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We analyze the Bures metric over the manifold of thermal density matrices for systems featuring a zero
temperature quantum phase transition. We show that the quantum critical region can be characterized in terms
of the temperature scaling behavior of the metric tensor itself. Furthermore, the analysis of the metric tensor
when both temperature and an external field are varied, allows one to complement the understanding of the
phase diagram including crossover regions which are not characterized by any singular behavior. These results
provide a further extension of the scope of the metric approach to quantum criticality.
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I. INTRODUCTION

These years are witnessing an increasing research effort at
the intersection of quantum information science �1� and more
established fields such as theoretical condensed-matter phys-
ics �2�. Belonging to this class is the approach to quantum
phase transitions �QPT� �3� based on the information geom-
etry of quantum states that has been recently proposed in
Refs. �4,5�. Further developments, for specific, yet important,
classes of quantum states have been reported in �6–13�. The
underlying idea is deceptively simple: the major structural
change in the ground-state �GS� properties at the QPT should
reveal itself by some sort of singular behavior in the distance
function between the GSs corresponding to slightly different
values of the coupling constants. This intuition can be made
more quantitative by analyzing the leading-order terms in the
expansion of the quantum fidelity between close GSs.

A general differential-geometric framework encompass-
ing all of these results has been offered in Ref. �14�. There it
has been shown that these leading-order terms do correspond
to a Riemannian metric g over the parameter manifold. This
metric g is nothing but the pullback of the natural metric
over the projective Hilbert space via the map associating the
Hamiltonian parameters with the corresponding GS. In the
thermodynamical limit the singularities of g correspond to
QPTs. In Ref. �15� the nature of this correspondence has
been further investigated and it has been shown that both the
metric approach to QPT and the one based on geometrical
phases �16,17� can be understood in terms of the critical
scaling behavior of the quantum geometric tensor �18�.

The conceptually appealing and potentially practically rel-
evant feature of this strategy consists of the fact that its vi-
ability does not rely on any a priori knowledge of the phys-
ics of the model, e.g., order parameters, symmetry breaking
patterns,…, but just on a universal geometrical structure �ba-
sically the Hilbert scalar product�. Very much in the spirit of
quantum information the metric approach is fully based on
quantum states rather than Hamiltonians �that might be even
unknown�, once these are given the machinery can be ap-
plied.

In this paper we further extend the scope of this metric
approach by considering the manifold of thermal states of a
family of Hamiltonians featuring a zero-temperature PT. In

�19� it was shown that by studying the mixed-state fidelity
�20� between Gibbs states associated with slightly different
Hamiltonians one could detect the influence of the zero-
temperature quantum criticality over a finite range of tem-
peratures. Here we will refine that analysis and make it more
quantitative by resorting to the concept of Bures metric be-
tween mixed quantum states. This metric provides the natu-
ral finite-temperature extension of the metric tensor g studied
in the GS case and corresponds again to the leading order in
the expansion of the �mixed-state� fidelity between close
states, i.e., associated with infinitesimally close parameters.
By analyzing the case of the quantum Ising model we shall
show how the quantum-critical region above the zero-
temperature QPT can be remarkably characterized in terms
of the scaling behavior of the Bures metric tensor.

The paper is organized as follows: in Sec. II we introduce
the basic concepts about mixed-state metrics and in Sec. III
we specialize them to the case of thermal �Gibbs� states. In
Sec. IV we provide generalities about quasifree fermion sys-
tems and in Sec. V we analyze in detail the Bures metric
tensor for the quantum Ising model. Finally, in Sec. VI con-
clusions and outlook are given.

II. PRELIMINARIES

The Bures distance between two mixed-states � and � is
given in terms of the Uhlmann fidelity �20�

F��,�� = tr��1/2��1/2 �1�

by dB�� ,��=�2�1−F�� ,���.
The starting point of our analysis is provided by the fol-

lowing expression for the Bures distance between two infini-
tesimally close density matrices �see, e.g., �21� for a deriva-
tion�

ds2�d�� ª dB
2��,� + d�� =

1

2�
n,m

��m�d��n	�2

pm + pn
, �2�

where �n	 is the eigenbasis of � with eigenvalues pn, i.e.,
�=�npn �n	�n�. Even though in the sum in Eq. �2� pn and pm

cannot be simultaneously in the kernel of �, since �n	 , �m	
�Ker���⇒ �n �d� �m	=0, one can formally extend the sum
to all possible pairs by setting to zero the unwanted terms.
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For � pure, i.e., �= ��	���, one has d�= �d�	�� � + ��	�d��
from which one sees that the diagonal matrix elements of d�
are vanishing and one is left with dsB

