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Homogenization protocols model the quantum mechanical evolution of a system to a fixed state indepen-
dently from its initial configuration by repeatedly coupling it with a collection of identical ancillas. Here we
analyze these protocols within the formalism of “relaxing” channels providing an easy-to-check sufficient
condition for homogenization. In this context we describe mediated homogenization schemes where a network
of connected qudits relaxes to a fixed state by only partially interacting with a bath. We also study configura-
tions which allow us to introduce entanglement among the elements of the network. Finally we analyze the
effect of having competitive configurations with two different baths and we prove the convergence to dynami-
cal equilibrium for Heisenberg chains.
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I. INTRODUCTION

Homogenization protocols have been extensively studied
in recent years as a powerful model for the equilibration of a
quantum mechanical system interacting with a large bath
�1–6�. In these schemes one considers a collisionlike cou-
pling of the system with a collection of ancillas that have
been prepared in identical states. This corresponds to a Mar-
kovian approximation in a discrete dynamical evolution.
Compared to typical quantum Markov equations the advan-
tage of this model is that it allows one to concentrate on the
effective unitaries and completely positive maps rather than
the underlying Hamiltonians and Lindblad generators �7�. By
“homogenization” one means that the system converges to a
state that is the same as the ancilla states. This was demon-
strated for a class of qudit systems in �1–3�. The bath-system
entanglement was studied in �4�, and a continuous-time
model �quantum master equation� was derived from the dis-
crete model in �5�. Furthermore, the emergence of irrevers-
ibility was investigated in �6�.

An important aspect of quantum homogenization is that is
a stable method of driving a system into some fixed state,
independent of its initial conditions. In this context, we will
also refer to the bath as a “controller” system and its state as
a “controller state.” Hence apart from its fundamental role of
studying quantum convergence, homogenization has possible
applications for quantum cloning �2�, for the hiding of
quantum information �2,8� and spin chain quantum
communication �9�.

The prototypical homogenization scenario �1,2� is de-
scribed in Fig. 1. It is composed of two parts: a system A
with an always on Hamiltonian HA, and a large ensemble of
identical controller systems B1 ,B2 , . . . ,Bn. The latter are pre-
pared in the same initial state �B and are assumed to have no
independent free evolution. The system A is coupled in se-
quential order with each one of the Bs through a series of
identical stepwise interactions described by the Hamiltonian
HI. In this setting the evolution of the system A is described
by the successive application of the completely positive �CP�
map

E��A� � TrB�U��A � �B�U†� , �1�

with U�exp�−i�HA+HI�t� and t�0 being the time interval
associated with a single A-B coupling. After the interaction
with n controllers the state of A becomes

�A
�n� = E � E � ¯ � E

n times

��A� � En��A� .
�2�

We are interested in the behavior of the sequence �2� for
large n: in the case where the system A and the controllers Bk
are identical, HA=0 and HI is a swap Hamiltonian, it was
shown �1–3� that the state of A asymptotically converges to
the state �B of the controllers, independently from the initial
state �A.

In the above, homogenization also gives rise to thermali-
zation �10�—if the bath is initialized in Gibbs states, then the
system converges to a Gibbs state. However, it is an open
question if this still holds in a situation where system and
bath particles have different dimensionality �6�. Moreover, in
�1–6� the bath is modeled to interact with the whole system
whereas an interaction with a subsystem �such as the sur-
face� seems more plausible.

A first generalization toward this direction was observed
by the authors of the present paper when studying the propa-
gation of quantum information along spin chain communica-
tion channels �9�. In that case A represented a collection of N
coupled qubits, while the Hamiltonians HI implemented a
sequence of strong instantaneous swaps among the last ele-
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FIG. 1. Setup of a standard homogenization protocol: the con-
trolled system A interacts with a collection of controller systems B
which have been initialized into the same input state �B. Homog-
enization takes place when the final state of A is driven into the
same state �A of the controllers in the limit of infinitely many
couplings with the B’s.
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ment of the chain and a collection of controller qubits �the
B’s�. By assuming the B’s to be prepared into the spin-down
state �0�B we showed that in the limit of large n, any initial
state of A will be coherently transferred into the B’s while
the chain will be mapped into the all spin-down configura-
tion �00¯0� �the only requirement being a nontrivial con-
nection among the qubits of A�. Concerning Ref. �9� it is
worth stressing that in contrast to Refs. �1–6� A and the
controllers are quite distinct objects �namely A is a network
of coupled qubits while each of the B1¯Bn is just a single
qubit�. Moreover only a proper subset of A �specifically the
Nth element of the network� interacts directly with B: the
remaining qubits are only affected by the controllers through
the free Hamiltonian HA of the network �see Fig. 2�. The
possibility of preparing the ancilla state �0�B into each one of
the spins of the network is therefore a remarkable feature of
the system which requires some further investigation. We
call it mediated homogenization process.

