PHYSICAL REVIEW A 76, 062314 (2007)

Optimal bounded-error strategies for projective measurements
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Research in nonorthogonal-state discrimination has given rise to two conventional optimal strategies: un-
ambiguous discrimination (UD) and minimum error discrimination. We explore the experimentally relevant
range of measurement strategies between the two, where the rate of inconclusive results is minimized for a
bounded-error rate. We first provide some constraints on the problem that apply to generalized measurements
[positive-operator-valued measurements (POVMs)]. We then provide the theory for the optimal projective
measurement in this range. Through analytical and numerical results we investigate this family of projective,
bounded-error strategies and compare it to the POVM family as well as to experimental implementation of UD
using POVMs. We also discuss a possible application of these bounded-error strategies to quantum key

distribution.
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I. INTRODUCTION

It is a well-known feature of quantum mechanics that it is
impossible to discriminate perfectly between nonorthogonal
states. For example, if a party is repeatedly sent one of two
known, nonorthogonal states and is asked each time which of
the two was sent, the set of responses based on measure-
ments of the sent states must include either incorrect or in-
conclusive responses or both. Incorrect responses occur
when the responding party misidentifies the state, while in-
conclusive ones occur when the responding party replies that
he does not know what state was sent. The responding party
knows only what the possible states are and with what prob-
ability each is sent. This problem, called quantum-state dis-
crimination, has played an important role in quantum infor-
mation science [1]. There are two kinds of strategies that are
usually considered: the minimum error (ME) strategy and the
unambiguous discrimination (UD) strategy.

A strategy that minimizes the incorrect responses with no
inconclusive responses is known as the minimum error strat-
egy. For two pure states, it is obtained through a standard
projection-valued measurement (PVM). For |¢,) and |i,),
with respective prior probabilities 7, and 7,=1-17,, the
minimum error rate as a function of the overlap between two
states has an analytic form given by Helstrom [2] as

1 T
PME=5(1—V'1—47h772|<¢1|¢2>|2)- (1)

When n,=n,=1/2, the PVM that achieves the minimum
error is oriented symmetrically around the states. By the ori-
entation of the measurement, we mean simply the orientation
of the set of eigenstates of the measurement in a vector rep-
resentation of the Hilbert space. We will discuss measure-
ment elements in this way—i.e., in terms of their eigenstate
vectors. Beyond two states, a general result exists for ME
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strategies known as Kennedy’s lemma [2]. Given linearly
independent pure input states, the lemma asserts that the ME
strategy can always be obtained with a PVM.

A strategy that minimizes the inconclusive rate Py, with
no incorrect responses is known as the unambiguous dis-
crimination strategy. The absence of errors allows for con-
clusive, i.e., certain, discrimination; Pc,,=1-Py, is called
the conclusive rate and the UD problem is often phrased as
maximizing Pc,,. For two states, after setting #, = 7, with-
out loss of generality, the maximum conclusive rate for pro-
jective measurements is

Peat= (1= K| yd). (2)

However, a generalized or positive-operator-valued measure-
ment (POVM) is in fact optimal under the condition that
(7! 7)Y | )] = [y [ )2 [3]. Originally addressed by
Ivanovic, Dieks, and Peres (IDP) [4], the measurement gives
the optimal conclusive rate [3]

PEIN™M =1 =239, m) [ [ (3)

Unambiguous discrimination strategies are central to quan-
tum key distribution (QKD) in quantum cryptographic pro-
tocols [5,6] and, thus, the success rate of the protocol is
dependent on what type of measurement, i.e., a PVM or
POVM, one chooses to implement. In the case of equal pri-
ors, m;=m,=1/2, a POVM is the optimal measurement for
any overlap. For example, when the overlap is 1/+2, the
optimal POVM performing UD gives a maximum conclusive
rate of 29.3%, whereas the optimal PVM gives a maximum
conclusive rate of 25%. The difference between the results
for PVMs and POVMs is more pronounced in a particular
three-state example of UD from Ref. [7], which we discuss
later on, where the conclusive rate of the optimal POVM is
more than twice that given by the corresponding optimal
PVM.

