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Entanglement-assisted quantum error-correcting codes �EAQECCs� make use of preexisting entanglement
between the sender and receiver to boost the rate of transmission. It is possible to construct an EAQECC from
any classical linear code, unlike standard QECCs, which can only be constructed from dual-containing codes.
Operator quantum error-correcting codes allow certain errors to be corrected �or prevented� passively, reducing
the complexity of the correction procedure. We combine these two extensions of standard quantum error
correction into a unified entanglement-assisted quantum error-correction formalism. This new scheme, which
we call entanglement-assisted operator quantum error correction �EAOQEC�, is the most general and powerful
quantum error-correcting technique known, retaining the advantages of both entanglement-assistance and pas-
sive correction. We present the formalism, show the considerable freedom in constructing EAOQECCs from
classical codes, and demonstrate the construction with examples.
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I. INTRODUCTION

Conventional quantum error-correcting codes are simulta-
neous eigenspaces of a group of commuting operators, the
stabilizer group. A construction of Calderbank and Shor and
Steane �1,2� showed that it was possible to construct quan-
tum codes from classical binary codes—the CSS codes—
thereby drawing on the well-studied theory of classical error
correction. Later on, it was shown that �3,4� the construction
of quantum codes from classical codes can be put in a more
general framework, the stabilizer formalism. This gave,
among other important benefits, a strong connection between
quantum error-correcting codes and classical symplectic
codes, which are closely related to linear quaternary codes
�that is, linear codes over GF�4��.

This connection between classical codes and quantum
codes is not universal, however. Rather, only classical codes
that satisfy a dual-containing constraint �i.e., that have self-
orthogonal parity-check matrices� can be used to construct
standard quantum codes. While this constraint is not too dif-
ficult to satisfy for relatively small codes, it is a substantial
barrier to the use of highly efficient modern codes, such as
turbo codes and low-density parity check �LDPC� codes, in
quantum information theory. These codes are capable of
achieving the classical capacity; but the difficulty of con-
structing dual-containing versions of them has made progress
toward quantum versions very slow.

Recently, there have been two major breakthroughs in
quantum error-correction theory. The first was the discovery
of operator quantum error-correcting codes �OQECCs�
�5–12�. These provide a general theory which combines pas-
sive error-avoiding schemes, such as decoherence-free sub-
spaces �13� and noiseless subsystems �14�, with conventional
�active� quantum error correction. In a certain sense, OQECC
does not lead to new codes, but instead provides a new kind

of decoding procedure: it is not necessary to actively correct
all errors, but rather only to perform correction modulo on
the subsystem structure. One potential benefit of the new
decoding procedure is to improve the threshold of fault-
tolerant quantum computation �6�.

The second breakthrough was the development of a
theory of entanglement-assisted quantum error-correcting
codes �15–17�. In this theory, it is assumed that in addition to
a quantum channel, the sender and receiver share a certain
amount of preexisting entanglement. The entanglement-
assisted quantum error-correcting codes �EAQECC� formal-
ism can be applied to any classical quaternary code, not just
dual-containing ones, and the performance of the resulting
quantum code �that is, its minimum distance and net rate� is
determined by the performance of the classical code.
�OQECCs also allow quantum codes to be constructed from
classical codes which do not obey the dual-containing con-
straint, but in this case the performance of the quantum codes
cannot be predicted from the performance of the classical
codes�.

Within the framework of EAQECCs, the existing theory
of quantum error becomes a special case in which the needed
entanglement is zero. Classical dual-containing codes give
rise to standard quantum codes, while all other classical
codes give rise to EAQECCs. In a similar way, standard
QECCs can also be thought of as a special of OQECCs,
where the protected subsystem is the entire system. In this
paper, we move one step further, by incorporating both op-
erator quantum error correction and entanglement-assisted
quantum error correction into a single unified formalism.
This unified scheme is the most general theory of quantum
error correction currently known.

