
Error exponent in asymmetric quantum hypothesis testing and its application
to classical-quantum channel coding

Masahito Hayashi
ERATO-SORST Quantum Computation and Information Project, Japan Science and Technology Agency, 201 Daini Hongo White

Bldg. 5-28-3, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
and Graduate School of Information Sciences, Tohoku University, Aoba-ku, Sendai, 980-8579, Japan

�Received 12 November 2006; published 5 December 2007�

An upper bound on simple quantum hypothesis testing in the asymmetric setting is shown using a useful
inequality by Audenaert et al. �Phys. Rev. Lett. 98, 160501 �2007�� which was originally invented for sym-
metric setting. Using this upper bound, we obtain the Hoeffding bound, which is identical with the classical
counterpart if the hypotheses, composed of two density operators, are mutually commutative. Its attainability
has been a long-standing open problem. Further, using this bound, we obtain a better exponential upper bound
of the average error probability of classical-quantum channel coding.
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I. INTRODUCTION

One of the main theoretical difficulties appearing in quan-
tum information lies in the noncommutativity. Hence, for
further development of quantum information, it is needed to
accumulate the methods to resolve such difficulties. Simple
quantum hypothesis testing is the simplest problem describ-
ing this kind of difficulty because this problem is discrimi-
nating two quantum states �the null hypothesis and the alter-
native hypothesis� as the candidates of the true state. �In
statistics, hypothesis testing is called simple when both hy-
potheses consist of one element.� This problem is also the
fundamental tool for other problems in quantum information.
For example, sending classical information via quantum
channel �classical-quantum channel coding� is known as an
important topic in quantum information, and is closely re-
lated to asymmetric simple quantum hypothesis testing,
which was shown in Hayashi-Nagaoka �1�. Recently,
Nussbaum-Szkoła �2� and Audenaert et al. �3� have derived
the optimal exponential rate of error probability in symmet-
ric quantum hypothesis testing, which is called the quantum
Chernoff bound �4�. However, its symmetric framework is
not directly linked to classical-quantum channel coding, but
only the asymmetric framework is applicable to classical-
quantum channel coding. Further, it was clarified through
information spectrum method �5� that other topics in classi-
cal information theory, wire-tap channel, source coding, and
identification code, are related to the asymmetric framework.
Hence, asymmetric simple quantum hypothesis testing can
be expected to be a useful tool for quantum information.

In simple quantum hypothesis testing, we usually focus
on the two types of error probabilities, i.e., the error prob-
ability of the first kind �the null hypothesis � is rejected
despite of being correct� and the error probability of the sec-
ond kind �the alternative hypothesis � is rejected despite of
being correct�. While we minimize the sum of two kinds of
error probabilities in the symmetric hypothesis testing, we do
not treat both error probabilities equally in the asymmetric
hypothesis testing. For example, we minimize the error prob-
ability of the second kind under the constraint of the error
probability of the first kind. In this paper, we will treat the

asymmetric hypothesis testing in the asymptotic framework,
in which, we usually adopt independent and identical condi-
tion, i.e., the true state is assumed to be the tensor product
state ��n or ��n. In the symmetric case with the asymptotic
framework, the exponential rate of the sum of two error
probabilities is equal to max0�s�1−��s �� ���, which is
called quantum Chernoff bound, where ��s �� ���
ª log Tr�s�1−s. In this paper, we choose the base of the loga-
rithm to be e. The asymmetric case is more complicated than
the symmetric case even with the asymptotic framework. In
the asymmetric case, we often assume the constant constraint
for the error probability of the first kind. Then, the optimal
decreasing rate of the error probability of the second kind is
equal to the quantum relative entropy D�� ���ªTr��log �
−log ��, which is known as quantum Stein’s lemma �6,7�. As
is described in Hayashi-Nagaoka �1� and Ogawa-Nagaoka
�7�, the capacity theorem of classical-quantum channel cod-
ing can be shown via quantum Stein’s lemma. For a more
precise analysis, we often treat the same optimal decreasing
rate under the exponential constraint for the error probability
of the first kind. In the classical case �i.e., the commutative