The advantage that POVMs provide over PVMs in UD is
related to the fact that POVM elements are not restricted to
being orthogonal. Thus, their number can exceed the dimen-
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sion of the system’s Hilbert space (which we will assume
throughout equals the number of input states). A positive
operator is associated with each state and one extra operator
is defined for inconclusive results. In contrast, PVM ele-
ments are mutually orthogonal. Since unambiguously dis-
criminating a particular input state |¢;) involves knowing for
certain that the sent state was not any of the other input
states, the respective PVM element is oriented orthogonally
to all other input states so that if the outcome corresponding
to that element is obtained, one knows for certain that the
sent state was |¢;). Only one such element exists in general
for PVMs and thus only one input state may be unambigu-
ously discriminated. In this case, the projector for the or-
thogonal subspace corresponds to inconclusive results. Ulti-
mately, however, if the pure input states do not form a
linearly independent set—for example, when the number of
input states is larger than the dimension of the Hilbert
space—UD is not possible in general, regardless of the type
of measurement [8]. An analogous condition holds for mixed
states: UD exists if and only if the support of each input state
is not completely contained in the support of the rest [9]. An
equivalent matrix condition is given in Ref. [10].

In realistic quantum information processing, noisy chan-
nels are inevitable, even in UD, so a more general class of
strategies where the responding party gives both inconclu-
sive and incorrect responses becomes useful. For either the
case of pure or mixed states, if a dependency exists between
the input states so that UD is not possible, then indeed this
approach becomes necessary. Since all outcomes are now
error prone, conclusive results no longer exist. For this case,
an approach that maximizes the correct rate of individual
outcomes has been given in Ref. [11]. This so-called “maxi-
mum confidence” measurement gives the highest probability
that the given interpretation of a result was correct. In this
paper, we instead adopt the equivalent approach of minimiz-
ing the inconclusive rate, given some bounded-error rate,
since we wish to consider error as a fixed parameter of the
problem.

In either approach, UD and ME schemes exist as limiting
cases: the latter when the inconclusive rate is 0 and the
former when the error rate is 0. In between, trade-offs exist
between the two rates. In the two-state case, for example,
one may achieve strategies that at once give error rates less
than the Helstrom bound and inconclusive rates less than the
IDP bound. Zhang, Li, and Guo derive in Ref. [12] a general
inequality for this intermediate range for the two input states
|¢1> and |l//2>, given as Py, Py, = |PIP_ VP Py— Py P %
where Pp,; and Py, are the inconclusive rates, Pc; and Pc,
are the correct rates, and Pg; and Pg, are the error rates,
respectively, and Pip=(i/; | #,)™ for the slightly more general
problem of sending M copies of either |,) or | i) each time.
In the case that each state is equally likely (7,=1,) and M
=1, the inequality reduces to one given in an early work on
this intermediate range published by Chefles and Barnett
[13]. A dependency between the input states implies a non-
zero minimum error rate in both the pure- and mixed-state
cases. Fiurasek and Jezek give results for the latter in Ref.
[14]. In Ref. [15], Eldar formulates the mixed-state problem
in terms of semidefinite programming, a branch of convex
optimization. Once formulated in this way, powerful numeri-
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cal techniques can be applied that readily give the optimal
inconclusive rate. Applying these techniques, Eldar shows
that the conditions for the optimal mixed state solution pro-
vided in Ref. [14] are necessary and sufficient; i.e., they
guarantee a global optimum. These techniques scale effi-
ciently with dimension and so are used in this work to access
the more analytically difficult, higher-dimensional problems
in quantum-state discrimination using POVMs.

Beyond their theoretical interest, the intermediate range of
strategies in quantum discrimination is not only important in
accounting for noise, but because the introduction of error
can actually be beneficial. Specifically in ideal schemes, in-
troducing error to an UD strategy allows for more correct
discriminations (though, of course, by sacrificing any truly
unambiguous response). Both the receiver and an eavesdrop-
per can most likely make use of this fact in QKD [14]. For
example, a recent counterintuitive result shows that the in-
formation attainable by an eavesdropper in QKD can de-
crease with the introduction of error [16].

