
vanishing matrix elements of the interspecies two-body

�second-quantized� operator Ŵ�AB� �see Eq. �3�� with respect
to the configurations �n� ,m� ; t� follow from
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�n� ,m� ;t�Ŵ�AB��n� ,m� ;t� = 	
l=1

M

	
l̄=1

M̄

nlml̄Wll̄ll̄

�AB�
,

�n� ,m� ;t�Ŵ�AB��n�k
q,m� ;t� = nk�nq + 1�A	

l̄=1

M̄

ml̄Wkl̄ql̄

�AB��1��dn�
kq�,

k � q ,

�n� ,m� ;t�Ŵ�AB��n� ,m�
k̄

q̄
;t� = mk̄�mq̄ + 1�B	

l=1

M

nlWlk̄lq̄

�AB��1��dm�
k̄q̄�,

k̄ � q̄ ,

�n� ,m� ;t�Ŵ�AB��n�k
q,m�

k̄

q̄
;t� = nk�nq + 1�Amk̄�mq̄ + 1�BW

kk̄qq̄

�AB�� �1��dn�
kq+dm�

k̄q̄�, k � q, k̄ � q̄ ,

�1��dn�
kq+dm�

q̄k̄−1�, k � q, q̄ � k̄ ,
� �A5�

and the fact that Ŵ�AB� is self-adjoint, �n� ,m� ; t�Ŵ�AB��n�� ,m� � ; t�= �n�� ,m� � ; t�Ŵ�AB��n� ,m� ; t�*.
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