2 =�m�Ker��� � �d� �m	�2

= �d� � �1− ��	�� � � �d�	. This expression coincides with the
Riemannian metric considered in �14�. The bures metric �2�
is tightly connected to the so-called quantum Fisher informa-
tion and it appears in the quantum version of the celebrated
Cramer-Rao bound �22�. This suggests the possible relevance
of the results that we are going to present in this paper to the
field of quantum estimation �23�.

To begin with we would like to cast Eq. �2� in a form
suitable for future elaborations. Let us first differentiate the
density matrix d�=�n�dpn �n	�n � + pn �dn	�n � + pn �n	�dn � �
and consider to begin the matrix element �d��ij. We
observe that �i � j	=�i,j ⇒ �di � j	=−�i �dj	; whence �i �d� � j	
=�i,jdpi+ �i �dj	�pj − pi�. Putting this expression back into Eq.
�2� one obtains

ds2 =
1

4�
n

dpn
2

pn
+

1

2 �
n�m

��n�dm	�2
�pn − pm�2

pn + pm
. �3�

This relation is quite interesting since it tells apart the
classical and the quantum contributions. Indeed the first term
in Eq. �3� is nothing but the Fisher-Rao distance between the
probability distributions 
pn�n and 
pn+dpn�n, whereas the
second term takes into account the generic noncommutativity
of � and ��ª�+d�. We will refer to these two terms as the
classical and nonclassical one, respectively. When ��� ,��
=0 the problem becomes effectively classical and the Bures
metric collapses to the Fisher-Rao one; this latter being in
general just a lower bound �22,24�.

Before moving to the analysis of the metric �2� we would
like to comment about the connection with the recently es-
tablished quantum Chernoff bound �25�. This latter, denoted
by �QCB, is the quantum analog of the Chernoff bound in
classical information theory; it quantifies the rate of expo-
nential decay of the probability of error in discriminating two
quantum states � and � when a large number n of them is
provided and collective measurements are allowed, i.e.,
Perr�exp�−n�QCB�. The Chernoff bound naturally induces a
distance function over the manifold of quantum states with a
well-defined operational meaning �the bigger the distance be-
tween the states the smaller the asymptotic error probability
in telling one from the other�. In �25� it has been proven that
exp�−�QCB�=min0�s�1 tr��s�1−s��F�� ,�� and that for in-
finitesimally close states, i.e., �=�+d�, one has

dsQCB
2

ª 1 − exp�− �QCB� =
1

2�
n,m

��m�d��n	�2

��pm + �pn�2
. �4�

From this expression we see that the distinguishability metric
associated with the quantum Chernoff bound has the same
form of the Bures one Eq. �2�, but the denominators pn+ pm

are replaced by ��pm+�pn�2. Using the inequalities
��pm+�pn�2� pn+ pm and 2�pn+ pm�� ��pm+�pn�2 one im-
mediately sees that

ds2

2
� dsQCB

2 � ds2. �5�

This relation shows that, as far as divergent behavior is con-
cerned, the Bures and the Chernoff bound metric are equiva-
lent, i.e., one metric diverges iff the other does. On the other
hand, in the metric approach to QPTs the identification of
divergences of the rescaled metric tensor and their study
plays the central role �14�. Therefore one expects the two
distinguishability measures to convey equivalent information
about the location of the QPTs. Though most of the calcula-
tions that are reported in this paper could be easily extended
to the Chernoff bound metric, here we will limit ourselves to
the analysis of the Bures metric �2�.

III. THERMAL STATES

From now on we specialize our analysis to the case of
thermal states. If the Hamiltonian smoothly depends on a set
of parameters, denoted by 	, living in some manifold M
one has the smooth map �	 ,
�→��
 ,	�ªZ−1e−
H�	�,
�Z=tr e−
H�. What we are going to study in this paper is
basically the pullback onto the �	 ,
� plane of the Bures
metric through this map. This is the obvious finite-
temperature extension of the ground-state approach of Ref.
�14�.