We now briefly outline the structure of this paper. In Sec.
II, we review the construction of EAQECCs and OQECCs as
extensions of the usual stabilizer formalism. In Sec. III, we
provide the theoretical derivation of EAOQECCs, and briefly
discuss the relationship between conventional QECCs,
OQECCs, EAQECCs, and EAOQECCs. In Sec. IV, we give
some examples of EAOQECCs, and show how one can
make trade-offs between entanglement-assistance and pas-
sive error correction. Finally, in Sec. V, we conclude with a
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discussion of how the entanglement-assisted operator for-
malism allows us to construct versatile classes of EAO-
QECCs from classical linear codes, with varying powers of
passive versus active error correction.

II. REVIEW OF EAQECCS AND OQECCS

First, let us recall the stabilizer formalism for conven-
tional quantum error-correcting codes. Let Gn be the n-fold
Pauli group �18�. Every operator in Gn has either eigenvalues
±1 or ±i. Let S�Gn be an Abelian subgroup which does not
contain −I. Then this subgroup has a common eigenspace
C�S� of +1 eigenvectors, which we call the code space de-
termined by the stabilizer S. Later on, we will just use C to
denote the code space. Typically, the stabilizer is represented
by a minimal generating set �g1 , . . . ,gm�, which makes this a
very compact way to specify a code �analogous to specifying
a classical linear code by its parity-check matrix�. We write
S= �g1 , . . . ,gm� to denote that S is generated by�g1 , . . . ,gm�.

Let E�Gn be a set of possible errors. If a particular error
E1�E anticommutes with any of the generators of S, then
the action of that error can be detected by measuring the
generators; if the measurement returns −1 instead of 1, we
know an error has occurred. On the other hand, if the error is
actually in the stabilizer S, then it leaves all the states in C
unchanged. We can conclude that the code C can correct any
error in E if either E2

†E1�Z�S� or E2
†E1�S for all pairs of

errors E1 and E2 in E, where Z�S� is the centralizer of S.
We can now generalize this description to the

entanglement-assisted case. Given a nonabelian subgroup
S�Gn of size 2m, there exists a set of generators

�Z̄1 , . . . , Z̄s+c , X̄s+1 , . . . , X̄s+c� for S with the following com-
mutation relations:

�Z̄i,Z̄j� = 0 ∀ i, j ,

�X̄i,X̄j� = 0 ∀ i, j ,

�X̄i,Z̄j� = 0 ∀ i � j ,

�X̄i,Z̄i� = 0 ∀ i . �1�

The parameters s and c satisfy s+2c=m. Let SI be

the isotropic subgroup generated by �Z̄1 , . . . , Z̄s� and
SE be the entanglement subgroup generated by

�Z̄s+1 , . . . , Z̄s+c , X̄s+1 , . . . , X̄s+c�. The sizes of SI and SE de-
scribe the number of ancillas and the number of ebits needed
to construct EAQECCs, respectively. �An ebit is one copy of
a maximally entangled pair.� The pair of subgroups �SI ,SE�
defines an ��n ,k ;c�� EAQECCCEA that encodes k=n−s−c
logical qubits into n physical qubits, with the help of c ebits
shared between sender and receiver and s ancillas. These n
qubits are transmitted from Alice �the sender� to Bob �the
receiver�, who measures them together with his half of the c
ebits in order to correct any errors and decode the k logical
qubits. We define �k−c� /n as the net rate of the code. This
EAQECC Cea can correct an error set E if for all
E1 ,E2�E, E2

†E1�SI� �Gn−Z��SI ,SE���.

The starting point for OQECCs is similar to that for
EAQECCs. Let the nonabelian group S�Gn of size

2m be generated by �Z̄1 , . . . , Z̄s+r , X̄s+1 , . . . , X̄s+r�, where

Z̄’s and X̄’s obey the same commutation relations as
in Eq. �1�, and the parameters s and r satisfy s+2r=m. Let

SI= �Z̄1 , . . . , Z̄s� be the isotropic subgroup, and let SG

= �Z̄s+1 , . . . , Z̄s+r , X̄s+1 , . . . , X̄s+r� be the gauge subgroup. The
size of SI and SG describes the number of ancillas and the
number of gauge qubits �gauge qubits can be thought of as
redundant logical qubits to accommodate more errors�
needed to construct OQECCs, respectively. Then the pair of
subgroups �SI ,SG� defines an ��n ,k ;r�� OQECC Cop that
fixes a 2r+k-dimensional code space, where s+k+r=n. Fur-
thermore, the gauge subgroup SG defines an equivalence be-
tween pairs of states inside the code space: the two states �
and �� are considered to carry the same information if they
differ by the action of a quantum operation in the algebra
generated by SG. These r logical gauge qubits provide extra
power of passive error correction. This OQECC Cop

can correct an error set E if for all E1 ,E2�E,
E2

†E1� �SI ,SG�� �Gn−Z�SI��.