case�, this optimal rate is equal to max0�s�1

−sr−��s�����

1−s , and is
called the Hoeffding bound �8�, where r is the exponent of
the error probability of the first kind. As was pointed by Han,
the exponential decreasing rate of average error probability
of channel coding can be characterized by the optimal expo-
nential decreasing rate of error probability in asymmetric
simple hypothesis testing in the classical case. Also, Han �5�
implicitly indicated that asymmetric simple classical hypoth-
esis testing is closely related to other topics in information
theory via information spectrum method.

In this paper, we focus on Hoeffding bound in the quan-
tum case, and derive an upper bound of the optimal decreas-
ing rate of the error probability of the second kind under the
exponential constraint for the error probability of the first
kind. Applying this bound, we derive an exponential upper
bound of the average error probability of the optimal code in
classical-quantum channel coding. While the capacity theo-
rem of classical-quantum channel coding is quite familiar,
but exponential evaluation is more important from applied
viewpoint. This is because in order to evaluate the average
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error probability with a finite length code, we need not the
capacity but an exponential upper bound. Further, as was
pointed out by Nagaoka �9�, since asymmetric hypothesis
testing can be regarded as a meeting point among statistics,
information theory, and large deviation theory, this research
area is quite important for interdisciplinary research. There-
fore, it can be expected that the study of its quantum case
yields many fruitful products. Further, Hoeffding bound it-
self is more meaningful from statistical viewpoint. Since the
meanings of two kinds of errors are different in the classical
statistical hypothesis testing, it is usual to treat two kinds of
error probabilities asymmetrically. Thus, it is suitable to ap-
ply not Stein’s lemma but Hoeffding bound to an exponen-
tially small error probability of the first kind because Stein’s
lemma treats the constant constraint for the error probability
of the first kind.

Now, we trace the history of the research of quantum
simple hypothesis testing. First, the quantum extension of
Stein’s lemma has been solved by Hiai and Petz �6� and
Ogawa and Nagaoka �7�. That is, Hiai and Petz �6� proved
the existence of a sequence of test attaining the required
property by combining the classical case of Stein’s lemma
and the following fact: When a suitable measurement is cho-
sen, the classical relative entropy concerning the measure-
ment outcome approaches quantum relative entropy. Ogawa
and Nagaoka proved the negative part: if the exponential rate
of the error probability of the second kind is greater than the
quantum relative entropy, the probability correctly accepting
the null hypothesis goes to 0. Concerning the symmetric set-
ting, Hayashi obtained quantum Chernoff bound in Chap. 3
of Ref. �10� when ��s �� ��� is symmetric. Nussbaum and
Szkoła �2� obtained its lower bound. Audenaert et al. �3�
showed that the bound by Nussbaum and Szkoła �2� can be
attained. In their proof, they derived a quite useful inequality
�Lemma 2 in this paper�.

However, concerning the quantum extension of Hoeffding
bound, only a lower bound has been obtained by Ogawa and
Hayashi �11�. Their approach is valid only in the finite di-
mensional case, and their bound does not work effectively in
the pure states case. They also suggested the existence of a
tighter lower bound. Hence, a tighter lower bound of these
problems has been desired. In this paper, we obtain a tighter
lower bound of Hoeffding bound by using a powerful in-
equality by Audenaert et al. �3�. This method is valid even in
the infinite-dimensional case. After the first version of this
paper, Nagaoka �12� proved that our exponential upper
bound is tight.

