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I. INTRODUCTION

Consider two parties wishing to compute some joint func-
tion of their data �two millionaires might wish to know who
is richer, for example�. A secure computation of such a func-
tion is one for which the only information the first party gets
on the input of the second is that implied by the outcome of
the computation and vice versa.

In this work, we focus on unconditional security, whereby
we seek to construct a protocol in which the two mistrustful
parties can communicate in order to achieve the task. Secu-
rity will rely on a belief in the laws of physics. We allow
each party to exploit the properties of both quantum mechan-
ics and relativity in order to achieve security. While the se-
curity benefits of the former are well known, relatively little
investigation has been made into the extra security afforded
by the latter. One positive result in relativistic cryptography
is that it allows variable-bias coin tossing to be realized �1�.
In this paper, we show that even using both relativistic and
quantum protocols, there are a large class of functions for
which secure two-party computation is impossible. A discus-
sion of relativistic cryptography can be found in Refs. �1,2�.

We call a computation classical, in spite of it potentially
relying on quantum communication for its implementation,
because its inputs and outputs are classical data.

Two-party computations can be divided into several
classes, depending on the number of parties that receive the
output �the sidedness of the function� and whether the func-
tion is deterministic or random. In the two-sided case, we
will further specialize to single-function computations, where
both parties receive identical outcomes. What is presently
known about such functions is summarized in Table I. For a
longer introduction to secure two-party computation, see
Ref. �1�.

In this paper, we will show the impossibility of various
secure two-party computations by giving an explicit cheating
attack. A summary of the argument is as follows. In a clas-
sical computation, each party is supposed to input one of a
finite set of classical values. However, the impossibility of
classical certification �4� means that one party cannot detect
when the other inputs a superposition of such inputs. By
keeping all decisions at the quantum level until the end of the

protocol, we can model the entire computation as unitary.
The insecurity of the computation then follows because there
exists a measurement on the output state generated by the
superposed input, which allows the cheating party to better
distinguish between the possible inputs of the other party
than if they had been honest. In most cases, we have impos-
sibility proofs for the simplest nontrivial cases of each class
of function. We discuss at the end of the paper the possible
generalizations.

In this paper we consider perfectly secure protocols—i.e.,
those for which the probability of cheating is strictly zero.
Further, our protocols are perfectly correct; that is, the prob-
ability of error is strictly zero in the case where both parties
are honest. One would like to extend our results to cover the
case of protocols for which the probability of cheating and of
error tend to zero in the limit that some security parameter
tends to infinity.

II. COMPUTATIONAL MODEL

We use a black box model for secure computation. A
black box represents an idealized version of a protocol. It can
be thought of as an unbreakable box which has an input and
output port for each party. It features an authentication sys-
tem �e.g., an unalterable label� so that each party can be sure
of the function it computes. An appropriately constructed
protocol will prescribe a sequence of information exchanges
mimicking the essential features of such a black box. If one
of the parties deviates from the prescribed exchanges, the
protocol should abort. The question of whether or not it is
possible to construct a protocol mimicking a given black box
will not be addressed.1 Rather, we show that cheating is pos-
sible even if such black boxes do exist.

Since in any real protocol all measurements can be de-
layed until the end, we consider only black boxes which
perform unitary operations. The outcomes of such unitary
operations are distributed among the parties. At the end of a
classical computation they are measured to generate the out-
come. For a general two-sided function, we consider the uni-
tary Uf such that
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1However, we do eliminate certain types of black box—e.g., ones
that allow classical certification �see later�.
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Uf�i�A�j�B�0��0� = �i�A�j�B�
k

�i,j
k �kk�AB, �1�

where ��i,j
k 	 depend on the function being computed and the

index k runs over all possible outputs. i and j correspond to
Alice’s and Bob’s inputs, respectively, and their output2 is k
which is read by measurement in an orthonormal basis. Out-
come k occurs with probability ��i,j

k �2. If the function is de-
terministic, then for each i and each j, ��i,j

k � =1 for one value
of k and is zero for all others. More generally, the unitary Uf�,
performing

Uf��i�A�j�B�0��0��0� = �i�A�j�B�
k

�i,j
k �kk�AB��i,j

k �AB, �2�

would be of use to compute such a function, where the final
Hilbert space corresponds to an ancillary system the black
box uses for the computation �and has arbitrary dimension�.
In the protocol mimicking such a box, this final state must be
distributed between Alice and Bob in some way, such that
the part that goes to Bob contains no information on Alice’s
input, and vice versa.