We start by studying the Bures distance when T�0 is
fixed and for infinitesimal variations of the Hamiltonian’s
parameters 	. Notice first that �=Z−1�ne−
En �n	�n�, where En

and �n	 are the eigenvalues and eigenvectors of the Hamil-
tonian operator H. With a standard reasoning, by differenti-
ating the Hamiltonian eigenvalue equation one finds that
�i �dj	= �i �dH � j	 / �Ei−Ej�. Moreover, one easily sees that
dpi=d�e−
Ei /Z�=−
pi�dEi− �� jdEjpj��, therefore the first
term in Eq. �3� can be written as 
2 /4�ipi�dEi

2− �dE	�2,
where �dE	
ª� jdEjpj. This means that the Fisher-
Raodistance is expressed by the thermal variance of the di-
agonal observable dHdª� jdEj � j	�j� times the square of the
inverse temperature. Summarizing,

dsB
2 =


2

4
��dHd

2	
 − �dHd	

2�

+
1

2 �
n�m


 �n�dH�m	
En − Em


2 �e−
En − e−
Em�2

Z�e−
En + e−
Em�
. �6�

The two terms correspond to the first and second term of Eq.
�3�, respectively, and they depend on 
 and on the other
parameters of the Hamiltonian. For example, when a single
parameter h is considered, the Bures distance defines a
simple metric that can be expressed in term of the classical
and nonclassical part,

ghh�h,
� = ghh
c �h,
� + ghh

nc�h,
� , �7�

such that dsB
2 =ghh�h ,
�dh2. Let us now explore the behavior

of the Bures distance in presence of infinitesimal variations
of both the temperature �
 variations� and a field h in the
Hamiltonian. It is easy to see that the variation of 
 only
affects the Fisher-Rao classical term in Eq. �3�. In fact the
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variation dH in Eq. �6�, or analogously the variations �dm	 in
Eq. �3�, are taken with respect to h only. The calculations can
be summarized as follows. We first have to expand the dpn as
dpn= ��
pn�d
+ ��hpn�dh. We have that

��
pn�d
 = pn��H	 − En�d


and

��hpn�dh = 
pn���hHd	 − �hEn�dh ,

where En=En�h�. The complete classical term of the
Bures distance can be written expanding �dpn�2

= ��hpndh�2+ ��
pnd
�2+2�
pn�hpnd
dh, and summing over
n. We thus have three different contributions:

1

4�
n

�dpn�2

pn
=

1

4

��H2	 − �H	2�d
2 + 
2�����hH�d�2	

− ���hH�d	2�dh2 + 2
��H��hH�d	

− ���hH�d	�H	�d
dh� . �8�

These terms correspond to the elements of the metric g
,
,
gh,
, gh,h

c , respectively. The full metric can be written once
one calculates the nonclassical term in Eq. �3�. The infini-
tesimal Bures distance can then be written in terms of the
2�2 metric tensor g as

ds2 = �dh,d
�g�dh

d

�, g = �ghh gh


gh
 g


� , �9�

where again ghh�h ,
�=ghh
c �h ,
�+ghh

nc�h ,
�.
It is at this point interesting to check whether, for


→ � , one recovers the known results for ground-state
�pure� fidelity and metric tensor. In order to do that
we will consider separately the classical and nonclassical
term in Eq. �3�. In fact ���
�−�����1= �1− p0�+�n
0pn

�2�n
0e−
�En−E0�, from which one sees that, for finite-
dimensional systems, the thermal density matrix converges
�in trace norm� exponentially fast to the projector over
the ground state �0	. Then it follows that all the
expectations values will converge exponentially fast
to their zero-temperature limits: �tr�A��
��−tr�A����� �
� �A � ���
�−�����1, this in turn guarantees that the covari-
ances of diagonal operators in the Fisher-Rao term �8� are
vanishing �since, e.g., dHd is diagonal �dH2	�= �dH	�

2 � in the
zero-temperature limit. In the infinite dimensional case the
convergence to zero of this term will typically be only alge-
braic in the region where the smallest excitation gap is small
compared to the temperature, whereas it will be exponential
elsewhere. The overall convergence behavior of the classical
term for 
→� depends now on the detailed interplay be-
tween the decay of covariances we just discussed in Eq. �8�
and the divergence of the powers of 
 in front of them. An
analysis of the zero-temperature limit of these terms will be
provided later for the quantum Ising model. We will see that
all the classical terms vanish in the zero temperature limit
but at the critical value of the parameter. As far as the second
nonclassical term in Eq. �3� is concerned one has just to
notice that from lim
→� pn�
�=�n,0 it follows that the only

contributions will come from the elements involving the
ground state, i.e., �0 �dj	= �0 �dH � j	 / �Ej −E0�. This completes
the remark.