Even though POVMs obtain the optimal solution in gen-
eral, the projective versions of these bounded-error strategies
deserve study since PVMs are still widely used in practice
and the differences between the two types of measurement in
this context have yet to be studied.

In the following section, we establish some constraints on
the optimal solution to the problem of allowing for both
inconclusive and incorrect responses. These constraints are
then used in phrasing the problem of minimizing the incon-
clusive rate, for projective strategies, given a bounded-error
rate. An instructive example of a two-state PVM solution is
then presented in Sec. III, after which higher-dimensional
problems are discussed in Sec. IV with an example of a
three-state case based on a previous experiment [17]. Conse-
quently, a claim made in Ref. [17] regarding the superiority
of POVMs over PVMs in UD is amended. Last, by applying
the bounded-error strategy to the Bennett 1992 (B92) proto-
col, we discuss increasing the key generation rate and sum-
marize our results in Sec. V.

II. PROBLEM FORMULATION

For the n-state problem, given any set of n input states
l),|4s), ....|,), with prior probabilities 7, 7,, ..., 7, re-
spectively, we must find the function Py,(e€) representing the
minimum inconclusive response rate as a function of a
bounded-error rate € defined as the largest tolerable fraction
of incorrect responses out of the total number of sent states.
In other words, the responding party is allowed a maximum
average number of incorrect responses and, under this re-
striction, tries to minimize the average number of inconclu-
sive responses.

Given an existing but not necessarily optimal strategy
with some particular inconclusive rate Py, and some particu-
lar error rate PEo’ consider the following two manipulations
of that strategy that decrease the error rate and inconclusive
rate, respectively, and provide some constraints on the prob-
lem (refer to Fig. 1).

First, the error rate P may be decreased from Pg by
randomly calling inconclusive some fraction of the results
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FIG. 1. Bounds on the minimum inconclusive rate function

ﬁln(e) for the n-state problem with equal prior probabilities. The
dash-dotted line with a slope of —n"j starting at (0, Pyp) represents
strategies where random guesses are made when inconclusive out-
comes are obtained from the UD strategy. The dashed line that
connects the point (0,1) to (Pyg,0) represents strategies where re-
sults for error-prone outcomes from the ME strategy are interpreted
as inconclusive. Similar strategy manipulations (shown as dotted
lines) apply to any existing strategy, represented by (Pg,, Py, ), and
so provide two constraints on the minimizing function Pp,(e): a
bound on its slope (it must be less than —n%l) and a bound on the
neighboring points of the function. 13[,,(6) then lies somewhere in
the shaded region.

obtained from error-prone outcomes (those that we interpret
as a particular sent state but that are sometimes incorrect).
Thus, in Fig. 1 there is a family of strategies represented by
the line segment on the plot connecting the point (PEO,PIHO)
and the point (0,1) at the upper left-hand corner. Moving
from right to left along this line an increasing fraction of
responses are inconclusive. When all of the responses are
inconclusive the error rate is naturally zero. This property

places a constraint on the values of Py, (e) at neighboring
points. Second, the inconclusive rate Pj, may be decreased
from Py, by randomly guessing the sent state any fraction of
the time an inconclusive outcome is obtained. For example,
in the case of equal prior probabilities, a random guess will
be correct with probability 1/n and incorrect with a probabil-
ity of 1—1/n. The error rate is therefore increased above Pg

by 1-1/n of the rate of guessed outcomes. Thus, the line
with slope -~ beginning at and to the right of (PEO»Pan)
contains strategies that differ only in the fraction of the time
an inconclusive outcome is replaced by a randomly guessed
outcome (see Fig. 1). For a given error rate, the optimal
strategy must have an inconclusive rate less than or equal to
the value along this line.