If black boxes implementing such unitaries were to exist,
then each party has two ways of cheating. The first is by
inputting a superposition of states into the protocol, rather
than a member of the computational basis as they should.
The second involves using a different measurement on the
output of the black box than that dictated by the protocol. It
follows from the impossibility of classical certification �4�
that a real protocol cannot prevent the first attack. Under
these attacks, insecurity of functions under Uf implies inse-
curity under Uf�, as we show below. Hence it is sufficient to
consider only the former.

Consider the case where Alice makes a superposed input,
�iai � i�, rather than a single member of the computational

basis. Then, at the end of the protocol, her reduced density
matrix takes either the form

� j = �
i,i�,k

aiai�
*�i,j

k ��i�,j
k �*�i�
i�� � �k�
k� �3�

or

� j� = �
i,i�,k

aiai�
*�i,j

k ��i�,j
k �*�i�
i�� � �k�
k� � trB��i,j

k �
�i�,j
k � ,

�4�

where the first case applies to Uf and the second to Uf�.
Alice is then to make a measurement on her state in order

to distinguish between the different possible inputs Bob
could have made, as best she could. We will show that there
exists a trace-preserving quantum operation that Alice can
use to convert � j� to � j for all j. It follows that Alice’s ability
to distinguish between �� j�	 j is at least as good as her ability
to distinguish between �� j	 j.

In order that the protocol function correctly when both
Alice and Bob are honest, we require trB ��i,j

k �
�i,j
k � ��i,k to

be conditionally independent of j given k �otherwise Alice
can gain more information on Bob’s input than that implied
by k by a suitable measurement on her part of this
state�. By expressing �i,k in its diagonal basis, �i,k

=�m�m
i,kUA

i,k �m�
m�A�UA
i,k�†, we have

��i,j
k � = �

m

��m
i,kUA

i,k�m�A � UB
i,j,k�m�B, �5�

where ��m�A	m form an orthogonal basis set on Alice’s system
and likewise ��m�B	m is an orthogonal basis for Bob’s system.
Bob then holds

trA��i,j
k �
�i,j

k � = �
m

�m
i,kUB

i,j,k�m�
m�B�UB
i,j,k�†. �6�

This must be conditionally independent of i given k, hence
so must �m

i,k and UB
i,j,k. Thus2Recall that we have restricted to single-function computations.

TABLE I. Functions computable with unconditional security in two-party computations using �poten-
tially� both quantum and relativistic protocols. 3 indicates that all functions of this type are possible, �
indicates that all functions of this type are impossible, 3

* indicates that some functions of this type are
possible and all functions of this type are conjectured to be possible, and �* indicates that some functions of
this type are impossible.

Zero-input Deterministic 3 Trivial

Random one-sided 3 Trivial

Random two-sided 3 Biased n-faced die roll
�see �1� for discussion�

One-input Deterministic 3 Trivial

Random one-sided �* One-sided variable-bias n-faced
die roll �this paper�

Random two-sided 3
* Variable-bias n-faced die roll cf. �1�

Two-input Deterministic one-sided � cf. �3�
Deterministic two-sided �* This paper

Random one-sided �* This paper

Random two-sided �* This paper
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��i,j
k � = �

m

��m
k �UA

i,k
� UB

j,k��m�A�m�B. �7�

It hence follows that there is a unitary on Alice’s system
converting ��i1,j

k � to ��i2,j
k � for all i1 and i2, and that, further-

more, this unitary is conditionally independent of j given k.
Likewise, there is a unitary on Bob’s system converting
��i,j1

k � to ��i,j2
k � for all j1 and j2, with this unitary being con-

ditionally independent of i given k.
Returning now to the case where Alice makes a super-

posed input. The final state of the entire system can be writ-
ten

�
i,k

ai�i,j
k �i�A�j�B�k�A�k�B�UA

i,k�m�A��UB
j,k�m�B� . �8�

Alice can then apply the unitary

V = �
i,k

�i�
i�A � 1B � �k�
k�A � 1B � �UA
i,k�†

� 1B �9�

to her systems, leaving the state as

�
i,k

ai�i,j
k �i�A�j�B�k�A�k�B�

m

��m
k �m�A�UB

j,k�m�B� . �10�

Alice is thus in possession of density matrix

�
i,i�,k

aiai�
*�i,j

k ��i�,j
k �*�i�
i�� � �k�
k� � �A

k , �11�

where �A
k =�m�m

k �m�
m�A. On tracing out the final system, we
are left with � j as defined by Eq. �3�.

