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Casimir-Polder interaction between an accelerated two-level system and an infinite plate
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We investigate the Casimir-Polder interaction energy between a uniformly accelerated two-level system and
an infinite plate with Dirichlet boundary conditions. Our model is a two-level atom interacting with a massless
scalar field, with a uniform acceleration in a direction parallel to the plate. We consider the contributions of
vacuum fluctuations and of the radiation reaction field to the atom-wall Casimir-Polder interaction, and we
discuss their dependence on the acceleration of the atom. We show that, as a consequence of the noninertial
motion of the two-level atom, a thermal term is present in the vacuum fluctuation contribution to the Casimir-
Polder interaction. Finally we discuss the relevance of this result for the Unruh effect.
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I. INTRODUCTION

A striking feature of the quantum description of the elec-
tromagnetic field is the existence of zero-point fluctuations.
These fluctuations are at the origin of many observable phe-
nomena, such as the Casimir effect [1], the attractive force
between two conducting plates at rest in the vacuum, and the
Casimir-Polder force between neutral polarizable objects [2].
A crucial feature of these forces is that retardation effects
associated with the finite velocity of light modify the depen-
dence of the interaction energy on the distance between the
objects. These effects were first investigated theoretically by
Casimir and Polder [2], and later many different physical
models were proposed, ascribing the origin of the Casimir
and Casimir-Polder forces to a change of the energy of
vacuum fluctuations, or to the radiation reaction field [3], or
both [4] (see also [5] for a review). These investigations are
concerned with Casimir-Polder forces between objects (such
as atoms or mirrors) at a fixed distance.

A very interesting aspect is to investigate what happens
when the motion of the objects is taken into account. In this
paper, we investigate the effect of the noninertial motion of
an atom (modeled as a two-level system) on the Casimir-
Polder interaction between an atom and a plate with Dirichlet
boundary conditions. The interest in this issue is motivated
by the increasing attention to the physical properties of the
quantum vacuum, and, in particular, to the possibility of pho-
ton creation from the vacuum. These studies are related to
the Unruh effect [6,7], according to which a uniformly ac-
celerated observer perceives the vacuum as a thermal bath at
temperature T=%a/2wkge, a being the observer’s accelera-
tion. Actually, the question of the appearance of the vacuum
in an accelerated frame is a widely controversial problem
[8,9]. A closely related phenomenon is the dynamical Ca-
simir effect, which is concerned with the emission of elec-
tromagnetic radiation from a single accelerated mirror in the
vacuum. Both these phenomena demonstrate the highly non-
trivial nature of the quantum vacuum, although the relation
between these effects is not yet completely understood. The
radiative properties of accelerated atoms in vacuum have
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been extensively investigated from a theoretical point of
view until very recently [10-17]. Unfortunately, both the Un-
ruh effect and the dynamical Casimir effect are extremely
weak effects and their detection is therefore very difficult.
For example, in order to obtain Unruh radiation correspond-
ing to a temperature of 1 K, an acceleration of the order of
10?> cm/s? would be necessary. Experimental schemes have
been recently proposed for detecting phenomena related to
the Unruh effect, aiming at enhancing the Unruh radiation
under specific circumstances [18].

In this paper, we adopt a different point of view. We in-
vestigate whether thermal effects due to the acceleration of
the two-level atom may modify the Casimir-Polder interac-
tion between the atom and an infinite plate. This is indeed
expected because, as is well known, Casimir-Polder interac-
tions are directly related to vacuum field fluctuations [19].
On the other hand, the Unruh effect shows that the acceler-
ated atom perceives vacuum fluctuations as a thermal bath
with a temperature proportional to its acceleration. The inter-
est in this subject is also related to the fact that the static
Casimir-Polder interaction between an atom at rest and a
wall has been recently measured with good precision
[20-23]. This suggests the possibility of detecting the Unruh
effect through a measurement of the Casimir-Polder interac-
tion between an accelerated atom and a reflecting plate. Also,
Casimir-Polder forces in dynamical situations have recently
attracted much interest in the literature [24-26]. Recently it
has also been suggested that the interatomic Casimir-Polder
force may be used as a probe to investigate nonlocal proper-
ties of the quantum vacuum [27,28] as well as quantum en-
tanglement of vacuum fluctuations [29].

We stress that, although the physics of a moving detector
in a cavity has been extensively investigated, the Casimir-
Polder interaction between a uniformly accelerated system
and an infinite plate has not been studied, to the best of our
knowledge.