Applied to the ME and UD strategies, the above two strat-
egy manipulations restrict the optimal solution so that it must
lie at or below the line from (0,1) to the ME point (Pyg,0)
and at or below the line from the UD point (0,Pyp) to
(-%(1=Pyp),0), which is the right-end point of a line with
slope —~*+ beginning at (0, Pyp) (see Fig. 1). The constraints
displayed in Fig. 1 are satisfied by analytical results given in
Ref. [13] for two states using POVMs and presumably for all
POVM solutions. We now restrict ourselves to projective
strategies.
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An n-element PVM is a set of orthogonal projectors
{P,,P,,...,P,}, where P,=|p;}(p;| for some vector |p;) € C"
and (p;|p;)=6;, for i, j=1,...,n. We will continue to discuss
the PVM elements in terms of these vectors onto which the
elements project.

Recall that in the ME strategy, each P; corresponds to a
possible measurement outcome, which is interpreted (occa-
sionally incorrectly) as the particular input state |;) having
been sent. We now formalize the idea of only making that
interpretation a fraction of the time that we obtain that par-
ticular outcome; the rest of the time we call the result incon-
clusive.

Consider the following strategy. To each P; associate a
fraction w; called the discrimination weight of P;, When the
projective measurement is performed many times, the out-
come corresponding to P; will be obtained many times and
w; is the fraction of those outcomes that should be inter-
preted as |¢;). The rest should be interpreted as inconclusive.
A “discriminated” input state or measurement element is de-
fined as one with w;,=1. In the ME strategy, all states are
discriminated input states whereas in the UD strategy only
one input state is discriminated.

Taking these discrimination weights into account, the ex-
pression for the correct rate Pc is

Pc= E Wi77i|<Pi|¢i>|2 (4)
i=1

and the expression for the error rate Py is

n

Pg= 2

i=1, j=1, i#j

Wﬂ?j|<Pi|‘/’j>|2- (5)

The inconclusive rate is then defined as Py,=1-(Pc+Pg)
and the optimization problem for some bounded-error rate €
is

minimize P, =1-(Pc+ Pg)

subject to Pp <, (6)

over the discrimination weights wy, ..
tion of the PVM through p,,...

Py,(€) is obtained by varying e from 0 to Pyg. On a plot of

.,w,, and the orienta-
,Pn- The minimal function

Py, versus Pg, Py.(€) is a curve. The region above and to the
right of that curve contains points representing inconclusive
rate and error rate pairs that can be obtained with a PVM
strategy. At one end point of the curve is the UD strategy at
€=0, where all but one of the discrimination weights are
constrained to be zero since at most one input state may be
unambiguously discriminated. At the other end is the ME
strategy at Pp,=0 where a discrimination is attempted for all
states and so all discrimination weights are equal to 1. With

increasing error from 0, ﬁln(e) may be obtained by optimally
increasing the values of the n—1 weights from 0 to 1 while
adjusting the orientation of the PVM. Now that the problem
is formulated, we proceed with some examples.
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FIG. 2. The geometry of the real, two-state problem. The input
states are represented by |¢,) and |¢,), and the PVM elements
project onto p; and p,. The angle ¢ offsets the orientation of the
PVM from the zero-error UD case where p, is interpreted as |i)
and p, is interpreted as inconclusive. 6 is the separation angle be-
tween the states.

III. TWO-STATE EXAMPLE

Consider the restricted problem where there are two states
to be discriminated and all their coefficients are real. This
case has a simple and instructive geometrical interpretation
where the PVM is represented by a set of two orthogonal
vectors p, and p, on the unit circle in R?> whose correspond-
ing outcomes are interpreted as the states |¢,) and |i,), re-
spectively (see Fig. 2). We now focus on extending the two
known strategies (ME and UD) into the intermediate range.

In the UD strategy where Pr=0 and assuming again with-
out loss of generality that 7, = 7,, i, is discriminated using
the outcome corresponding to p; by setting w;=1, w,=0, and
[{py|#,)|=0. The correct rate is then

PC=771|<P1|'/’1>|2~ (7)

A discrimination is not attempted for |,), leaving the out-
comes for p, as inconclusive. Without changing the discrimi-
nation weights, this inconclusive rate may be decreased via a
rotation of the PVM from the UD orientation so that the
overlap between p, and both ¢, and i, decreases. In the
process, the overlap between the p; and ¢, increases thereby
increasing the correct rate. Error is introduced in the process
since there is now a nonzero overlap between the discrimi-
nated PVM element p; and the input state to which it is not
associated, ¢,. This error rate is