Before moving to the next sections, where we will spe-
cialize the previous results to the particular case of the quan-
tum Ising model, we would like to note that the variation of
the Bures distance with temperature only, given by the ele-
ment g

 of the metric, is precisely proportional to the spe-
cific heat cv �14�, i.e.,

dsB
2 =

d
2

4
��H2	
 − �H	


2� =
d
2

4
T2cv.

This simple fact was already observed in �14� and �9� and
provides, we believe, a neat connection between quantum-
information theoretic concept, geometry, and thermodynam-
ics.

IV. QUASIFREE FERMIONS

In this section we specialize the study of the behavior of
the Bures metric to systems of quasifree fermions when one
has the variation of one parameter h of the Hamiltonian and
of the temperature T. The results that we present here are a
finite-temperature generalization of those given in Refs. �6,7�
and directly related to the mixed-state fidelity ones reported
in �19�.

The quasifree Hamiltonians we consider are given, after
performing a suitable Bogoliubov transformation, by

H = �
�

����
†��, �10�

where ��
0 and �� denote the quasiparticle energies and
annihilation operator respectively. One has that � is a suit-
able quasiparticle label, that for translationally invariant sys-
tems amounts to a linear momentum; the ground state is the
vacuum of the �� operators, i.e., �� �GS	=0, ∀ �. The de-
pendence on the parameter h is both through the ��’s and the
��’s.

We now derive the explicit general form of the Bures
distance �2� starting from the classical part �8�. We observe
that the �many-body� Hamiltonian eigenvalues are given by
Ej =��n���, where the n�’s are fermion occupation numbers,
i.e., n�=0,1. Therefore we have that dEj =��n�d�� and
�dEj	
=���n�	
d��, where the averages are easy to
compute since the probability distribution of the dEj factor-
izes over the �’s. Furthermore, �n�n�	
− �n�	
�n�	


=����n�	
�1− �n�	
� and we can thus write

1

4�
n

�dpn�2

pn
=

1

4�
k

�nk	�1 − �nk	� � 
�k
2d
2 + 
2��h�k�2dh2

+ 2
�k�h�kd
dh� . �11�

The term in dh2 is the classical term due to the infinitesimal
variations of the parameters of the Hamiltonian at fixed T
and it corresponds to the variance, see Eq. �6�, var�Hd�
=���n�	
�1− �n�	
�d��

2. Since we are dealing with indepen-
dent free fermions one has that �n�	
= �exp�
���+1�−1,
whence
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dsc
2 =


2

16�
�

��h���2

cosh2�
��/2�
dh2. �12�

In order to compute the nonclassical part of Eq. �3�, one has
to explicitly consider the eigenvectors of Eq. �10�. Following
the notation of Ref. �6� one has �m= 
�� ,�−���
0	
= ��
0 ��� ,�−�	, where,

�0�0�	 = cos���/2��00	�,−� − sin���/2��11	�,−�,

�0�1−�	 = �01	�,−�, �1�0−�	 = �10	�,−�,

�1�1�	 = cos���/2��11	�,−� + sin���/2��00	�,−�.

We assume now that parameter dependence is only in the
angles ��’s �this assumption holds true for all the
translationally invariant systems�. It is easy to see from
the above factorized form that the only nonvanishing matrix
elements �n �dm	 are given by �0�0−� �d �1�1−�	=d�� /2
and that the thermal factor �pn− pm�2 / �pn+ pm� has
the form sinh2�
��� / 
�cosh�
���+1��cosh�
�����
= �cosh�
���−1� /cosh�
���. Putting all together one finds

dsnc
2 =

1

4 �
�
0

cosh�
��� − 1

cosh�
���
��h���2dh2. �13�

We finally note that the two elements �12� and �13� define the
metric element �7�. The results of this section can be applied
to any quasifree fermionic model �10�.