In this paper we tackle this issue by analyzing spin net-
works which show similar properties. In particular in Sec. III
we present a first example of a mediated homogenization
process which allows one to transfer on the network element
any input state �B of the controllers. Before doing so how-
ever we introduce a general convergence criterion for relax-
ing channels in Sec. II that will turn out to be extremely
useful in our discussion. Our generalized setup gives rise to
much richer quantum convergence effect—in Sec. IV we
give numerical evidence for equilibrium states which are en-
tangled. Finally in Sec. V we study the effects of having
competitive baths at different temperature.

II. MIXING CRITERIA IN THE HOMOGENIZATION
SETUP

Our starting point is the observation that what makes the
CP map in Eq. �2� converge into a specific state indepen-
dently from the initial input �A is a well-known property
called relaxing �10� �also referred to as “mixing” �11,12� or
“absorbing” �13��. In this language the convergence point

�A
� � lim

n→�
�A

�n�, �3�

is the only fixed point of E, i.e., the only solution of the
equation

E��A� = �A, �4�

�we refer the reader to Refs. �11,12� for a detailed introduc-
tion to relaxing channels�. Therefore an homogenization pro-

cedure is associated with a relaxing channel whose fixed
point �A coincides with the state of the controller.

We now prove a very simple but important result. Sup-
pose that given U we know that the map �1� is relaxing for a
specific choice of the controlled state �B. Consider now the

map Ẽ which is obtained from Eq. �1� by replacing �B with a
state �̃B which is a �nontrivial� convex combination of �B,
i.e., �̃B= p�B+ �1− p��B� , with p� �0,1� and �B� being a ge-

neric density matrix. In this case the map Ẽ can be expressed
as a convex combination of E, i.e.,

Ẽ = pE + �1 − p�E�, �5�

with the map E� as in Eq. �1� with �B replaced by �B� . We
can then use a theorem by Haag �14� which shows that a
convex combination of CP maps containing at least one re-

laxing channel is relaxing, to conclude that Ẽ is relaxing—for
completeness, we provide an alternative �and much simpler�
proof of this important theorem. It is based on the fact that
the relaxing map is equivalent to the asymptotic deformation
property �11�. Hence for all ���� there is a k such that

�Ek��� − Ek�����1 � �� − ���1, �6�

where ���1�Tr�	�†�� indicates the trace norm of the op-

erator �. We write Ẽk= pkEk+ �1− pk�S�, where S� is the CP

map that contains all other terms of the expansion of Ẽk. By
the nonexpansiveness �15� of S� and the triangle inequality
we obtain

� Ẽk��� − Ẽk�����1 � �� − ���1, �7�

whence Ẽ is an asymptotic deformation. In the context of
Fig. 2 this implies that the system still converges when sub-
stituting the controller state �B with �̃B. For instance, if there
exists any state �B for which the system converges, then it
will converge to the fully mixed state if the Bk are initialized
in the fully mixed state.

A natural question is then to determine the fixed point of

Ẽ. Specifically one may ask how the final state of the system
A depends upon the controller state �̃B. For instance, if ho-
mogenization takes place for �B, does it hold also for �̃B?
Or, how does the entropy of the fixed point depend on the
entropy S��̃B� of the controllers?

Before passing to apply the Haag criterion to the mediated
homogenization scheme, it is worth presenting yet another
interesting generalization of this simple but important theo-
rem. Consider in fact the situation in which the states of the
controllers B1 , . . . ,Bn have not been properly initialized. In
particular we are interested in studying what happens if in-
stead of being prepared in the “good” initial state �B, the �th
controller is described by the following imperfect state:

�̄B
��� � p��B + �1 − p���B

���, �8�

where for �=1, . . . ,n, p��0 are probabilities and �B
��� are

density matrices. According to the analysis of Sec. I this
yields a sequence E1 , . . . ,En of CP maps which have the
property that each of them is a convex combination of a fixed
relaxing map E, i.e.,