Pe=nl(pil)]. (8)

The increase in the two correct and error rates can be found
using the setup in Fig. 2. Equations (7) and (8) become

Pg=1mn, sin2(¢), )

respectively, where ¢ is the angle of rotation that is set by
the parameter Pg. For small ¢ and 6 near 7/4, the correct
rate in Eqgs. (9) increases linearly and the error rate increases
quadratically. Thus, near ¢=0 we can obtain a significant
increase in the correct response rate without a correspond-

PC: m Sin2(¢+ 0),
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FIG. 3. (Color online) The two-state discrimination problem for
O=1/4 and 5;=1,=1/2. As Pg—0, the optimal PVM curve (solid
line) approaches the dashed curve representing the less general op-
timization over the orientation of the PVM with w,=0. For error
approaching the ME value, the optimal PVM curve approaches the
dash-dotted line representing strategies based on the ME strategy
but with 0 <w, <1. For any value of 6, the dashed and dash-dotted
curves intersect at (%,%) where w,=0, shown here as a diamond
marker. The optimal POVM curve for the same parameters is shown
as the dotted line.

ingly large increase in the error rate (providing a maximum
benefit when 0=1/4).

As ¢ increases with increasing Pg, a continuous set of
pairs of inconclusive and error rate values are achieved
through this freedom in the orientation of the measurement.
At the curve’s left-end point, Pg=0 so that ¢»=0 by Eq. (9)
and we regain Eq. (3) as P[PJ\];M: m[1-cos?(6)]. The expres-
sion for this curve corresponding to the correct rate in Egs.
(9) as a function of the increasing error rate Pg is

Pc=Pyp+ ﬂPE(cos(26) + 14/ 2 _ 1 sin(20)). (10)
n Pg

When taking the limit Pg—0, P> \FE and so the slope of
the curve given by Eq. (10) becomes infinite. Again, there is
a substantial increase (decrease) in the correct (inconclusive)
rate with a small increase in error. An example of this “w,
=0" curve is shown in Fig. 3 along with other results dis-
cussed below for the case of 7;=17, and 6=7.

Focusing now on the ME strategy, error may be decreased
from Py by making use of the freedom of the discrimina-
tion weights—i.e., by calling error-prone outcomes inconclu-
sive. This is accomplished by decreasing either of the dis-
crimination weights w; or w, from 1. Taking one of them to
0 produces a linear curve on the plot in Fig. 3, shown for the
case of 7,=7, and 0=7.

The inconclusive rate function for the optimal strategy,
ﬁln(e), is obtained by rotating the PVM while simultaneously
changing the discrimination weights. The optimal strategy
smoothly changes from the orientation-dependent strategy at
errors near 0 to the weight-dependent strategy at errors near
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Py For intermediate errors, both strategies are significant
and are jointly used to achieve the optimum. The numerical
solution for 0—2 and 7,=7, is shown in Fig. 3 where a
maximum 10% increase in the correct discrimination rate is
achieved by both rotating the PVM and changing the dis-
crimination weights as compared to doing either one by it-
self.

Also shown in Fig. 3 is the corresponding optimal POVM
curve as given in Ref. [13]. It always performs better than
the PVM solution, as it must. However, even though the
curves representing the two strategies are diverging as Pg
increases from 0, this trend is short lived. With increasing
error, the gap between their inconclusive rates is made
smaller by the use of the discrimination weight w, in the
optimal PVM strategy until the two solutions finally con-
verge on each other at the ME values.