V. QUANTUM ISING MODEL

We are now going to discuss in some detail the behavior
of the metric tensor for a paradigmatic example in the class
of quasifree fermionic models, the one-dimensional �1D�
Ising model in transverse field. The model is defined by the
Hamiltonian

H = − �
j

� j
x� j+1

x + h� j
z. �14�

At T=0 this system undergoes a quantum phase transition for
h=1. For h�1 the system is in an ordered phase as the
correlator ��1

x�r
x	T=0 tends to a nonzero value:

limr→���1
x�r

x	T=0= �1−h2�1/4. The excitations in this region
are domain walls in the �x direction. Instead for h
1 the
magnetic field dominates, and excitations are given by spin
flip over a paramagnetic ground state. The transition point
h=1 is described by a c=1 /2 conformal field theory, which
implies that the dynamical exponent z=1; the correlation
function exponent is �=1. As is well known �3�, a signature
of the ground state phase diagram remains at positive
temperature. In the quasiclassical region T��, where
�= �1−h� is the lowest excitation gap, the system can be
described by a diluted gas of thermally excited quasiparti-
cles, even if the nature of the quasiparticles is different at the
different sides of the transition. Instead in the quantum criti-
cal region T�� the mean interparticle distance becomes of
the order of the quasiparticle de Broglie wavelength and thus
quantum critical effects dominate and no semiclassical

theory is available. In each of the above-described regions of
the �h ,T� plane the system displays very different dynamical
as well thermodynamical properties. For example, in the
quantum critical region the specific heat approaches zero lin-
early with the temperature �this is in fact a general feature of
all conformal field theories�, whereas in the quasiclassical
regions the approach is exponentially fast.

A. Bures metric tensor in the „h ,T… plane

We now investigate whether the signature of the physi-
cally different regions can be revealed by analyzing the ele-
ments of the metric tensor defined by the Bures distance. We
begin by studying the temperature dependence of the metric
tensor when only the external field is varied, i.e., the term
ghh�h ,T�, see Eq. �7�. The Hamiltonian �14� is equivalent to
a quasifree fermionic model, and following our previous no-
tation one has �k=cos�k�−h, �k=sin�k�, �k=��k

2+�k
2, and

tan��k�=�k /�k. Using formulas �12� and �13� it is straight-
forward to write �7�. After rescaling g→g /L and passing to
the thermodynamic limit we obtain

ghh
c =


2

16�
�

−�

� 1

cosh�
�k� + 1

�k
2

�k
2dk,

ghh
nc =

1

8�
�

−�

� cosh�
�k� − 1

cosh�
�k�
�k

2

�k
4dk .

The integrals are better evaluated by transforming mo-
mentum integration to energy integration in a standard way.
As previously noticed, on general grounds, the classical term
ghh

c vanishes when the temperature goes to zero. In the
quantum-critical region 
��0, and one obtains the follow-
ing low temperature expansion:

ghh
c =

�

96h2T + O�T2� .

In the quasiclassical region where 
��1, the fall-off to
zero is exponential. With a saddle-point approximation one
obtains

ghh
c =� �

32�h
T−3/2e−�/T + lower order.

We now analyze the scaling behavior of the nonclassical
term of the metric g. From the results of �4,6� it is known
that the geometric tensor at zero temperature diverges as �−1

when �→0. The nonclassical term matches this ground-state
behavior from positive temperature. Indeed, in the quantum-
critical region the integral is well approximated by

ghh
nc �

1

8�h2�
0

2
 cosh�x� − 1

cosh�x�

��4
2 − x2�
x2 dx .

For large 
 �low temperatures� this expression can be Lau-
rent expanded and the resulting integrals can be summed
using residue theorem, giving
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ghh
nc =

1

h2� C
�2T−1 −

1

16
+ O�T�� , �15�

where C is Catalan’s constant C=0.915 966. . . .
We would like to point out that the behavior of the metric

tensor in the quasicritical region can be inferred from dimen-
sional scaling analysis in much the same spirit as was done
in �15� for the zero temperature metric tensor. From
Eq. �6� we see that the scaling dimension of ghh

nc is �nc
=2�V−2z−d, where �V is the scaling dimension of the op-
erator dH, z is the dynamical exponent, and d is the spatial
dimensionality. Following �15� �
 now plays the role of the
length� we obtain

ghh
nc � T�nc/z. �16�

In the present case, z=d=�V=1 �the scaling dimension of
�i

z—a free fermionic field—is one� which agrees with Eq.
�15�.