Bn B3 B2 B1

AN

HI

A3A2A1

FIG. 2. Generalized homogenization protocol: in this case the
controlled system A is a composite one �e.g., a network of coupled
spins�. Only a proper subset of the network interacts directly with
the controllers B �as in the case of Fig. 1, the Bk are assumed to be
prepared in the same initial states�.
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E� = p�E + �1 − p��S�, �9�

where E and S� are the channels �1� associated with �B and
�B

���, respectively. Clearly without putting any restriction on
the values of p� nothing can be said about the convergence
property of the protocol. Therefore, we consider the case in
which the “error” �1− p�� is bounded, by imposing the con-
straint

p� � p � 0. �10�

This hypothesis does not yet guarantee that A will be driven
toward �A. However we can at least verify that the process is
still able to “forget” about the initial state of the controlled
system as in the relaxing case �this is a typical feature of any
homogenization protocol�. The evolution of the controlled
system A is in fact now described by the following sequence
of concatenated maps:

Mn = En � En−1 � ¯ � E1. �11�

For arbitrary input density matrices �A� , �A� of the controlled
system define

fn = �Mn��A�� − Mn��A���1. �12�

Now since fn is non-negative and nonincreasing �15� it cer-
tainly admits a limit limn→� fn� f�. To show that the proto-
col forces the controlled system to forget about its initial
conditions we need only to verify that this quantity is null for
all �A� and �A� . Assume then by contradiction that f��0 for
some choice of these input states. Let �A

� be the fixed point of
the unperturbed map E. Then there is a value of k such that

�Ek��A�−�A
��1� f� /4 for all �A �10�. Let then 	=

pkf�

3�1−pk� �0.

There is a n such that fn− f��	. We write

Mk+n = M̃ � Mn, �13�

where the superoperator M̃=Ek+n � ¯ �E1+n can be decom-
posed as

M̃ = PkEk + �1 − Pk�
 �14�

with 
 being CP and Pk= pk+n¯p1+n� pk by assumption.
Hence

fk+n = �M̃�Mn��A�� − M̃�Mn��A����1 � Pk�Ek�Mn��A�� − Ek�Mn��A����1 + �1 − Pk��
�Mn��A�� − 
�Mn��A���1 � Pkf�/2

+ �1 − Pk��	 + f�� � Pkf�/2 + �1 − Pk�
 Pkf�

3�1 − Pk�
+ f�� = f� − Pkf�/6 � f�.

Since fn is nonincreasing this is a contradiction, and f�=0.
We have shown that the whole state space is contracted to a
single point. In general, this point is still evolving under the
action of En, but contains no information about the initial
state. The map Mn is relaxing if and only if there exists an
asymptotic fixed point �A

� , i.e., a state with limn→� Mn��A
��

=�A
� .

III. MEDIATED HOMOGENIZATION IN SPIN
NETWORKS

An interesting example of mediated homogenization is
obtained by assuming A to be a network of N coupled qudits
A1 , . . . ,AN mutually interacting through a sum of a local
terms of the form

HA = �
k,k�

Jkk�SAkAk�
, �15�

where Jkk� are coupling constants and where SAkAk�
= �SAkAk�

�† are unitary operators which swap the kth qudits of

A with the k�th �16�. Regarding the coupling with the con-
troller we consider the case in which only AN interacts with
the B’s �also represented by d-dimensional systems� through
a swap Hamiltonian similar to �15�, i.e.,

HI = SBAN
. �16�

Under these conditions we can show that, for all choice of
the controller states �B and for almost all choices of the
interaction time t the map �1� is relaxing with fixed point

�A
� = ��A��N, �17�

given that the graph associated with the coupling Jkk� satis-
fies certain constraints. This corresponds to the case in
which, in the limit of large n, the controller state �B is “cop-
ied” in all the N controlled qudits. We call this process a
mediated homogenization of A. It fulfills all four homogeni-
zation criteria mentioned in Ref. �6�: First, the coupling be-
tween system and bath is independent of the bath state. Sec-
ond, the equilibrium state is not only a fixed point of the CP
map �1� but also of the unitary evolution U�exp�−i�HA

+HI�t� alone. Third, the system converges to the fixed point
for all initial states. Finally the change of the bath due to the
evolution can be made arbitrarily small by choosing a short
interaction time t. An immediate consequence of the above
result is the fact that the von Neumann entropy of A con-
verges to N times the von Neumann entropy of the controller
state SB=−Tr��B log2 �B�. This is a distinctive trait of the
mediated homogenization processes and it is similar to what
happens when we put a system of interest in thermal contact
with a reservoir. It should be pointed out though that in our
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case the convergence state is in general far away from any
thermal state exp�−�HA� /Z. The thermalization feature ob-
served in �1� thus seems to be specific to the case where A is
a single qudit.

To prove the above result we first focus on the case in
which �B is a pure vector ��B. Define then the joint observ-
able

MAB = MB + MA, �18�

where MA=�k=1
N MAk

and

MB � − ��B� ,

MAk
� − ��Ak

� . �19�

The operator MAB commutes with the total Hamiltonian H
=HA+HI and hence with the operator U=exp�−iHt�: we thus
say that free evolution of the network preserves the “excita-
tions” associated with the projectors ���.