Next, we trace the history of the research of classical-
quantum channel coding. The capacity theorem has been es-
tablished by combining the achievable part shown by Holevo
�13� and Schumacher-Westmoreland �14� with the impossi-
bility part that goes back to the 1970’s works of Holevo
�15,16�. Brunashev and Holevo �17� derived an exponential
upper bound of average error probability when all of the sent
states are pure. Ogawa-Nagaoka �18� pointed out that quan-
tum channel coding can be treated by using quantum hypoth-
esis testing. Hayashi and Nagaoka �4� derived a good rela-
tion between this problem and the asymmetric treatment of
hypothesis testing. Applying this relation to Ogawa-
Hayashi’s result, they derived an exponential upper bound of

average error probability for the general case. However,
since the Ogawa-Hayashi bound in quantum hypothesis test-
ing is not optimal, there is a possibility to improve the
Hayashi-Nagaoka �1� exponential upper bound in classical-
quantum channel coding.

II. FORMULATION AND MAIN RESULTS

We study the simple hypothesis testing problem for the
null hypothesis H0 :��n versus the alternative hypothesis
H1 :��n, where ��n and ��n are the nth tensor powers of
arbitrarily given density operators � and � on a Hilbert space
H which represents a physical system in interest. The prob-
lem is to decide which hypothesis is true based on the data
drawn from a quantum measurement, which is described by
a positive operator valued measure �POVM� on H�n, i.e., a
resolution of identity �iMn,i= In by nonnegative operators
Mn= �Mn,i	 on H�n. If a POVM consists of projections on
H�n, it is called a projection valued measure �PVM�. In the
hypothesis testing problem, however, it is sufficient to treat a
two-valued POVM �M0 ,M1	, where the subscripts 0 and 1
indicate the acceptance of H0 and H1, respectively. Thus, a
hermitian matrix Tn satisfying inequalities 0�Tn� I is called
a test in the sequel, since Tn is identified with the POVM
�Tn

c ,Tn	. For a test Tn, the error probabilities of the first kind
and the second kind are, respectively, given by Tr���nTn�
and Tr���nTn

c�, where Tc
ª I−T.

This problem is considered in an asymmetric framework.
Let us define the optimal value for the error probability of
the second kind Tr���nTn

c� under the constant constraint on
the error probability of the first kind Tr���nTn�:

�n
*��� =

def

min�Tr���nTn
c��Tn:test,Tr���nTn� � �	 .

Then, we have the quantum Stein’s lemma, which was ob-
tained by Hiai-Petz �6� and Ogawa-Nagaoka �7�: For 0
� ∀��1, it holds that

lim
n→�

1

n
log �n

*��� = − D����� . �1�

For a further analysis, we focus on the decreasing expo-
nent of the error probability of the second kind under an
exponential constraint for the error probability of the first
kind. For this purpose, we define

B�r�����

=
def

sup
�Tn	

� lim

n→�

− log Tr��nTn
c

n
� lim

n→�

− log Tr��nTn 	 r

n � .

Then, we obtain the following theorem:
Theorem 1. The inequality

B�r����� 	 sup
0�s�1

− sr − ��s�����
1 − s

�2�

holds.
After the first version of this paper, the opposite inequality

was proved by Nagaoka �12�. That is, Nagaoka’s result im-
plies that the inequality �2� is the final, tight quantum Hoef-
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fding bound. In fact, Ogawa and Hayashi �11� obtained a
weaker inequality

B�r����� 	 max
0�s�1

− sr − �̃�s�����
1 − s

�3�

and treated the inequality �2� as an open problem, where
�̃�s�����ªTr��s/2�−s�s/2.

III. PROOF OF MAIN THEOREMS

In the following we abbreviate ��s����� to ��s�. In order
to prove theorem 1, we use the following lemma.

Lemma 1. For any two positive-semidefinite operators
X ,Y and a real number 0�s�1 /2, we obtain

TrXsY1−s 	 Tr�X1−s 	 Y1−s	Y + Tr�X1−s � Y1−s	X ,

where for any Hermitian matrixes C and D we denote the
projection �ci	0Ei ��ci�0Ei� by �C	D	 ��C�D	� with the
spectral decomposition C−D=�iciEi. Only the case of s
=1 /2 has been proved in Chap. 3 of Hayashi �10�.