We consider a neutral two-level atom uniformly acceler-
ated in a direction parallel to an infinite mirror and calculate
the atom-wall Casimir-Polder interaction between the accel-
erated atom and the mirror. In order to simplify the math-
ematics involved, we adopt a model consisting of a two-level
atom interacting with a massless scalar field, rather than with
the electromagnetic field. We first calculate the radiative
level shift of the accelerated atom in the presence of the
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mirror. As is well known, the presence of the reflecting plate
changes the vacuum field fluctuations. The modification of
the Lamb shift of the atom contains terms depending on the
atom-mirror distance, yielding the atom-wall Casimir-Polder
potential. We identify the contributions of vacuum fluctua-
tions and of radiation reaction to the Casimir-Polder interac-
tion and discuss their dependence on the acceleration of the
atom in the limits of small and large accelerations. The rela-
tion to the Unruh effect is then considered, as well as the
observability of the results obtained.

II. VACUUM FLUCTUATIONS AND RADIATION
REACTION CONTRIBUTIONS TO THE RADIATIVE
ENERGY SHIFT

Let us now consider a two-level atom interacting with a
real massless scalar field, in the presence of a perfectly re-
flecting plate located at z=0. The atom is modeled as a point-
like system with two internal energy levels i%ﬁwo relative to
the eigenstates |g) and |e). We assume that wy includes any
direct modification of the transition frequency due to the
acceleration of the atom. The Hamiltonian that describes the
atom-field interacting system in the instantaneous inertial
frame of the atom is [11,12]

H(7) = Hy(7) + Hp(7) + Hyp(7), (1)

where 7 is the proper time and

Hy(7) = oS (7). @

He() = hoala ®)
k T

Hapl) = oA (7). @

ay and alt are the bosonic operators of the scalar field, and
is the atom-field coupling constant. Moreover, we have in-
troduced the pseudospin operators S.=(1/2)(|e)(e|-|g)}g|)
and S,=(i/2)(S_-S,), where S_=|g)(e| and S, =|e){g| are the
atomic lowering and raising operators. Finally, ¢(x,7) is the
scalar field operator,

fi
x,0) =2, k%) [y (1) + ag ()], (5)

Kk 2 V(Dk.

where f(k,x) are the appropriate mode functions taking into
account Dirichlet boundary conditions for the field operator.
The mode functions satisfy the normalization condition

é f Px fk 0K .X) = S (6)

The Hamiltonian Hg(7) in (3) governs the evolution of the
field in terms of the proper time 7 in the instantaneous iner-
tial frame of the atom. It reduces to the usual free-field
Hamiltonian in the simple case of inertial motion, where
dt/dr=1.

We want to evaluate the vacuum fluctuation and radiation
reaction contributions to the atom-wall Casimir-Polder inter-
action energy. This quantity is obtained from the energy level
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shift of the two-level atom, due to the coupling with the field
in the presence of the mirror. Our approach follows that al-
ready used in [30,31] for stationary atoms. In order to obtain
the equivalent of the Lamb shift of the two-level atom, we
consider the time evolution of a generic atomic observable
and take the trace over the field degrees of freedom in the
equations of motion. The resulting equations can then be
partitioned into a vacuum fluctuation part and a radiation
reaction part, requiring each part to be an Hermitian operator.
This leads to an effective Hamiltonian that governs the time
evolution of the atomic observable, consisting of a sum of
two terms

)
getf =

i =" | dr A DISK) 8K ()

70

.2 rr
Hﬁ{f=—l2%f d7' X" (e(D,x(7){S5(7),8h(D}, (8)

where [ , ] and {, } respectively denote the commutator and
anticommutator. The statistical functions C(x(7),x(7')) and
XF(x(7),x(7")) (the correlation function and linear suscepti-
bility, respectively) of the field are expressed as

Cr(x(n),x(1)) = %<0|{¢f(X(T)), G (TNHO),  (9)

X (x(7),x(7")) = %(0l[¢’(x(r)),df(x(r’))]IO)- (10)

The expectation values of Hfﬂ;f and H* on a generic atomic
state |a) give the vacuum fluctuation and radiation reaction
contributions to the radiative shift of the atomic level a,

.2 T
(5Ea)vf:_%J dT’CF(x(T)’x(T,))()(A)a(T’T,)s (11)

i 2 (7
(5Ea)rr=—%f dr' X" (x(7),x(7)(C)o(7,7), (12)

where (C*),(7,7') and (x*),(7,7') are, respectively, the sym-
metric correlation function and the linear susceptibility of the
atom in the state |a),

(€)= 3al{$4). 57 )
= S KalSa(O) b (e 4 o)
2 b
(13
(0)ul7:7) = 5 147,54 e

1 . ’ . ’
= 2 S KalSy(0)|p (et — o=,
b

(14)
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Thus the calculation of the radiative level shifts reduces to
the calculation of the statistical functions for the atom and
the field. In the next sections we shall use this formalism for
evaluating the atom-wall Casimir-Polder interaction between
the atom and the plate.