Moreover, the state ��B is the �nondegenerate� eigenvec-
tor associated with the minimum eigenvalue of MB. Under
these conditions we can invoke the Lemma 3 of Ref. �11�
which states that the map �1� is relaxing with fixed point
���N= ��A1

� ¯ � ��AN
if the state ���N � ��B is the

unique eigenvector of U having the form �E�A � ��B. This
last condition can be verified by focusing on the global
Hamiltonian H: if indeed ���N � ��B is the unique eigen-
vector of the global Hamiltonian H with the factorization
property �E�A � ��B then the same property will hold for U
for almost all the values of t. We have shown elsewhere �17�
that for “excitation” preserving Hamiltonians the above fac-
torization condition depends only on the geometry of the
associated graph. For example, an open chain with AN being
an end qudit has the required property. We can apply this
result to the Hamiltonian �15�. Therefore for any given net-
work configuration satisfying the topological constraint of
Ref. �17� we can conclude that, for all initial pure states ��
of the controller, the above iterative procedure will drive A to
a unique fixed point. Before determining such fixed point, let
us first observe that the same convergence will hold also
when assuming the initial states of the controllers to be a
general mixed state �B. This is a trivial consequence of the
pure case scenario which can be obtained by expanding any
such mixture into a convolution of pure states �B
=� jqj� j�B j� and applying the Haag criterion.

Since we have now proved that for all choices of the
controller state �B the channel E is relaxing, to verify Eq.
�17�, it is sufficient to show that ��A��N satisfies Eq. �4�. The
latter can be easily verified by noticing that each summand
of the Hamiltonian �15� commutes with all tensor product
operators of the form ��N, and therefore

�HA,��N� = 0. �20�

Consequently for �A
� as in Eq. �17� and HI as in Eq. �16� we

can write

�HA + HI,�A
�

� �B� = 0 ⇒ �U,�A
�

� �B� = 0, �21�

which is sufficient to show that �A
� satisfies the invariance

condition �4�.

IV. BUILDING ENTANGLEMENT IN THE NETWORK

In the preceding section we found a model where inde-
pendently from the initial state of A, the final state of the
network is the separable state �A

�N. Each of the N qudits of
the network has been driven into the initial state of the con-
trollers. In this section we show that, keeping HI as in Eq.
�16�, there are also Hamiltonians HA which are capable of
building entanglement among the qudits of the network. Al-
though this is no longer a homogenization protocol �the con-
troller state is not transferred to the controlled system� it
could have useful applications as a method of state prepara-
tion.

Consider for the sake of simplicity d=2. In this case the
swap interaction of Eq. �15� corresponds �up to a constant� to
a Heisenberg coupling. A natural generalization of it is then
provided by the anisotropic Heisenberg Hamiltonian

HA = �
k,k�

Jkk�

2
��k

�x��k�
�x� + �k

�y��k�
�y� + ��k

�z��k�
�z�� , �22�

where �k
�x,y,z� represents the Pauli matrix of the kth qubit of A

and where �−1 is the anisotropy parameter �the isotropic
coupling is obtained for �=1�. For this coupling we can use
the same argument given in the preceding section to charac-
terize the relaxing properties of the associated map �1� �in
particular the factorization property of its eigenvectors de-
pends only on the geometry of the associated graph �17��. In
this case however the isotropy is lost and the Hamiltonian
has a preferred spatial direction associated with the ẑ axis
which makes �0�B and �1�B special with respect to the other
controller pure states. Indeed we can still show that mediated
homogenization takes place for input states �B which are
diagonal in the computational basis, i.e.,

�B = p�0�B0� + �1 − p��1�B1� . �23�

This follows by the fact that for such a choice Eq. �21� holds
independently from the value of �. On the contrary for more
general controller states mediated homogenization is lost. As
an example, consider

�B = p�0�B0� + �1 − p��− �B− � , �24�

where �−�B���0�B− �1�B� /	2 and p�0. In this case Haag’s
theorem can still be used to ensure relaxing of the map �1�
even though computing the fixed point is not simple. For
such choice however we have numerically verified that the
mediated homogenization does not take place in general. We
evaluated the asymptotic limit of the von Neumann entropy
of �A

� , verifying that it is no longer a multiple of the von
Neumann entropy of the bath state. In Fig. 3 we show an
example for a XX chain ��=0�.