We now pass to analyze the behavior of ghh
nc in the quasi-

classical region, i.e., when 
��1. In this case the “tempera-
ture” part of the integral is never effective, i.e., one has
cosh�
��−1

cosh�
�� �1, so it is quite clear that, in first approximation,

one recovers the zero temperature result first given in �4�
which we rewrite here as an energy integral

ghh
nc =

1

8�h2�
�1−h�

�1+h� ���h − 1�2 − �2���2 − �1 + h�2�
�3 d� ,

�17�

and we assumed h
0. For small values of the gap—hence
we are in a situation where we consider first the limit
T→0 and then �→0—we observe the following divergence

ghh
nc�T = 0,� → 0� �

1

16�
,

which is a result also reported in �4,6�. Instead when the gap
is large—so that we are necessarily on the h
1 side—we
can approximate the radical in Eq. �17� with an ellipse cen-
tered at �h ,0� with semiaxes rx=1 and ry =2h, that amounts
to write ���h−1�2−�2���2− �1+h�2��2h�1− ��−h�2. In
this case the integral gives

ghh
nc�T = 0,� � 1� �

1

8h5/2�h − 1�3/2 �
1

8�4 .

Again, by doing a saddle-point approximation one realizes
that the zero-temperature results are approached exponen-
tially fast with the temperature, more precisely one has

ghh
nc�
� � 1� = ghh

nc�T = 0� − const � T3/2e−�/T.

We now extend our analysis to the other terms of the
metric tensor �9�. When we consider the case in which both
the temperature and the field h are varied, two new matrix
elements come into play,

gTT =

4

16�
�

−�

� �k
2

cosh�
�k� + 1
dk,

ghT =

3

16�
�

−�

� �k

cosh�
�k� + 1
dk .

Let us first comment on the behavior observed at very low
temperature. In the quasi-classical region ���T� all matrix
elements of g tend to zero except for ghh

nc. This is a general
feature and is due to the fact that these terms are absent in
the zero-temperature expression. As previously stated the
falloff to zero is exponential, and in particular, for the model
in exam, we have that

gTh � T−5/2e−�/T, T � � ,

gTT � T−7/2e−�/T. �18�

Let us now look at the quantum critical region T��, small
temperature. The mixed term tends to a constant,

ghT =
�

48
+ O�T2� . �19�

Instead gTT must diverge at zero temperature, as it has to
match with the diverging behavior observed in the ground
state �4�. For the diagonal term gTT one has

gTT =
T−2

4
cv =

�

24

1

T
+ O�T�, T � � . �20�

We note in passing that this result agrees with the one for the
specific heat obtained for general conformal theories �26�
cv= ��cT� / �3v�, as T→0, since in our case the velocity v is
one and the conformal charge c is one half. We thus see that,
in the present case, both ghh and gTT diverge as T−1. This is
not to be the case in general, indeed at any quantum critical
point described by a conformal field theory, gTT will diverge
as T−1, whereas the behavior of ghh

nc is dictated by Eq. �16�.
In this section we have analyzed the behavior of all the

elements of the geometric tensor g. The result of this analysis
allows one to conclude that indeed, at least for the specific
model studied, the quantum critical and quasiclassical re-
gions can be clearly identified in terms of the markedly dif-
ferent temperature behavior of the geometric tensor g.

B. Directions of maximal distinguishability

The analysis carried out in the previous section can be
further deepened by studying some useful quantities that can
be derived from the analysis of the metric tensor g. Indeed,
we will see that these quantities allow one to give a finer
description of the behavior of the system in the plane �h ,T�
and to reveal unexpected features. We first start by noticing
that at each point �h ,T� the eigenvectors of the metric tensor
g define the directions of maximal and minimal growth of
the line element dsB

2 . Hence the vector field v�M�h ,T� given
by the eigenvector of g related to the highest eigenvalue 	M,
defines at each point of the �h ,T� plane the direction along
which the fidelity decreases most rapidly: the latter repre-
sents the direction of highest distinguishability between two
nearby Gibb’s states.