IV. HIGHER-DIMENSIONAL PROBLEMS
AND AN EXAMPLE

The underlying structure of the optimal strategy given
above is not restricted to two states, but rather generalizes to
problems with a larger number of input states. In general for
n input states there will be n curves analogous to that given
by Eq. (10), where each represents a family of strategies,
denoted C,,, for 1 =m=n, with a fixed, discrete number of
discriminated (w;=1) input states. Each C,, is defined by the
discrimination weights: w;=1, for i=1, ...,m, and w;=0 oth-
erwise. C,, represents the set of strategies where one always
tries to discriminate the optimal subset of m input states with
m projectors and interprets the remaining n—m outcomes as
inconclusive. For a given set of discriminated states, i.e., for
a given C,,, the error rate can be changed by reorienting the
PVM, altering the overlap between the input states and PVM
elements. An optimal reorientation generates, for each C,,, a
continuous curve in the plane of Py, versus Pg. Each C,, has
a minimum error rate Pg), that is nonzero for m>1. All
strategies that discriminate m states must have an error rate
of at least Pmln To obtain a lower error rate m must be
reduced. For Cl, the minimum error is O—i.e., in the UD
case. For C,, the minimum error is that of the ME case, Py,
where all weights equal 1 and C, is in fact just the point
(PyE,0). The intermediate set of strategies for 1<m<n

min
};a;er:n li minimum error lying between 0 and Py, with P,
E,m+1*

Naively, one could obtain a suboptimal set of discrimina-
tion strategies as a function of allowed error by adopting the
appropriate strategies in C,, (by optlmally reorienting the
PVM) once Pg=Pg,, and until Pg=Pg’, . However, the
optimal strategy also involves the continuous transformation
of the discrimination weights along with the PVM reorienta-
tion and generates a continuous, smooth minimum inconclu-
sive rate curve between 0 and Py error.

For any C,,, there will be one of the m discriminated
states (up to symmetries in that optimal subset) that will give
the worst contribution to the error. Reducing the weight for
this state gives the minimal increase in the inconclusive rate
for errors below PR down to Pg‘,‘;_l at which point one is
forced to reduce a welght of the remaining m—1 states to get
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FIG. 4. State_ dlscrlmlnatlon for the three states used in Ref.
[17], Jz/q) (\2/3,0,1/\3) ly)=(0, 1/43,12/3), and ly3)=(0,
-1/43,0, \2/3) The optimal projective strategies are represented
by the solid line. The two dashed lines C; and C, represent the
strategies that discriminate one and two input states, respectively,
using only the orientation of the PVM. The diamond and circular
marker represent the minimum error for C,, Pg};, and the minimum
error (0, Pyg) respectively. Using the PVM orientation defined at
those points, L; and L, are generated by reducing the weight cor-
responding to the discriminated state (w;=1) that is hardest to dis-
criminate. The optimal PVM at 3% error gives a correct rate of
62.3% compared to the 54.5% attained by the experimental POVM
in [17] shown here as a square. The optimal POVM is shown as the
dotted line.

the error any lower. Just as in the two-state case, the optimal
strategy is a smooth transition from the orientation-focused
strategies at errors just above Pmln _, to the weight-focused
strategies at errors just below Pmm The latter can be seen in
the dash-dotted lines in Figs. 3 and 4 where the weight of the
respective worst state is reduced without changing the orien-
tation of the optimal PVM at the respective Pg,, value. In-
tuitively, the “worst” state is hardest to discriminate because
it has the largest overlap with the rest of the states. More
technically, it has the largest ratio of error rate to correct rate
contribution, so reducing its discrimination weight gives the
minimal increase in the inconclusive rate for a given reduc-
tion in error rate.

The optimal curve can be found numerically by solving
(6) over the discrimination weights and the orientation of the
PVM. The optimal projective strategies arising from the
above construction may be used in a comparison with opti-
mal POVM strategies for higher-dimensional problems, an
example of which follows in the next paragraph.