We have hence shown that there is a trace-preserving
quantum operation Alice can perform which converts � j� to
� j for all j and that this operation is conditionally indepen-
dent of j given k. Hence Alice’s ability to distinguish be-
tween Bob’s inputs after computations of the type Uf� is at
least as good as her ability to distinguish Bob’s inputs after
computations of the type Uf, and so, under the type of attack
we consider, insecurity of computations specified by Uf im-
plies insecurity of those specified by Uf�. We will therefore
consider only type Uf in our analysis. An analogous argu-
ment follows for the one-sided case and likewise for the
deterministic cases �which are special cases of the nondeter-
ministic ones�.

We now state the security condition that will be shown to
be breakable for a large class of computation.

Security condition. Consider the case where Bob is hon-
est. For a computation to be considered secure, there can be
no input, together with a measurement on the corresponding
output that gives Alice a better probability of guessing Bob’s
input than she would have gained by following the protocol
honestly and making her most informative input. This con-
dition must hold for all forms of prior information Alice
holds on Bob’s input.

Let us emphasize that the use of the black box model does
not restrict the scope of our proofs: these apply to all real
protocols. The model is common to discussions of universal
composability �see Sec. V� and makes manifest that is suffi-

cient for parties to behave dishonestly only in the initial and
final steps of any protocol in order to break our security
condition.3

III. DETERMINISTIC FUNCTIONS

We first focus on the deterministic case. Lo showed that
two-input deterministic one-sided computations are impos-
sible to compute securely �3�; hence, only two-sided deter-
ministic functions remain.4 There is a further consideration
when discussing deterministic functions that leads us to re-
strict the class of functions further.

Suppose that the outcome of such a protocol leads to
some real-world consequence. In the dating problem �5�, for
example, one requires a secure computation of k= i� j,
where i , j� �0,1	. If the computation returns k=1, then the
protocol dictates that Alice and Bob go on a date. This addi-
tional real-world consequence is impossible to enforce, al-
though both Alice and Bob have some incentive not to stand
the other up, since this results in a loss of the other’s trust. A
cost function could be introduced to quantify this, but since
suitable cost assignments must be assessed case by case, it is
difficult to develop general results. To eliminate such an is-
sue, we restrict to the case where the sole purpose of the
computation is to learn something about the input of the
other party. No subsequent action of either party based on
this information will be specified.

We say that a function is potentially concealing if there is
no input by Alice which will reveal Bob’s input with cer-
tainty and vice versa. If the aim of the computation is only to
learn something about the input of the other party and if
Bob’s data is truly private, he will not enter a secure compu-
tation with Alice if she can learn his input with certainty. We
hence only consider potentially concealing functions in what
follows. In addition, we will ignore degenerate functions in
which two different inputs are indistinguishable in terms of
the outcomes they afford. If the sole purpose of the compu-
tation is to learn something about the other party’s input,
then rather than compute a degenerate function, Alice and
Bob could instead compute the simpler function formed by
combining the degenerate inputs of the original.

An alternative way of thinking about such functions is
that they correspond to those in which there is no cost for
ignoring the real-world consequences implied by the compu-
tation. At the other extreme, one could invoke the presence
of an enforcer who would compel each party to go ahead
with the computation’s specified action. This would have no
effect on security for a given function �a cheating attack that
works without an enforcer also works with one� but intro-
duces a larger set of functions that one might wish to com-
pute. There exist functions within this larger set for which
the attack we present does not work.

We specify functions by giving the matrix of outcomes.
For convenience the outputs of the function are labeled with

3In any case, if a protocol mimics a black box correctly, then there
is no scope for cheating during its implementation.

4Lo did not consider relativistic cryptography, but his results ap-
ply to this case as well �1�.
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consecutive integers starting with 0. We consider functions
that satisfy the following conditions.

�i� Potentially concealing requirement. Each row and each
column must contain at least two elements that are the same.

�ii� Nondegeneracy requirement. No two rows or columns
should be the same.