III. ENTANGLEMENT-ASSISTED OPERATOR QUANTUM
ERROR-CORRECTING CODES

A. Canonical code

We illustrate the idea of EAOQECCs by the following
canonical code. Consider the trivial encoding operation E0
defined by

E0:	����	 → 	0��0	 � 	����	 � � � 	����	 . �2�

The operation simply appends s ancilla qubits in the state 	0�,
c copies of 	�� �a maximally entangled state shared between
sender Alice and receiver Bob�, and an arbitrary state � of
size r qubits, to the initial register containing the state 	�� of
size k qubits, where s+k+r+c=n. These r extra qubits are
the gauge qubits. Two states of this form, which differ only
in �, are considered to encode the same quantum informa-
tion.

Proposition 1. The encoding given by E0 and a suitably
defined decoding map D0 can correct the error set

E0 = �XaZb
� Za1Xa2 � XcZd

� X��a,a1,a2�Z��a,a1,a2�:a,b

� �Z2�s,a1,a2 � �Z2�c,c,d � �Z2�r� , �3�

for any fixed functions � ,� : �Z2�s� �Z2�c� �Z2�c→ �Z2�k.
Proof. After applying an error E�E0, the channel output

becomes �up to a phase factor�

�XaZb�	0��0	�XaZb�†

� �Za1Xa2 � IB�	����	�Za1Xa2 � IB�†
� �XcZd���XcZd�†

� �X��a,a1,a2�Z��a,a1,a2��	����	�X��a,a1,a2�Z��a,a1,a2��†

= 	a��a	 � = 	a1,a2��a1,a2	 � �� � 	������	 , �4�

where 	a�=Xa 	0�, 	a1 ,a2�= �Za1Xa2 � IB� 	���c, ��
= �XcZd���XcZd�†, and 	���= �X��a,a1,a2�Z��a,a1,a2�� 	��. Here
we write, e.g.,
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Xa 
 Xa1 � Xa2 � ¯ Xas,

where a= �a1 , . . . ,as�� �Z2�s, X0= I, and X1=X. As the vector
�a ,a1 ,a2 ,b ,c ,d� completely specifies the error operator E, it
is called the error syndrome. However, in order to correct
this error, only the reduced syndrome �a ,a1 ,a2� matters.
Here two kinds of passive error correction are involved. The
errors that come from vector b are passively corrected be-
cause they do not affect the encoded state given in Eq. �2�.
The errors that come from vector �c ,d� are passively cor-
rected because of the subsystem structure inside the code
space: � � � and � � �� represent the same information, dif-
fering only by a gauge operation.

The decoding operation D0 is constructed based on the
reduced syndrome, and is also known as collective measure-
ment. Bob can recover the state 	�� by performing the decod-
ing D0 as follows:

D0 = �
a,a1,a2

	a��a	 � 	a1,a2��a1,a2	 � I � X−��a,a1,a2�Z−��a,a1,a2�,

�5�

followed by discarding the unwanted systems. �
We can rephrase the above error-correcting procedure in

terms of the stabilizer formalism. Let S0= �S0,I ,S0,S�, where
S0,I= �Z1 , . . .Zs� is the isotropic subgroup of size 2s and
S0,S= �Zs+1 , . . . ,Zs+c+r ,Xs+1 , . . . ,Xs+c+r� is the symplectic sub-
group of size 22�c+r�. We can further divide the symplectic
subgroup S0,S into an entanglement subgroup

S0,E = �Zs+1, . . . ,Zs+c,Xs+1, . . . ,Xs+c�

of size 22c and a gauge subgroup

S0,G = �Zs+c+1, . . . ,Zs+c+r,Xs+c+1, . . . ,Xs+c+r�

of size 22r, respectively. The generators of �S0,I ,S0,E ,S0,G�
are arranged in the following form:

Zei I I I

I Zej I I

I Xej I I

I I Zel I

I I Xel I

sJ cJ rJ kJ

, �6�

where �ei�i��s�, �e j� j��c�, and �el�l��r� are the set of standard
bases in �Z2�s, �Z2�c, and �Z2�r, respectively, and �k�

�1, . . . ,k�.