What spurred interest into bounded-error projective strat-
egies was an earlier paper from our group [17] in which an
optical realization of UD was performed on a partlcular Ep-
let of states, [i)= (\2/3 0,1/\3), |¢)=(0,1/13,12/3),
and [i3)=(0, ~1/43,0,42/3), using the optimal POVM as
suggested in [7]. After a comparison with the theoretical re-
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sult of the corresponding optimal UD PVM, the claim was
made that this POVM had demonstrated “an improvement of
more than a factor of 2 over any possible projective measure-
ment” (our emphasis). The measurement was of course ac-
companied by some experimental error (3% in this case, with
a 2% decrease in the inconclusive rate as a result). Therefore,
the legitimate comparison is between the implemented
POVM and the optimal PVM, implemented or theoretical,
that also gives that error rate. The family of projective strat-
egies for a bounded error given in this paper contains such an
optimal projective measurement. It is true that in any imple-
mentation these optimal projective strategies would them-
selves acquire experimental errors that would most likely
make them less effective than the corresponding imple-
mented UD POVM. However, it is the general claim regard-
ing realistic POVMs and any PVM that we wish to address.
Therefore, should any of these theoretically optimal PVM
measurements perform better than the implemented POVM,
the claim made in Ref. [17] would be invalidated. The proper
comparison is shown in Fig. 4 and it is clear that the optimal
PVM strategy that is wrong 3% of the time answers correctly
more often than the implemented POVM in Ref. [17], repre-
sented at the 3% error it achieved in the experiment. The
optimal PVM elements P;, P,, and P;, given by the vectors
p1=(-0.63,0.63,0.45), p,=(0.71,0.71,0), and p;=(0.31,
—0.31,0.90), achieve a 62.3% correct response rate as com-
pared to the 54.5% given by the implemented POVM.

Also shown in Fig. 4 is the optimal curve for any POVM,
i.e., the one with no experimental error, found with the du-
ality techniques described in [15] using the program YALMIP.
The large advantage that the POVM solution has over the
PVM solution in UD diminishes quickly with increasing er-
ror from O because of the ability of PVMs to make an in-
creasingly large number of correct discriminations of a sec-
ond state while introducing very little error. A logarithmic
scale was used in Fig. 4 to display this fact more clearly. For
example, in Fig. 4, the 25.4% correct discriminations for
PVMs at 0 error jumps to over 50% at 0.0025% error. By
contrast, for the POVM, the 54.5% correct discrimination
rate at O error only goes up to 61.5% by 0.0025% error.
Experimentally accessing these regions of near-zero error
where POVMs give a significant advantage may prove diffi-
cult. Also, we note that the effect is even stronger in Fig. 4
than in the two-state case considered above in Fig. 3. It
therefore may be true that in experiments using a large num-
ber of input states and those for which the experimental error
cannot be made small, POVMs cease to give a sufficient
advantage over PVMs to warrant the increased practical dif-
ficulties in their implementation.
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V. DISCUSSION AND SUMMARY

One application for optimal bounded-error strategies may
lie in increasing quantum key generation rates. For example
in the B92 protocol [5], Alice and Bob use the transmission
and an UD measurement of two nonorthogonal states in dif-
ferent bases to build a cryptographic key. The key generation
rate is R=N(1-f},)[1-H(e,)—H(e,)], where N stands for the
number of sent states measured in the same basis and fi,
refers to the minimum inconclusive rate for the measure-
ment, found through, for example, the convex methods men-
tioned in the Introduction. f, is dependent only on the fixed
separation between the two states and their prior probabili-
ties. Out of all the counts that pass the procedure, H(ey) is
the fraction that are sacrificed to find the quantum bit-error
rate and H(e,) is the fraction lost in the privacy amplification
process. As long as H(e,) and H(e,) remain within the
bounds required for security, Bob is free to select a measure-
ment that offers him the highest key generation rate through
its effect on f1,. A bounded-error strategy will perform better
in this regard than the UD measurement that is normally
used. An unconditional security proof for the B92 protocol is
given in [18] and provides estimates for the bounds of H(e)
and H(e,). One would need only to adjust the proof by con-
sidering a bounded-error strategy instead.

In this work we have developed the general problem of
the optimal PVM that interpolates between the UD and ME
strategies by minimizing the inconclusive rate for some
bounded-error rate. This range of strategies is more experi-
mentally relevant since errors are inevitable and our choice
of measurement is relevant since PVMs are more widely
used than POVMSs. We have found, in both two- and three-
state examples, that a small introduction of error leads to a
large decrease in the inconclusive rate for PVMs, which sug-
gests that the substantial difference in UD results for PVMs
and POVMs may not exist once realistic errors are consid-
ered.
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