For instance, if i , j� �0,1 ,2	 �which we term a 3�3
function�, the function f�i , j�=1−�ij is

i

f�i , j� 0 1 2

j 0 0 1 1

1 1 0 1

2 1 1 0

This function is potentially concealing and nondegenerate.
We consider the case of 3�3 functions. We first give a

nonconstructive proof that Alice can always cheat and then
an explicit cheating strategy.

Let us assume that we have a black box that can imple-
ment the protocol—i.e., that performs the following opera-
tion:

Uf�i�A�j�B�0��0� = �i�A�j�B�f�i, j��A�f�i, j��B. �12�

The states ��i�A	 are mutually orthogonal, as are the members
of the sets ��j�B	, ��f�i , j��A	 and ��f�i , j��B	. This ensures that
Alice and Bob always obtain the correct output if both have
been honest. The existence of such a black box would allow
Alice to cheat in the following way. She can first input a
superposition �i=0

2 ai � i�A in place of �i�A. Her output
from the box is one of �0, �1, on �2, the subscript
corresponding to Bob’s input j, where �using the shorthand
trB������ trB����
� � ��

� j � trBUf�
i=0

2

ai�i�A�j�B�0�A�0�B� . �13�

Alice can then attempt to distinguish between these using
any measurement of her choice.

The main result of this section is the following theorem.
Theorem 1. Consider the computation of a 3�3 determin-

istic function satisfying conditions �i� and �ii�. For each func-
tion of this type, there exists a set of coefficients, �ai	, such
that when Alice has a uniform prior distribution over Bob’s
inputs and she inputs �i=0

2 ai � i�A into the protocol, there exists
a measurement that gives her a better probability of distin-
guishing the three possible �j dependent� output states than
that given by her best honest strategy.

Proof. We will rely on the following lemma.
Lemma 1. All 3�3 functions satisfying conditions �i� and

�ii� can be put in the form of the function in Table II.
Proof. The essential properties of any function are un-

changed under permutations of rows or columns �which cor-
respond to relabeling of inputs� and under relabeling of out-
puts. In order that the function is potentially concealing,
there can be at most one column whose elements are identi-
cal. By relabeling the columns if necessary, we can ensure
that this corresponds to i=2. Relabeling the outputs and

rows, if necessary, the column corresponding to i=0 has en-
tries (f�0,0� , f�0,1� , f�0,2�)= �0,0 ,1�. The column corre-
sponding to i=1 then must have entries �a ,a ,b� or �a ,b ,b�,
with a�b. In the case �a ,a ,b�, the i=2 column must have
the form �c ,d ,d�, for c�d, in which case we can permute
the i=1 and i=2 columns to recover the form a ,b ,b for the
i=1 column. Relabelings always put such cases into forms
with a=0 or b=0 or b=1. �

Suppose Alice inputs 1
�2

��0�+ �1�� into a function of the
form given in Table II. After tracing out Bob’s systems, Alice
holds one of

�0 =
1

2
��00�
00� + �a,0��00�
10� + �10�
00�� + �1a�
1a�� ,

�14�

�1 =
1

2
��00�
00� + �b,0��00�
10� + �10�
00�� + �1b�
1b�� ,

�15�

�2 =
1

2
��01�
01� + �b,1��01�
11� + �11�
01�� + �1b�
1b�� .

�16�

Measurement using the set �Ei,k= �ik�
ik � 	 in effect reverts to
an honest strategy. The probability of correctly guessing
Bob’s input using these operators is the same as that for
Alice’s best honest strategy. These operators can be com-
bined to form just three operators �Ej�	 such that a result
corresponding to Ej� means that Alice’s best guess of Bob’s
input is j�. Then

E0 = �1�00�
00� + �a,0�10�
10� + �a,1�11�
11�

+ �a,2�12�
12� + �a,3�13�
13� , �17�

E1 = �1 − �1��00�
00� + �2�b,0�10�
10� + �3�b,1�11�
11�

+ �4�b,2�12�
12� + �5�b,3�13�
13� , �18�

E2 = 1 − E0 − E1, �19�

where the ��l	 are arbitrary parameters, 0	�l	1, and do
not affect the success probability. We will show that such a
measurement is not optimal to distinguish between the cor-
responding �� j	. This follows from an existing result in state