It follows that the three subgroups �S0,I ,S0,E ,S0,G� define
the canonical EAOQECC given in Eq. �2�. The subgroups
S0,I and S0,E define a 2k+r-dimensional code space
C0

EAO�H��n+c�, and the gauge subgroup S0,G specifies all
possible operations that can happen on the gauge qubits.
Thus we can use S0,G to define an equivalence class between
two states in the code space of the form � � � and � � ��,
where � is a state on H�k, and � ,�� are states on H�r.
Consider the parameters of the canonical code. The number
of ancillas s is equal to the number of generators for the
isotropic subgroup S0,I. The number of ebits c is equal to the

number of symplectic pairs that generate the entanglement
subgroup S0,E. The number of gauge qubits r is equal to the
number of symplectic pairs for the gauge subgroup S0,G.
Finally, the number of logical qubits k that can be encoded in
C0

EAO is equal to n−s−c−r. To sum up, C0
eao defined by

�S0,I ,S0,E ,S0,G� is an ��n ,k ;r ,c�� EAOQECC that fixes a
2k+r-dimensional code space, within which � � � and � � ��
are considered to carry the same information. Notice that
there is a trade-off between the number of encoded bits and
gauge bits, in that we can reduce the rate by improving the
error-avoiding ability or vice versa.

Proposition 2. The EAOQECC C0
EAO defined by

�S0,I ,S0,E ,S0,G� can correct an error set E0 if for all E1 ,E2
�E0, E2

†E1� �S0,I ,S0,G�� �Gn−Z��S0,I ,S0,E���.
Proof. Since the vector �a ,a1 ,a2 ,b ,c ,d� completely

specifies the error operator E, we consider the following two
different cases:

�1� If two error operators E1 and E2 have the same re-
duced syndrome �a ,a1 ,a2�, then the error operator E2

†E1

gives us all-zero reduced syndrome with some vector
�b ,c ,d�. Therefore, E2

†E1� �S0,I ,S0,G�. This error E2
†E1 has

no effect on the logical state 	����	.
�2� If two error operators E1 and E2 have different re-

duced syndromes, and let �a ,a1 ,a2� be the reduced syndrome
of E2

†E1, then E2
†E1�Z��S0,I ,S0,E��. This error E2

†E1 can be
corrected by the decoding operation given in Eq. �5�. �

B. General case

Before giving the theorem, we first state two lemmas that
lead directly to the result.

Lemma 1. Let V be an arbitrary subgroup of Gn with size
2m. Then there exists a set of generators

�Z̄1 , . . . , Z̄p+q , X̄p+1 , . . . , X̄p+q� that generates V such that Z̄’s

and X̄’s obey the same commutation relations as in Eq. �1�,
for some p ,q�0 and p+2q=m.

Proof. The idea of this proof comes from Gram-Schmidt
orthogonality. By performing a Gram-Schmidt-type proce-
dure, we can obtain a set of generators satisfying the com-
mutation relations as in Eq. �1�. See Ref. �16� for more de-
tail. �

Consider an arbitrary nonabelian group S of size 2s+2�c+r�,
for some s ,c ,r�0, Lemma 1 says that there exists a set of

generators �Z̄1 , . . . , Z̄s+c+r , X̄s+1 , . . . , X̄s+c+r� such that S
= �SI ,SS�, where SI= �Z̄1 , . . . , Z̄s� is the isotropic subgroup,

and SS= �Z̄s+1 , . . . , Z̄s+c+r , X̄s+1 , . . . , X̄s+c+r� is the symplectic
subgroup. Furthermore, the symplectic subgroup SS can be
divided into the entanglement subgroup SE of size 22c and
the gauge subgroup SG of size 22r.