We now focus our analysis on the study of the vector field
v�M�h ,T� in the specific case of the quantum Ising model, see
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Fig. 1. We first observe that there clearly are some interesting
features for small temperatures that reflect the analysis pre-
viously carried out on the metric elements of g. On one hand,
in the quasiclassical region, when h�0 we have that the
direction of highest fidelity drop is parallel to the h axis. This
reflects the fact that, in this region, all the elements of g tend
to zero except for the term ghh

nc. On the other hand, in the
quasicritical region, the direction of highest fidelity drop is
parallel to the T axis. Again, this feature can be linked to the
previous analysis of the terms �15� and �20�. Both ghh and
gTT diverge as T−1, but, as �C /�2� / �� /24�=0.70. . . �1, gTT

eventually becomes bigger and thus the direction of highest
distinguishability turns parallel to the T axis.

We proceed in our description of the phase diagram
through the introduced vector field by examining what hap-
pens at the h=0 axis. Here one has the impression that a kind
of singular point appear around T�1. The reason for this is
that at h=0 the system becomes the purely classical Ising
model, which possess only classical behavior at any tempera-
ture. This implies that the quantum-critical region cannot ex-
tend over this line. As the dispersion �k is flat, it is straight-
forward to write down the metric tensor on the h=0 line. It
turns out that g is completely diagonal meaning that eigen-
vectors are parallel to the �h ,T� axes. One sees that for
0.852�T��, ghh
gTT then for 0.101�T�0.852,
gTT
ghh, and then finally, at very small temperature, the
term ghh

nc dominate and for 0�T�0.101, ghh
gTT. These
“singular points” of v�Min h=0 are related to the level cross-
ing of g: its two eigenvalues become equal at those points
but no physical transition or crossover occur.

The appearance of the purely classical Ising line at h=0,
which forbids the quantum critical phase extend over this
line, is related to the fact that the model �14� is invariant
under the Z2 symmetry h→−h. This in turns implies that the
phase diagram is mirror symmetric around the h=0 line and
that there is another quantum critical point at h=−1. The
physical consequence is that the semiclassical ordered region
is much smaller than one would think and the actual phase
diagram is very similar to the one in Fig. 2.

Finally we now discuss another feature that can be ob-
served by studying v�M�h ,T�. As one can see in Fig. 1, along
the line T=h�1 the vector field becomes parallel to the

vector w� = �−1,1�. It turns out that this feature can be under-
stood analytically by studying the behavior of the metric
tensor g when �h � �1. Indeed, by evaluating the dominant
part of the various metric elements on the line T=h= t�1,
one sees that all the Fisher-Rao terms decay as t−2 while
ghh

nc � t−4, and, what is most surprising, all matrix elements
tend to have the same value in magnitude. This feature can
be understood by simply observing that when �h � �1 it is
only the classical term proportional to the external magnetic
field of the quantum Ising Hamiltonian that survives, i.e.,
H�h�i�i

z. The density matrix of the system can be written
as ��h ,T�=exp�−h�i�i

z /T� /Z; in this approximation the only
nonzero terms of the metric are the Fisher-Rao ones and
allthe covariances that define these terms, see Eq. �8�, coin-
cide with var�H�. Thus, in the limit �h � �1 the Bures dis-
tance reads dsB

2 =var�H��dT2 /T2−hdTdh /T3+h2dh2 /T4�. If
now one chooses the particular case T=h= t and evaluates
the density g /L one finds that

g�t,t� =
t−2

16 cosh2�1/2�
� 1 − 1

− 1 1
� + O�t−3� .

Thus, one has that on the line T=h�1 the only nonzero
eigenvalue is 2 var�H� / �Lt2� and it corresponds to the eigen-
vector w� = �−1,1�. In this approximation, that amounts to ne-
glecting the term ghh

c � t−4, when moving along the line
T=h�1, i.e., along the direction defined by w� �, no changes
in the state of the system occur.