TABLE II. This function can be taken as the most general 3
�3 function satisfying conditions 1 and 2, where a�b, and a=0 or
b=0 or b=1. The dots represent unspecified �and not necessarily
identical� entries consistent with the conditions.

f�i , j� i

0 1 2

j 0 0 a ·

1 0 b ·

2 1 b ·
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estimation theory, as stated in the following theorem �6–8�.
Theorem 2. Consider using a set of M measurement op-

erators, �Ej	, to discriminate between a set of M states, �� j	,
which occur with prior probabilities �qj	, where the outcome
corresponding to operator Ej indicates that the best guess of
the state is � j. The set �Ej	 is optimal if and only if

Ej�qj� j − ql�l�El = 0 ∀ j,l , �20�

�
j

Ejqj� j − ql�l 
 0 ∀ l . �21�

In the case of uniform prior probabilities, Eqs. �20� and
�21� imply, respectively,

��1 = 0 or �2 = 0 or b � 0� and ��1 = 1 or a � 0�

and ��1 = 1 or �2 = 1 or b � 0� and ��3 = 0 or b � 1� ,

�22�

and

b = 1 or �3 

1

4
� and b = 0 or �2�1 − �1� 


1

4
�

and �a = 1 or �3 = 1 or b � 1�

and ��1 = 0 or �b � 0 and a � 0��

and ��1 = 1 or b � 0 or �2 = 0� . �23�

In addition, because the function is in the form given in
Table II, we also have

�a = 0 or b = 0 or b = 1� and a � b . �24�

The system of equations �22�–�24� cannot be satisfied for any
values of a ,b , ��k	. Hence, the measurement operators
�17�–�19� are not optimal for discriminating between Bob’s
inputs, so Alice always has a cheating strategy. �

Our proof of theorem 1 is nonconstructive—we have
shown that cheating is possible, but not explicitly how it can
be done. Except in special cases �e.g., where the states �� j	
are symmetric�, no procedure for finding the optimal positive
operator-valued measure �POVM� to distinguish between
states is known �9,10�. Nevertheless, we have found a con-
struction based on the square root measurement �11,12� that,
while not being optimal, gives a higher probability of suc-
cessfully guessing Bob’s input than any honest strategy.

The strategy applies to the states � j formed when Alice
inputs 1

�3
��0�+ �1�+ �2��. The set of operators are those corre-

sponding to the square-root measurement, defined by

Ej� = �
j

� j�−1/2
� j��

j

� j�−1/2
. �25�

One can verify, case by case, that this strategy affords Alice
a better guessing probability over Bob’s input than any hon-
est one for all functions of the form of Table II. The Math-
ematica script which we have used to check this is available
on the World Wide Web �13�.

IV. NONDETERMINISTIC FUNCTIONS

A. Two-sided case

Initially, we specialize to the case i , j ,k� �0,1	. We
specify such functions via a matrix of probabilities as given
in Table III. For the two-sided case, the relevant black box
implements the unitary U given by

U�i�A�j�B�0��0� = �i�A�j�B��pij�00�AB + �1 − pij�11�AB� .

�26�

Suppose that Alice has prior information about Bob’s input
such that, from her perspective, he will input 0 with prob-
ability q0 and 1 with probability q1=1−q0. The maximum
probability of correctly guessing Bob’s input using an honest
strategy is

ph = max
i

�max
j

�pijqj� + max
j

��1 − pij�qj�	 �27�

Denote Alice’s final state by � j, where j is Bob’s input. The
optimal strategy to distinguish �0 and �1 is successful with
probability �8�

1

2
�1 + tr�q0�0 − q1�1�� . �28�

Theorem 3. Let Alice input 1
�2

��0�+ �1�� and Bob input j
into the computation given in Eq. �26�. Let Alice implement
the optimal measurement to distinguish the corresponding �0
and �1 and call the probability of a correct guess using this
measurement pc. Then, for all �p00, p01, p10, p11	, there exists
a value of q0 such that pc� ph, unless �a� p00= p10 and p01
= p11 or �b� p00= p01 and p10= p11.

The two exceptional cases correspond to functions for
which only one party can make a meaningful input. We
hence conclude that all genuinely two-input functions of this
type are impossible to compute securely.