Lemma 2. If there is a one-to-one map between V and S
which preserves their commutation relations, which we de-
note V�S, then there exists a unitary U such that for each
Vi�V, there is a corresponding Si�S such that Vi=USiU

−1,
up to a phase which can differ for each generator.

Proof. This lemma holds if two groups are isomorphic.
We provide an independent proof in Ref. �16�. �

This lemma enables us to link the group S to S0 �in other
words, map �SI ,SE ,SG� to �S0,I ,S0,E ,S0,G�� by some unitary
U such that
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Zi = UZ̄iU
−1 ∀ i � �1,2, . . . ,s + c + r� ,

Xj = UX̄jU
−1 ∀ j � �s + 1, . . . ,s + c + r� . �7�

Let U also denote the trivial extension of U that acts as the
identity on the qubits on Bob’s side. We can now define an
��n ,k ;r ,c�� EAOQECC CEAO by �SI ,SS ,SG�, that incorpo-
rates both entanglement-assistance and passive error-
avoiding ability.

We now reach our main theorem in this paper.
Theorem 1. Given the subgroups �SI ,SE ,SG�, there exists

an ��n ,k ;r ,c�� entanglement-assisted operator quantum
error-correcting code CEAO defined by the encoding and de-
coding pair: �E ,D�. The code CEAO can correct the error set
E if for all E1 ,E2�E, E2

†E1� �SI ,SG�� �Gn−Z��SI ,SE���.
Proof. Since S�S0, there exists a unitary matrix U that

preserves the commutation relations. Define E=U−1 �E0 and
D=D0 �U, where E0 and D0 are given in Eqs. �2� and �5�,
respectively. Since

D0 � E0 � E0 = id�k

for any E0�E0, then

D � E � E = id�k

follows for any E�E. Thus, the encoding and decoding pair
�E ,D� corrects E. �

C. Properties of EAOQECCs

Conventionally, the performance of a code is character-
ized by its distance d. Define the weight of a Pauli operator
to be the number of single-qubit operators that are not the
identity. We say that the ��n ,k ,d ;r ,c�� EAOQECC CEAO has
distance d if it can correct any error set E such that for each
operator E�E, the weight t of E satisfies 2t+1	d.

In the description earlier in this section, we assumed that
the gauge subgroup was generated by a set of symplectic
pairs of generators. In some cases, it may make sense to start
with a gauge subgroup which itself has both an isotropic
�i.e., commuting� and a symplectic subgroup. In this case, we
can arbitrarily add a symplectic partner for each generator in
the isotropic subgroup of the gauge group. This can be useful
in constructing EAOQECCs from EAQECCs, in a way
analogous to how OQECCs can be constructed by starting
from standard QECCs. Poulin shows in Ref. �12� that it is
possible to move generators from the stabilizer group into
the gauge subgroup, together with their symplectic partners,
without changing the essential features of the original code.
We provide an example of such a construction in Sec. IV A.
There is further flexibility in trading between active error
correction ability and passive noise avoiding ability �5�. This
is captured by the following theorem:

Theorem 2. We can transform any ��n ,k+r ,d1 ;0 ,c�� code
C1 into an ��n ,k ,d2 ;r ,c�� code C2, and transform the
��n ,k ,d2 ;r ,c�� code C2 into an ��n ,k ,d3 ;0 ,c�� code C3,
where d1	d2	d3.

Proof. There exists an isotropic subgroup SI and an en-
tanglement subgroup SE associated with C1 of size 2s and

22c, respectively. These parameters satisfy s+c+k+r=n.
This code C1 corresponds to an ��n ,k+r ,d1 ;0 ,c�� EAQECC
for some d1. If we add the gauge subgroup SG of size 22r,
then �SI ,SE ,SG� defines an ��n ,k ,d2 ;r ,c�� EAOQECC C2

for some d2, which follows from Theorem 1. Let E1 be the
error set that can be corrected by C1, and E2 be the error set
that can be corrected by C2. Clearly, E1�E2 �see the follow-
ing table�, so C2 can correct more errors than C1. By sacri-
ficing part of the transmission rate, we have gained addi-
tional passive correction, and d2
d1.