Of particular interest is the case p=0. In this limit �B
= �−�B−� and the relaxing property cannot be established
from the theorem by Haag �simply �B is not a convex com-
bination of �0�B0��. Nevertheless we can use numerical
analysis to show that the map �1� is still relaxing �18�. We
found that the convergence point is highly mixed. Since this
is so much different from the isotropic Heisenberg model
with fixed point �−��N it seemed natural to compute the re-

DANIEL BURGARTH AND VITTORIO GIOVANNETTI PHYSICAL REVIEW A 76, 062307 �2007�

062307-4



laxing property and convergence point of the anisotropic
model for p=0 as a function of � to see the transition for a
XX chain �with highly mixed convergence point� to the
Heisenberg chain �pure convergence point�. In particular we
wanted to check if there are also entangled fixed points. For
this purpose we computed the concurrence between the first
and second qubit of the chain �say� for intermediate � �see
Fig. 4�. Again, for the given parameters, all examples were
relaxing. We found that the convergence point is indeed en-

tangled for some values of �. Contrary to the results in the
preceding section, the numerical examples of convergence
points observed here depend on the parameters of the model.
An important open problem is to determine if there exist HA
and �B that have a fixed point with interesting applications
�e.g., a cluster state�.

V. DYNAMICAL EQUILIBRIUM

The many-body structure of A presented in Fig. 2 allows
us to consider more complicated procedures. For instance,
we can analyze competitive configurations where the dynam-
ics of the network A is driven by the simultaneous coupling
with two independent sets of controllers �the B1 , . . . ,Bn and
the C1 , . . . ,Cn of Fig. 5�. We can then model the “transport”
of excitations through the network by assuming the two sets
to be directly coupled with distinct network elements �say AN
for B and A1 for C� and assuming different “temperature” for
the two species of controllers �say �B=p�0�B0�
+�1−p��1�B1� for the Bs and �C=q�0�C0�+ �1−q��1�C1� for
the Cs�. A similar situation is considered in �19–21� where in
the case of a linear chain coupled through Heisenberg and
XX interactions the relaxing property was observed numeri-
cally �22�. Here, the convergence can be derived analytically

Bn B3 B2 B1

AN

HI

A3A2A1

C1 C2 C3 Cn

HI

FIG. 5. Setup of the dynamical equilibrium: here the system of
Fig. 2 is coupled to two competing baths at different temperatures.
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length N=4. The controller state is as in Eq. �24�. For all values of
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state becomes pure but the convergence point remains mixed. This
should be compared with the behavior of a mediated homogeniza-
tion process �e.g., the swap coupling of Sec. III� where R is always
equal to N for all p. The parameters for the computation are Jkk�
=	k,k+1 and t=0.5.
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The bath state is given by ��0�B− �1�B� /	2. The parameters for the
numerics are Jkk�=	k,k+1 and t=0.5.
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for arbitrary chain length as a consequence of the Haag theo-
rem. To verify this it is convenient to treat B and C as a
unique controller composed by elements
B1C1 ,B2C2 , . . . ,BnCn. From the above definitions it then fol-
lows that such composite controllers are initialized in the
state

�B � �C = pq�0�B0� � �0�C0� + �1 − pq��BC, �25�

with �BC being a density matrix. Therefore, according to the
Haag theorem the convergence can be verified by focusing
only on the case in which B and C are initialized in �0�B0�
� �0�C0�. With this choice however the iterative procedure is
equivalent to the “cooling” protocol discussed in Ref. �17�
and the convergence is automatically verified. Deriving the
exact steady state in this case is however quite complicated
so we restrict to numerical analysis. Again its form depends
strongly on the parameters, as shown in Fig. 6.

VI. CONCLUSION

We have generalized the homogenization protocols to a
scenario where the system is no longer a single qudit. We
found that mediated homogenization still takes place on the
lattice when the interaction is taken to be isotropic. Aniso-
tropic interactions, on the other hand, do not in general show

homogenization. Our numerical results are quite suggestive
in this direction but are certainly not conclusive. This sug-
gests many further studies: what is the structure of the fixed
points of these systems? How are their entropies related to
the bath entropy? What happens when the system is close to
a critical point? Can we use this convergence as a way of
preparing useful states such as cluster states on optical lat-
tices? Finally we looked at transport along chains intercon-
necting baths at different temperature, where the Haag crite-
rion allowed us to prove the convergence to a dynamical
equilibrium. We found that the temperature profile is strongly
depending on the parameters of the system, such as the in-
teraction time, and not even monotonic for some times.
While at the moment these results are numerical only, it may
be possible to obtain an analytic expression for the fixed
point in a weak coupling limit by deriving a closed equation
for the proper ansatz �cf. �20��. This will be the subject of
future investigations.
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