Proof. Take q0=1−�. For sufficiently small ��0, Eq. �27�
implies ph=q0. We then seek pc. The eigenvalues of q0�0
−q1�1 are

�± =
1

4
�a��pi,j	� ± �a2��pi,j	� + b��pi,j	�� , �29�

± =
1

4
�a��pi,j	� ± �a2��pi,j	� + b��pi,j	�� , �30�

where a��pi,j	�= �p00+ p10�q0− �p01+ p11�q1, b��pi,j	�
=4��p01p10−�p00p11�2q0q1, and pij �1− pij.

TABLE III. Probabilities of output 0 given inputs i , j. For ex-
ample, if both parties input 0, then the output of the function is 0
with probability p00, and 1 with probability 1− p00.

p�0 � i , j� i

0 1

j 0 p00 p10

1 p01 p11
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For � sufficiently small, we have a�b�0. Using �1+x
	1+ x

2 , we find,

�+ 

1
4�2a��pi,j	� +

b��pi,j	�
2a��pi,j	� � ,

�− 	 −
b��pi,j	�

8a��pi,j	�
,

+ 

1
4�2a��pi,j	� +

b��pi,j	�
2a��pi,j	� � ,

− 	 −
b��pi,j	�

8a��pi,j	�
,

with equality iff b��pi,j	�=0 and b��pi,j	�=0. We hence have
1
2 �1+tr �q0�0−q1�1 � �
q0 and so pc
 ph, with equality iff
p00= p10 and p01= p11, or p00= p01 and p10= p11. �

The explicit form of the cheating measurement is given in
Ref. �8�.

B. One-sided case

For one-sided computations of nondeterministic func-
tions, Alice can cheat without inputting a superposed state. In
this case, the black box performs the unitary

U�i�A�j�B�0� = �i�A�j�B��pij�0�A + �1 − pij�1�A� , �31�

where the last qubit goes to Alice at the end of the protocol.
The following theorem shows that such computations cannot
be securely implemented.

Theorem 4. Having made an honest input to the black box
above, Alice’s optimum procedure to correctly guess Bob’s
input is not given by a measurement in the ��0� , �1�	 basis,
except if pij � �0,1	 for all i, j.

Proof. From Eq. �20� of theorem 2, if Alice inputs i=1,
the measurement operators ��0�
0 � , �1�
1 � 	 are optimal only
if

q0
�p10�1 − p10� = �1 − q0��p11�1 − p11� . �32�

For this to hold for all q0, we require that either p11=0 or
p11=1 and either p10=0 or p10=1. Similarly, if Alice inputs
i=0, we require either p01=0 or p01=1 and either p00=0 or
p00=1 in order that the specified measurement operators are
optimal. �

These exceptions correspond to functions that are deter-
ministic and so do not properly fall into the class presently
being discussed. Many are essentially single input, hence
trivial, and all such exceptions are either degenerate or not
potentially concealing.

Our theorem also has the following consequence.
Corollary 1. One-sided variable-bias coin tossing �1� is

impossible.
Proof. A one-sided variable-bias coin toss is the special

case where both p00= p10 and p01= p11. These cases are not
exceptions of theorem 4, and hence are impossible. �

C. Example: The impossibility of oblivious transfer

Here we show explicitly how to attack a black box that
performs oblivious transfer when used honestly. This is a

second proof of its impossibility in a stand-alone manner �the
first being Rudolph’s �14��.5 The probability table for this
task is given in Table IV.

In an honest implementation of obvious transfer, Bob is
able to guess Alice’s input with probability 3

4 . However, the
final states after using the ideal black box are of the form
��b�= 1

�2
��b�+ �? ��, where �0�, �1�, and �? � are mutually or-

thogonal. These are optimally distinguished using the POVM
�E0 ,1−E0�, where

E0 =
1

6�2 + �3 − 1 1 + �3

− 1 2 − �3 1 − �3

1 + �3 1 − �3 2
� . �33�

This POVM allows Bob to guess Alice’s bit with probability
1
2

�1+
�3
2

�, which is significantly greater than 3
4 .

V. DISCUSSION

We have introduced a black box model of computation
and have given a necessary condition for security. Even if
such black boxes were to exist as prescribed by the model,
one party can always break the security condition. Specifi-
cally, by inputting a superposed state rather than a classical
one and performing an appropriate measurement on the out-
come state, one party can always gain more information on
the input of the other than that gained using any honest strat-
egy. In the case of deterministic functions, this attack has
only been shown to work if the function is nondegenerate
and potentially concealing. In the case where the sole pur-
pose of the function is to learn something about the other
party’s input, these are the only relevant functions.