If we now throw away half of each symplectic pair in SG
and include the remaining generators in SI, which becomes
SI�, the size of the isotropic subgroup increases by a factor of
2r. Then �SI� ,SE� defines an ��n ,k ,d3 ;0 ,c�� EAQECC C3.
Let E3 be the error set that can be corrected by C3. Let E
�E2, then either E� �SI ,SG� or E�Z��SI ,SE��.

�1� If E� �SI ,SG�, then either E�SI� or E� �SI ,SG� /SI�.
If E� �SI ,SG� /SI�, this implies E�Z�SI��. Thus, E�E3.

�2� Since �SI ,SE�� �SI� ,SE�, we have
Z��SI� ,SE���Z��SI ,SE��. If E�Z��SI ,SE��, then
E�Z��SI� ,SE��. Thus, E�E3.

Putting these together we get E2�E3. Therefore
d3
d2. �

To conclude this section, we list the different error-
correcting criteria of a conventional stabilizer code �QECC�,
an EAQECC, an OQECC, and an EAOQECC as follows:

QECC EAQECC

E2
†E1�Z�SI� E2

†E1�Z��SI ,SE��
E2

†E1�SI E2
†E1�SI

OQECC EAOQECC

E2
†E1�Z�SI� E2

†E1�Z��SI ,SE��
E2

†E1� �SI ,SG� E2
†E1� �SI ,SG�

IV. EXAMPLES

A. EAOQECC from EAQECC

Our first example constructs an ��8,1 ,3 ;c=1,r=2��
EAOQECC from an ��8,1,3;1�� EAQECC. Consider the
EAQECC code defined by the group S generated by the

operators in Table I. Here Z̄ and X̄ refer to the logical Z and
X operation on the codeword, respectively. The isotropic sub-
group is SI= �S1 ,S2 ,S3 ,S4 ,S5 ,S8�, the entanglement sub-
group is SE= �S6 ,S7�, and together they generate the full
group S= �SI ,SE�. This code C�SI ,SE� encodes one qubit
into eight physical qubits with the help of one ebit, and
therefore is an ��8,1 ;1�� code. It can be easily checked that
this code can correct an arbitrary single-qubit error, and it is
degenerate.

By inspecting the group structure of S, we can recombine
the first four stabilizers of the code to give two isotropic
generators �which we retain in SI�, and two generators which
we include, together with their symplectic partners, in the
subgroup SG, for two qubits of gauge symmetry. This yields
an ��8,1 ,3 ;c=1,r=2�� EAOQECC whose generators are
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given in Table II where SI= �S1� ,S2� ,S3� ,S6��, SE= �S4� ,S5��, and
SG= �g1

z ,g1
x ,g2

z ,g2
x�.

B. EAOQECCs from classical BCH codes

EAOQECCs can also be constructed directly from classi-
cal binary codes. Before we give examples, however, we
need one more theorem:

Theorem 3. Let H be any binary parity check matrix with
dimension �n−k��n. We can obtain the corresponding
��n ,2k−n+c ;c�� EAQECC, where c=rank�HHT� is the
number of ebits needed.

Proof. By the CSS construction, let H̃ be

H̃ = 
�H

0
� 0

H
� . �8�

Let S be the group generated by H̃, then S
= �Zr1 , . . . ,Zrn−k ,Xr1 , . . . ,Xrn−k�, where ri is the ith row vector
of H. Now we need to determine how many symplectic pairs

are in group S. Since rank�HHT�=c, there exists a matrix P
such that

PHHTPT =�
Ip�p 0 0 0

0 0 Iq�q 0

0 Iq�q 0 0

0 0 0 0
�

�n−k���n−k�

,

where p+2q=c. Let ri� be the ith row vector of the new

matrix PH, then S= �Zr1� , . . . ,Zrn−k� ,Xr1� , . . . ,Xrn−k� �.
Using the fact that �Za ,Xb�=0 if and only if a ·b=1, we

know that the operators Zri� ,Xri� for 1� i� p, and the opera-

tors Zrp+j� ,Xrp+q+j� for 1� j�q, generate a symplectic sub-
group in S of size 22c. �

Definition 1 �19�. A cyclic code of length n over GF�pm� is
a BCH code of designed distance d if, for some number
b�0, the generator polynomial g�x� is

g�x� = lcm�Mb�x�,Mb+1�x�, . . . ,Mb+d−2�x�� ,

where Mk�x� is the minimal polynomial of �k over GF�pm�.
I.e., g�x� is the lowest degree monic polynomial over GF�pm�
having �b ,�b+1 , . . . ,�b+d−2 as zeros. When b=1, we call such
BCH codes narrow-sense BCH codes. When n= pm−1, we
call such BCH codes primitive.