Substituting ��n and ��ne−na to Y and X in this lemma,
the projection Tn,sª ����ne−na�1−s� ���n�1−s	 satisfies

Tr��nTn,s = TrXTn,se
na � TrXsY1−sena = en�1−s�aen��s� �4�

Tr��n�I − Tn,s� = TrY�I − Tn,s�

�TrXsY1−s = e−nsaen��s� �5�

for 0�s�1 /2. For 1 /2� t�1, the projection Tn,t
ª ����ne−na�t� ���n�t	 satisfies

Tr��nTn,t � en�1−t�aen��t�, �6�

Tr��n�I − Tn,t� � e−ntaen��t�, �7�

where we substitute 1− t, ��n, and ��ne−na into s, X, and Y.

We choose sr =
def

arg max0�s�1

−sr−��s�����

1−s . Then, we have

r = �sr − 1����sr� − ��sr� ,

max
1	s�	0

− s�r − ��s��
1 − s�

= sr���sr� − ��sr� .

Thus, choosing a to be ���sr�, Eqs. �4�–�7� imply

Tr��nTn,s � e−nr,

Tr��n�I − Tn,s� � e−n max0�s�1�−sr−��s�����/1−s�.

Therefore, we obtain Eq. �2�.
Let us now move to prove lemma 1. Note that the proof

that we present here goes through in infinite dimensions. The
proof relies on the following quite powerful lemma.

Lemma 2 (Audenaert et al. �3��. For any two positive-
semidefinite operators A ,B and a real number 0� t�1, we
obtain

Tr�A 	 B	B�At − Bt� 	 0.

Proof of Lemma 1. We apply lemma 2 to the case t
=s / �1−s�, A=X1−s and B=Y1−s, where 0�s�1 /2 is the in-
equality. Then

Tr�X1−s 	 Y1−s	Y1−s�Xs − Ys� 	 0

holds. Subtracting both sides from Tr�X1−s	Y1−s	�X−Y�
then yields

TrXs�X1−s 	 Y1−s	�X1−s − Y1−s� � Tr�X1−s 	 Y1−s	�X − Y� .

Since �X1−s	Y1−s	�X1−s−Y1−s�	 �X1−s−Y1−s�, we have

TrX − TrXsY1−s = TrXs�X1−s − Y1−s� � TrXs�X1−s 	 Y1−s	


�X1−s − Y1−s� � Tr�X1−s 	 Y1−s	�X − Y� .

Thus, the relation I− �X1−s	Y1−s	= �X1−s�Y1−s	 yields

Tr�I − �X1−s 	 Y1−s	�X + Tr�X1−s 	 Y1−s	Y � TrXsY1−s.

IV. APPLICATION TO CLASSICAL-QUANTUM CHANNEL
CODING

As is mentioned in Ref. �1�, the error exponent in
classical-quantum channel coding are derived from the error
exponent in simple quantum hypothesis testing. Now, we
consider the nth stationary memoryless channel of the
classical-quantum channel x��x. Define the densities R, Sp
and �p for a distribution p,

R =
defp�x1��x1

0

0 �

p�xk��xk

� ,

Sp =
defp�x1��p 0

0 �

p�xk��p
�, �p =

def

�
x

p�x��x.

In the channel coding, we usually treat the trade-off between
the average error probability Pe���n�� and the number N of
transmitted massages. That is, the receiver should choose the
recovered message among N elements via the received quan-
tum state. This number is called the size.

Then, the inequality �44� in Ref. �1� implies that for any
distribution p and any test T�n�, there exists a code ��n� with
the size N whose average error probability Pe���n�� satisfies

Pe���n�� � 2�1 − TrR�nT�n�� + 4NTrS�nT�n�. �8�

This kind of relation between hypothesis testing and channel
coding was obtained by Verdú and Han �19�, and it was
researched by Han further in Ref. �20�.