Our theorems deal only with the simplest cases of each
class of function. However, the results can be extended to
more general functions as described below.

Larger input alphabets. A deterministic function is impos-
sible to compute securely if it possesses a 3�3 submatrix
which is potentially concealing and satisfies the degeneracy
requirement. This follows because Alice’s prior might be
such that she can reduce Bob to three possible values of j.
This argument does not rule out the possibility of all larger
functions, since some exist that are potentially concealing

5Impossibility had previously been argued on the grounds that
obvious transfer implies bit commitment and hence is impossible
because bit commitment is. However, while this argument rules out
the possibility of a composable obvious transfer protocol, a stand-
alone one is not excluded.

TABLE IV. Probability table for oblivious transfer.

p�k � i� i

0 1

k 0 1
2 0

1 0 1
2

? 1
2

1
2
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without possessing a potentially concealing 3�3 subfunc-
tion. Nevertheless, we conjecture that all potentially conceal-
ing functions have a cheating attack which involves inputting
a superposition and then optimally measuring the outcome.

In the nondeterministic case, all functions with more pos-
sibilities for i and j values possess 2�2 submatrices that are
ruled out by the attacks presented or reduce to one-input
functions. Therefore, no two-party nondeterministic compu-
tations with binary outputs can satisfy our security condition.

Larger output alphabets. In the nondeterministic case, we
considered only binary outputs. We conjecture that the at-
tacks we have presented work more generally on functions
with a larger range of possible outputs.

We have not proven that the aforementioned attacks work
for all functions within the classes given in Table I, although
we conjecture this to be the case. Furthermore, for any given
computation, one can use the methods presented in this work
to verify its vulnerability under such attacks.

We now briefly place our results within the context of
universal security definitions. In classical cryptography, there
are two common models for universal security, one intro-
duced by Canetti �15� and the other by Backes, Pfitzmann
and Waidner �16,17�. Recently, such frameworks have been
extended for use in quantum protocols �18–20�. The idea is
that if a protocol is universally secure �or universally com-
posable�, then it can be used as a subprotocol in any larger
protocol. The large protocol can then be divided into subpro-
tocols, each of which is assumed to behave as a black box
with a defined ideal functionality.6 The task of proving the
larger protocol secure then reduces to that of proving that the
subprotocols correctly mimick their ideals, together with an
argument that the combination of the ideals correctly per-
forms the overall task.

Our results imply that there is no way to define an ideal
suitable for realizing secure classical computation in a quan-
tum relativistic framework. Hence, without making addi-
tional assumptions or invoking the presence of a trusted third

party, secure classical computation is impossible using the
usual notions of security. The quantum relativistic world,
while offering more cryptographic power than both classical
and quantum nonrelativistic worlds, still does not permit a
range of computational tasks.

One reasonable form of additional assumption is that the
storage power of an adversary is bounded. The so-called
bounded storage model has been used in both classical and
quantum settings. This model evades our no-go results be-
cause limiting the quantum storage power of an adversary
forces them to make measurements �or discard potentially
useful parts of the system�. This invalidates our unitary
model of computation. In the classical bounded storage
model, the adversary’s memory size can be at most quadratic
in the memory size of the honest parties in order to form
secure protocols �21,22�. However, if quantum protocols are
considered and an adversary’s quantum memory is limited, a
much wider separation is possible. Protocols exist for which
the honest participants need no quantum memory, while the
adversary needs to store half of the qubits transmitted in the
protocol in order to cheat successfully �23�.

We further remark that the cheating strategy we present
for the nondeterministic case does not work for all assign-
ments of Alice’s prior over Bob’s inputs—there exist func-
tions and values of the prior for which it is impossible to
cheat using the attack we have presented. This continues to
be the case when we allow Alice to choose among the most
general superposed input states. As a concrete example, con-
sider the set �p00, p01, p10, p11�= � 47

150 , 103
150 , 8

9 , 5
9

�, with q0= 1
2 in

the two-sided version. Hence, in practice, there could be situ-
ations in which Bob would be happy to perform such a com-
putation, for example, if he was sure Alice had no prior in-
formation over his inputs.
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