Consider the primitive narrow-sense BCH code over GF
�26�. This code has the following parity check matrix:

Hq =�
1 � �2

¯ �n−1

1 �3 �6
¯ �3�n−1�

1 �5 �10
¯ �5�n−1�

1 �7 �14
¯ �7�n−1�

� , �9�

where ��GF�26� satisfies �6+�+1=0 and n=63. Since all
finite fields of order pm are isomorphic, there exists a one-to-
one correspondence between elements in �� j : j
=0,1 , . . . , pm−2, � � and elements in �a0a1 . . . ,am :ai

�GF�p��. If we replace � j �GF�26� in Eq. �9� with its bi-
nary representation, this gives us a binary �63,39,9� BCH
code whose parity check matrix H2 is of size 24�63. If we
carefully inspect the binary parity check matrix H2, we will
find that the first 18 rows of H2 give a �63,45,7� dual-
containing BCH code.

TABLE I. This ��8,1,3;c=1�� EAQECC encodes one qubit into
eight physical qubits with the help of one ebit �c=1�.

Alice Bob

S1 Z Z I I I I I I I

S2 Z I Z I I I I I I

S3 I I I Z Z I I I I

S4 I I I Z I Z I I I

S5 I I I I I I Z Z I

S6 I I I I I I I Z Z

S7 X X X I I I X X X

S8 X X X X X X I I I

Z̄ Z I I Z I I I Z I

X̄ I I I X X X I I I

TABLE II. The resulting ��8,1,3;c=1,r=2�� EAOQECC encodes
one qubit into eight physical qubits with the help of one ebit
�c=1�, and has two gauge qubits �r=2� for passive error correction.

Alice Bob

S1� Z Z I Z Z I I I I

S2� Z I Z Z I Z I I I

S3� I I I I I I Z Z I

S4� I I I I I I I Z Z

S5� X X X I I I X X X

S6� X X X X X X I I I

Z̄ Z I I Z I I I Z I

X̄ I I I X X X I I I

g1
z Z Z I I I I I I I

g1
x I X I I X I I I I

g2
z I I I Z I Z I I I

g2
x I I X I I X I I I

TABLE III. Parameters of the EAOQECCs constructed from a
classical �63,39,9� BCH code, where r represents the number of
gauge qubits and c represents the number of ebits needed.

n k d r c

63 21 9 0 6

63 21 7 1 5

63 21 7 2 4

63 21 7 3 3

63 21 7 4 2

63 21 7 5 1

63 21 7 6 0
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From Theorem 3, it is easy to check that c=rank�H2H2
T�

=6. Thus by the CSS construction �17�, this binary
�63,39,9� BCH code will give us a corresponding
��63,21,9 ;6�� EAQECC.

If we further explore the group structure of this EAQECC,
we will find that the six symplectic pairs that generate the
entanglement subgroup SE come from the last six rows of
H2. �Remember that we are using the CSS construction.� If
we remove one symplectic pair at a time from SE and adding
it to the gauge subgroup SG, we get EAOQECCs with pa-
rameters given in Table III.

In general, there could be considerable freedom in which
one of the symplectic pairs is to be removed. There are

plenty of choices in the generators of SE. In fact, it does not
matter which symplectic pair we remove first in this ex-
ample, due to the algebraic structure of this BCH code. The
distance is always lower bounded by 7.

One final remark: this example gives EAOQECCs with
positive net rate, so they could be used as catalytic codes.

