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Multiparty quantum-key-distribution protocol without use of entanglement
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We propose a quantum-key-distribution protocol that enables three parties to agree at once on a shared
common random bit string in the presence of an eavesdropper without use of entanglement. We prove its

unconditional security and analyze the key rate.
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I. INTRODUCTION

When a sender, Alice, wants to send a confidential mes-
sage to single receiver, Bob, over a public communication
channel in an unconditionally secure way, they must share a
secret common random bit string, which is usually called a
secret key. Such a secret key can be shared by a quantum-
key-distribution (QKD) protocol, such as the Bennett-
Brassard 1984 (BB84) protocol [1,2] even when there is an
eavesdropper, Eve, with unlimited computational power.

When Alice sends a confidential message by broadcast to
two receivers, Bob and Charlie, these three parties must
share a common secret key. We propose a protocol enabling
them to share such a secret key under the assumption that
there are point-to-point quantum channels from Alice to Bob
and Charlie whose message can be eavesdropped and modi-
fied by Eve and three point-to-point classical channels
among Alice, Bob, and Charlie whose message can be eaves-
dropped but cannot be modified by Eve. Eve is assumed to
do whatever manipulation on quantum systems transmitted
over the quantum channels allowed by the quantum mechan-
ics. This assumption is the same as Ref. [3] and is a multi-
party generalization of that in Ref. [2]. This problem is called
the multiparty key distribution or conference key agreement.
Under this assumption we prove the unconditional security
and give a lower bound on the key rate.

As a prior relevant research, it was pointed out in Ref. [4]
that Alice can secretly send a key after two different secret
keys are shared between Alice and Bob and between Alice
and Charlie by a conventional two-party QKD protocol such
as Ref. [1]. The difference of our proposed protocol to Ref.
[4] is that our protocol allows three parties to share a secret
key at once.

As another prior relevant research, Chen and Lo [3] pro-
posed a protocol for the same goal as our proposed protocol.
In their protocol, Alice must prepare the Bell state while in
our protocol she does not need an entangled quantum state,
which makes our protocol easier to implement with current
technology than theirs [3]. Our protocol is the first multiparty
QKD protocol that does not use entangled state. It is also
worth noting that the security proof for our protocol does not
use multipartite entanglement distillation [5], while Chen
and Lo [3] use it.
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This paper is organized as follows: Section II presents the
proposed protocol. Section III shows an unconditional secu-
rity proof and a lower bound on its key rate. Section IV gives
concluding remarks.

II. PROTOCOL

In this section we describe our proposed protocol. Let |0),
|1) be an orthonormal basis for the qubit state space, and
[+)=(0)+|1))/32, |-)=(|0)+|1))/v2. We also define the
matrices X and Z representing the bit error and the phase
error, respectively, as

x|0y=1),

X|1)=10),

Z+)=1-). Z-)=|+).

(1) Alice makes a random qubit sequence according to the
i.i.d. uniform distribution on {|0),[1),|+),|-)} and sends it to
Bob. Alice also sends the same qubit sequence to Charlie.

(2) Bob chooses the {|0),|1)} basis or {|+),|-)} basis uni-
formly randomly for each received qubit and measure it by
the chosen basis.

(3) Charlie does the same thing as step (2).

(4) Alice publicly announces which basis {|0),|1)} or
{|+).,]-)} each transmitted qubit belongs to. Bob and Charlie
also publicly announce which bases were used for measure-
ment of each qubit. In the following steps they will only
consider qubits with which transmission basis and measuring
bases coincide among all of them.

(5) Suppose that there are 2n qubits transmitted in the
{|0),[1)} basis and measured with the {|0),|1)} basis by both
Bob and Charlie. Index those qubits by 1, ...,2n. Define the
bit @;=0 if Alice’s ith qubit was |0), and a;=1 otherwise.
Define the bit b;=0 if Bob’s measurement outcome for ith
qubit was |0), and b;=1 otherwise. Define the bit ¢;=0 if
Charlie’s measurement outcome for ith qubit was |0), and
c;=1 otherwise.