C. Crossover and metric tensor g

We finally present some preliminary results related to the
intriguing possibility of determining the crossover lines be-
tween the quasiclassical and quasicritical region �14� through
the analysis of the elements of the metric tensor g and the
induced Gaussian curvature �27� in the plane �h ,T�. The ca-
pability of the highest �in modulus� eigenvalue of g and of
the Gaussian curvature induced by the metric to capture, in
terms of divergencies or discontinuities, the existence of
QPTs has been already tested in �7� and �14�. Here we would
like to test whether these quantities are able to identify the
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FIG. 1. Vector field of the eigenvector associated to the highest
eigenvalue of g, in the plane �h ,T� for the Ising model in transverse
field.
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FIG. 2. Phase diagram of the Ising model in transverse field
taking into account both critical points at h= ±1 and the purely
classical Ising line h=0. The arrows indicate the direction of high-
est fidelity decrease �the direction of the arrows is conventional, but
fixed once for all�.
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crossover between the quasiclassical and quantum-critical re-
gion. Notice that the curvature of the Bures metric in the case
of squeezed states has been studied in �28� and an opera-
tional interpretation attempted. It is also worthwhile to stress
that the so-called thermodynamical curvature plays a central
role in the geometrical theory of classical phase transition
developed by Ruppeiner and co-workers �29�.

As already pointed out, at each point �h ,T� the vector
field v�M�h ,T� defines the direction of highest distinguishabil-
ity between two nearby Gibb’s states. The degree of distin-
guishability along this direction is quantified by the maximal
eigenvalue 	M�h ,T�. Since the quasiclassical and quantum-
critical regions are characterized by significantly different
physical properties, it is natural to investigate whether the
change of the latter, in spite of not involving a phase transi-
tion, could be revealed by our measures of statistical distin-
guishability and by the related functionals.

We now give a descriptive analysis of the raw data. In
Fig. 3, we have plotted the contour plot of the maximal ei-
genvalue of g. The main feature is the presence for T
0 of
two patterns of high distinguishability �white� that separate
the regions �h�1,T�0.25� and �h
1,T�0.25� from the
rest of the diagram. Thus, the first information that can be
drawn is that a change of parameters inside these regions
implies a small change in the statistical properties of the
corresponding ground states. On the contrary, if one varies h
and T and moves from these regions towards the center of
the diagram, for example, moving along the integral lines of
v�M�h ,T�, the statistical properties of the state necessarily
have to significantly change. One can see that the “transi-
tion” lines between the different regions can be extrapolated
numerically by tracing the “ridge” lines of the two patterns
of high distinguishability. It turns out that the same result can
be achieved by looking at the lines where the Gaussian cur-
vature of g changes sign, see Fig. 4. For example, when
h
1, one can see that along the determined transition line, T
has a linear dependence on h−1. As Fig. 4 clearly shows, the
Gaussian curvature exhibits a fairly complex �lobed-shaped�
behavior in particular in the region above h=1; this behavior
is not fully understood and deserves further investigations.

Nevertheless, this preliminary descriptive analysis seems
thus to indicate that a neat distinction between the quasiclas-

sical regions �characterized by a negative curvature� and the
quantum-critical �characterized by a positive curvature� can
be made on the basis of study of the metric g. The use of the
fidelity, and of the related functionals, allows one to identify
the crossover between two distinct phases.

VI. CONCLUSIONS

In this paper we have analyzed the relation between quan-
tum criticality, finite temperature, and the differential geom-
etry of the manifold of mixed quantum states. We studied the
Bures metric over the set of thermal quantum states associ-
ated with Hamiltonians featuring a zero-temperature quan-
tum phase transition, i.e., quasifree fermionic systems. In
particular we focused on the study of the quantum Ising
model for which we provided a fully analytical characteriza-
tion of the Bures metric tensor g. Quantum critical and semi-
classical regions in the temperature, magnetic field plane can
be easily identified in terms of different scaling behavior of
the components of g as a function of the temperature. Cross-
over lines between the different regions can be found just by
looking at the shape of the graph of the largest eigenvalue of
the metric as a function of temperature and magnetic field.
Remarkably these crossover lines seem to be associated also
with the change of sign of the Gaussian curvature of the
metric g.

The results presented in this paper provide further support
to the validity of the statistical-metric approach to phase
transitions �14� and clearly show that the scope of this geo-
metrical method can be extended to finite temperatures. The
physical significance of the curvature of the metric as well as
the study of the thermal states geometry associated with
other distinguishability distances, e.g., the quantum Chernoff
bound metric, are topics deserving further investigations.
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FIG. 3. Contour plot of the highest eigenvalue of g, in the plane
�h ,T� for the Ising model in transverse field.
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FIG. 4. Contour plot of the Gaussian curvature of g, in the plane
�h ,T� for the Ising model in transverse field. The arrows indicate
the zero curvature lines.
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