C. EAOQECCs from classical quaternary codes

In the following, we will show how to use MAGMA �20�
to construct EAOQECCs from classical quaternary codes
with positive net yield and without too much distance deg-
radation. Consider the following parity check matrix H4 of a
�15,10,4� quaternary code:

H4 =�
1 0 0 0 1 1 
2 0 1 
2 0 
 
2 1 0

0 1 0 0 1 0 
 
2 1 
 0 0 1 
 1

0 0 1 0 
 
2 1 
 1 0 0 
 1 
2 


0 0 0 1 1 
2 0 1 
2 
 0 
2 1 0 
2

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
� , �10�

TABLE IV. Stabilizer generators of the ��15,9,4;c=4�� EAQECC derived from the classical code given by
Eq. �10�. The code uses c=4 ebits, and the size of SE is equal to 22c=256.

SE I I Y I Z X Y Z Y I I Z Y X Z

I Y I I Y I Z X Y Z I I Y Z Y

I Z Y I I X Z X X X I Z X I I

I I X I Y Z X Y X I I Y X Z Y

I I I I I I I I I I Z I I I I

I I I I I I I I I I Y I I I I

I Z Z Z X I Y I Y I I Z Z Z I

I Y Y Y Z I X I X I I Y Y Y I

SI Z Z Y I Z Y X X Y Z I Y Z Z I

Y Y X I Y X Z Z X Y I X Y Y I

TABLE V. Stabilizer generators of the ��15,9,3;c=3,r=1�� EAOQECC derived from the EAQECC given
by Table V. The number of ebits has been reduced to c=3, and r=1 gauge qubit has been added. The sizes
of SE and SG are 22c=64 and 22r=4, respectively.

SE I I Y I Z X Y Z Y I I Z Y X Z

I Y I I Y I Z X Y Z I I Y Z Y

I Z Y I I X Z X X X I Z X I I

I I X I Y Z X Y X I I Y X Z Y

I I I I I I I I I I Z I I I I

I I I I I I I I I I Y I I I I

SG I Z Z Z X I Y I Y I I Z Z Z I

I Y Y Y Z I X I X I I Y Y Y I

SI X X Z I X Z Y Y Z X I Z X X I

Z Z Y I Z Y X X Y Z I Y Z Z I
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where �0,1 ,
 ,
2� are elements of GF�4� that satisfy
1+
+
2=0 and 
3=1. This quaternary code has the largest
minimum weight among all known �n=15,k=10� linear qua-
ternary codes. By the construction given in Ref. �17�, this
code gives a corresponding ��15,9 ,4 ;c=4�� EAQECC with
the stabilizers given in Table IV.

The entanglement subgroup SE of this EAQECC has
c=4 symplectic pairs. Our goal is to construct an EAOQECC
from this EAQECC such that the power of error correction is
largely retained, but the amount of entanglement needed is
reduced. In this example, the choice of which symplectic
pair is removed strongly affects the distance d of the result-
ing EAOQECC. By using MAGMA to perform a random
search of all the possible sympletic pairs in SE, and then
putting them into the gauge subgroup SG, we can obtain a
��15,9 ,3 ;c=3,r=1�� EAOQECC with stabilizers given in
Table V. The distance is reduced by one, which still retains
the ability to correct all one-qubit errors; the amount of en-
tanglement needed is reduced by one ebit; and we gain some
extra power of passive error correction, due to the subsystem
structure inside the code space, given by the gauge subgroup
SG.

V. CONCLUSION

We have shown a very general quantum error-correction
scheme that combines two extensions of standard stabilizer

codes. This scheme includes the advantages of both
entanglement-assisted and operator quantum error correc-
tion.

In addition to presenting the formal theory of EAO-
QECCs, we have given several examples of code construc-
tion. The methods of constructing OQECCs from standard
QECCs can be applied directly to the construction of EAO-
QECCs from EAQECCs. We can also construct EAOQECCs
directly from classical linear codes.

We also show that, by exploring the structure of the sym-
plectic subgroup, we can construct versatile classes EAO-
QECCs with varying powers of passive versus active error
correction. Starting with good classical codes, this
entanglement-assisted operator formalism can be used to
construct quantum codes tailored to the needs of particular
applications. The study of such classes of good quantum
codes is the subject of ongoing research.
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