(6) Suppose also that there are 2n’ qubits transmitted in
the {|+),|-)} basis and measured with the {|+),|-)} basis by
both Bob and Charlie. Index those qubits by 1,...,2n". De-
fine the bit @;=0 if Alice’s ith qubit was |+), and a;=1
otherwise. Define the bit ;=0 if Bob’s measurement out-
come for ith qubit was |+), and B;=1 otherwise. Define the
bit ;=0 if Charlie’s measurement outcome for ith qubit was
|+), and ;=1 otherwise.

For the simplicity of the presentation, we shall describe
the procedure extracting the secret key from a;, b;, and c;.
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(7) Alice chooses a subset SC{1,...,2n} with size ||
=n uniformly randomly from subsets of {1, ...,2n}, and pub-
licly announces the choice of S. Alice, Bob, and Charlie pub-
licly announce a;, b;, and c¢; for i €S and compute the error
rate

N ’ N

(8) Alice chooses a subset S’ C{1,...,2n'} with size
|S’|=n" uniformly randomly from subsets of {1,...,2n'},
and publicly announces the choice of S’. Alice, Bob, and
Charlie publicly announce «;, B;, and vy; for i€ S’ and com-
pute the error rate

g =max .

|{lES|a—'y,¢,8, ora 317&%”
5]

Gr= (1)

Observe the difference between the definitions for ¢, and ¢,.

(9) Alice, Bob, and Charlie decide a linear code C,; of
length n such that its decoding error probability is suffi-
ciently small over all of the binary symmetric channel whose
crossover probability is close to ¢;. Let H; be a parity check
matrix for C;, @ be Alice’s remaining (not announced) bits
among a;’s, b be Bob’s remaining bits among b,’s, and ¢ be
Charlie’s remaining bits among c¢;’s.

(10) Alice publicly announces the syndrome Hia.

(ll) Bob computes the error vector f such that H, f
=H, b- Ha by the decoding algorithm for C;. With high
probability b- f—

(12) Charlie computes the error vector f’ such that H,f’
=H,c—H,a by the decoding algorithm for C,. With high
probability ¢—f’ =a.

(13) Alice chooses a subspace C,CC, with dim C,
=nh(g,) uniformly randomly, where & denotes the binary
entropy function, and publicly announces her choice of C,.
The final shared secret key is the coset a+C,.

III. SECURITY PROOF AND A LOWER BOUND ON THE
KEY RATE

We shall show the unconditional security of our proposed
protocol by directly relating it to the quantum error correc-
tion by the quantum CSS (Calderbank-Shor-Steane) codes
[6,7]. To make this paper self-contained, we shall briefly re-
view the CSS code.

A. Review of the CSS code

For a binary vector v=(vy,...,v,) EF}, where F, is the
Galois field with two elements, we define the quantum state
vector |v) by

)=o) @) ® -+ @v,.
For two binary linear codes C,C C; CF, the CSS code is
the complex linear space spanned by the vectors
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E [v+w),

v |C2| WEC,

for all v € C,. We also need parametrized CSS codes intro-
duced in Ref. [2]. The parametrized CSS code for x,z EF} is
defined as the linear space spanned by

1
— > DN+ T+ W),
\’|C2|WEC2

for all v € C,, where (---,---) denotes the inner product.
For a linear code C of length n, define the linear code CC
of length 2n and dimension dim C by

{éeecy,
where ¢c¢ is the concatenated vector of length 2n. In the
security proof of our protocol, we must consider the CSS

code defined by the pair of linear codes C,C| D C,C,, whose
orthonormal basis is given by

/— > |5+ wW|o +w).
V|C2|wec2

For vectors x and ZEF} of length n, we define the param-
etrized CSS code as the complex linear space spanned by

1
ﬁE (=1) 7”)|x+v+w>|x+v+w> (2)
|C2|w€C2

for v € C;. Using the parametrized CSS code defined in Eq.
(2), we shall show a security proof of our protocol.