When N=ena, applying Lemma 1 to the two cases: X
=SpN ,Y =R and Y =SpN ,X=R, we obtain

Pe���n�� � 4e−n�sa−�p�s�� �9�

for 0�s�1, where

�p�s� =
def

log TrR1−sSp
s = log �

x

pxTr�x
1−s�p

s . �10�

This gives the exponential decreasing rate of error probabil-
ity. This upper bound improves the bound given in Hayashi-
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Nagaoka �1�, which was obtained by using the Ogawa-
Hayashi �11� Hoeffding bound. Also, it can be regarded as a
generalization of the Brunashev-Holevo �17� result, which
gives the exponential decreasing rate of error probability in
the pure states case.

V. DISCUSSIONS

In this paper, we treated the asymmetric setting of quan-
tum hypothesis testing, and obtained a quantum extension of

Hoeffding bound max0�s�1

−sr−��s�����

1−s , which improves the
Ogawa-Hayashi �11� bound. Since Nagaoka �12� proved the
opposite inequality, our exponential rate is tight. Further, we
applied this result to classical-quantum channel coding and

obtained a better error exponent. As is discussed in the be-
ginning part of this paper, the asymmetric setting of simple
hypothesis testing has wider connection with information
theory. So, we can expect that our results will be applied to
many other topics in quantum information.

ACKNOWLEDGMENTS

This work was partially supported by ERATO-SORST
Quantum Computation, Information Project and Special Co-
ordination Funds for Promoting Science and Technology, and
a MEXT Grant-in-Aid for Scientific Research on Priority,
Deepening and Expansion of Statistical Mechanical Infor-
matics �DEX-SMI�, Grant No. 18079014.

�1� M. Hayashi and H. Nagaoka, IEEE Trans. Inf. Theory 49,
1753 �2003�.

�2� M. Nussbaum and A. Szkoła, e-print arXiv:quant-ph/0607216.
�3� K. M. R. Audenaert, J. Calsamiglia, R. Munoz-Tapia, E.

Bagan, L. Masanes, A. Acin, and F. Verstraete, Phys. Rev. Lett.
98, 160501 �2007�.

�4� H. Chernoff, Ann. Math. Stat. 23, 493 �1952�.
�5� T. S. Han, Information-Spectrum Methods in Information

Theory �Springer, Berlin, 2002�.
�6� F. Hiai and D. Petz, Commun. Math. Phys. 143, 99 �1991�.
�7� T. Ogawa and H. Nagaoka, IEEE Trans. Inf. Theory 46, 2428

�2000�.
�8� W. Hoeffding, in Proceedings of the Fifth Berkeley Symposium

on Mathematical Statistics and Probability �University of Cali-
fornia Press, Berkeley, 1965�, pp. 203–219.

�9� H. Nagaoka �private communication�.
�10� M. Hayashi, Quantum Information: An Introduction �Springer,

Berlin, 2006�.
�11� T. Ogawa and M. Hayashi, IEEE Trans. Inf. Theory 50, 1368

�2004�.
�12� H. Nagaoka, e-print arXiv:quant-ph/0611289.
�13� A. S. Holevo, IEEE Trans. Inf. Theory 44, 269 �1998�.
�14� B. Schumacher and M. D. Westmoreland, Phys. Rev. A 56,

131 �1997�.
�15� A. S. Holevo, Probl. Peredachi Inf. 9, 3 �1973�. �Probl. Inf.

Transm. 9, 177 �1975��.
�16� A. S. Holevo, Probl. Peredachi Inf. 15, 3 �1979�. �Probl. Inf.

Transm. 15, 247 �1979��.
�17� M. V. Burnashev and A. S. Holevo, Probl. Inf. Transm. 34, 97

�1998�.
�18� T. Ogawa and H. Nagaoka, IEEE Trans. Inf. Theory 53, 2261

�2007�.
�19� S. Verdú and T. S. Han, IEEE Trans. Inf. Theory 40, 1147

�1994�.
�20� Han �5� treated the exponential error rate of the channel coding

in the original Japanese version. However, he did not treat this
topic in the English translation.

MASAHITO HAYASHI PHYSICAL REVIEW A 76, 062301 �2007�

062301-4