B. Security proof and analysis of the key rate

We shall first show that our protocol is equivalent to send-
ing a parametrized CSS codeword with the parameters x and
Z randomly chosen. If we fix v and x and choose Z uniformly
randomly in Eq. (2), then the resulting density operator is

1

> ( > (—1)(5"‘71>|f+17+w71>|)?+17+w71>>
IEF) WiEC,

x( S ()N E 4G+ v172|)

ﬁzECZ

2]1

(3)

by the exact same argument as Ref. [2].
Denote the right-hand side of Eq. (3) by p(¥,0). By a
straightforward computation we can see

— 2 > pEv) = 2 |aayaal. (4)
xEFZ U€F2 aEFg

The right-hand side of Eq. (4) means sending |00) or |[11) n
times with equal probability, which is exactly what Alice is
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doing in our protocol. Announcing the syndrome H,a in step
(10) is equivalent to announcing which x is chosen.

We shall consider the decoding of the imaginary transmis-
sion of CSS code words. A good review of decoding of CSS
codes is provided in Ref. [2]. We regard Bob and Charlie as
a single receiver. The bit error correction is actually per-
formed in our protocol, therefore we must ensure that it can
be separately executed by Bob and Charlie. On the other
hand, the phase error correction is not actually performed, so
it does not need to be separately executable.

Observe that the bit error correction for the leftmost n
qubits in the CSS code defined in Eq. (2) can be done sepa-
rately from the rightmost n qubits in Eq. (2), which means
that Bob and Charlie can correct their bit flip errors with
their local operations and that they do not need their coop-
eration for bit error correction.

We shall consider the phase error correction. Let Z; be the
phase error that occurred at ith qubit in Eq. (2). We can see
that Z; and Z,,; have the same effect on the quantum code-
word in Eq. (2), and that Z;® Z,,; does not change the quan-
tum codeword in Eq. (2).

Let

hy
H2= :

>

h

ndim C,
be a parity check matrix for Cy, then
hyh,
Hj= :

hn—dim Czhn—dim (&)

is a parity check matrix for (C,C,)*.
Suppose that a phase error

7@ - @ Zm (5)

occurred with the quantum state (2), where z;EF, for i
=1,...,2n. Lete=(zy,...,22,) EF%”. From the measurement
outcomes in the phase error correction process, we can know

(hih;,é) (6)

for i=1,...,n—dim C,. Observe that the error (5) and
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Z - oz
has the same effect on the state (2) if z;+z,,;=z, +z,,; for all
i, where the addition is considered in F,. Thus, in order to

correct phase errors, we must find the binary vector
-,e, T eZn) (7)
from the data given in Eq. (6). Also observe that

(ﬁiﬁi,é) = (l;i,é)’),

>
e =(e;+e,--

Finding ¢’ from (ﬁi,E') is exactly the ordinary decoding pro-
cess for the classical linear code C;. Also observe that the
probability of e;+e,,;=1 is given by ¢, in Eq. (1) in our
situation.

It is proved in Ref. [8] that random choice of
[n—h(g,)]-dimensional subspace C, in C; almost always
gives the low phase error decoding probability. This fact is
also stated without proof in Ref. [2]. If the choice of C; is
appropriate, then the fidelity of quantum error correction in
the imaginary transmission of the CSS codeword (2) is close
to 1, which implies that the eavesdropper Eve can obtain
little information by the same argument as Ref. [9], which
shows the security of the BB84 protocol directly relating it to
the quantum error correction without use of entanglement
distillation argument.

It was shown in Corollary 2 of Ref. [10] that there exists
a linear code C, of information rate 1—h(q,) satisfying the
condition in step (9). Therefore, we can extract 1-h(q)
—h(gq,) bit of secret key from one bit of the raw bits a.

IV. CONCLUSION AND DISCUSSION

We have proposed a protocol that allows Alice, Bob, and
Charlie to share a common secret key at once. This is the
first such protocol without use of entangled states. However,
the amount of extracted common secret key per single pho-
ton transmission is lower than the repeated use of the BB84
protocol and the well-known post-processing described in
Ref. [4]. Finding a multiparty QKD protocol with higher
efficiency is a future research agenda.
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