III. RADIATIVE ENERGY SHIFT FOR AN ATOM
AT REST NEAR A REFLECTING PLATE

Let us first consider the atom at rest, located at distance z,
from an infinite perfectly reflecting plate. Its world line x(7)
is

(=7 x(1)=y(1)=0, z=(1)=2. (15)

We now evaluate the quantities (11) and (12). The statis-
tical functions CT(x(7),x(7')) and X (x(7),x(7')), in the
presence of the reflecting plane boundary, can be calculated
from the Wightman function G(x(7),x(7")) satisfying the Di-
richlet boundary conditions on the mirror, ¢(x)|,.=0,

G(x(7),x(1)) = (0] p(x(7) p(x(7))|0). (16)

This function describes the field correlations at two different
points x(7) and x(7’). In the presence of a boundary, the
Wightman function is the sum of the empty-space contribu-
tion [ Gy (x(7),x(7'))] and a part that depends on the pres-
ence of the boundary [Gy,,,.(x(7),x(7'))] [34]

G(x(7),X(7)) = G oy (x(7), (7)) + Gppuina(x(7),x(7"))

k1 ( 1
"2 277 \[ARX) PP - (cAr - in)?

1
(cAt—i7]2>’ (7)

AP -

where we have introduced the variables A(x)=|x(7)—x(7")|
[the difference between atomic coordinates x(7) taken at two
different proper times] and A(x)= )|, where
ox(7') is the point corresponding to the reflection of point
x(7') on the mirror, and

1 0 0
o={0 1 0 | (18)
0 0 -1

Finally, Ar=1(7)—t(7"). Inserting Egs. (15) in (17) we obtain
the symmetric correlation function and the linear susceptibil-
ity on the vacuum state for the atom at rest,

W _h 1
Crx().x(7)) = 8772c<[c(7— 7)—igl?

1 1
Tle(r= ) +inP  [e(r—17) - inP - 422
1
- [e(r- 7")+i77]2—423) (19)

and
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N I
X (). x(7)) =~ 87T26<[C(T— ) —igl?
B 1 i 1
[e(r=7)+inl [c(r—7)-inl -4z
1
" [e(r—- 7")+i77]2—4z(2)). 20

It is convenient to express (19) and (20) as integrals over
frequencies. We get

o (F e
CF()C(T),X(T,)) = mjo dw w(e—zw(‘r—r ) + ezw(f—r ))

h “cdo, . .
+——1Im etw(r—f —2z¢/c)
813 f 220 (

_ eiw(r—7/+2zo/c)) (21)

and

ﬁ * . ! . !
F "NV = ——— —io(7-7") io(r—7")
x (x(7),x(7')) = f dw w(e -e )
8wt ),
_ h ReJ ¢ dw( io(r—7' —2z¢/c)
_ eiw(7—7'+2z0/c)). (22)

Substituting expressions (13), (14), (21), and (22) in (11) and
(12), and taking the limit 7— and 7,— —°°, after some
algebra we obtain

c

2 o
(5Ea)vf= #% |<a|52(0)|b>|2L dw a)|:1 -

270w

2 1 1
><sin< ZO“’)}P( - ) (23)
C w + (O W= W,

and

c

(5Ea)rr 87T2 ’%E |<Q|S2(O)|b>|2f dw w|:1 -

27w

2 1 1
L) NI R
C W+ W, W= W,

These expressions are, respectively, the contributions of
vacuum fluctuations and of radiation reaction to the energy
level shift of the atom at rest near the reflecting plate. The
presence of the mirror is formally expressed by the
z-dependent terms, which give an oscillating behavior of the
atomic level shift with the atom-plate distance. As expected,
when the distance z; of the atom from the mirror approaches
infinity, the function f(zg)=1-(c/2zqw)sin(2zqw/c) goes to
1, and we recover the equivalent of the Lamb shift for an
atom in the unbounded space. On the contrary, in the limit
70— 0, f(zg)—0, and the two contributions to the atomic
level shift vanish. This is a consequence of the Dirichlet
boundary conditions on the Wightman function.
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The Casimir-Polder interaction energy between the atom
at rest and the wall is obtained by considering only the
z-dependent terms in the vacuum fluctuation and in the ra-
diation reaction contributions, Egs. (23) and (24), respec-
tively, to the total level shift. For a ground-state atom we
obtain

Ecp=EE +EGY (25)
where
2 e}
1 2 1 1
Eglj? = M—z— dw Sil‘l( Zow)P( - )
8?8z, 0 c w+owy, -
(26)
and
2 %
1 2 1 1
Em=t_ | i sin( ZO“’)P( + )
8m°c?820J c w0+, -
(27)

are, respectively, the vacuum fluctuation and the radiation
reaction contributions to the atom-wall Casimir-Polder inter-
action. The integrations in (26) and (27) are easily per-
formed, yielding

2
E¥) = #8%0[2]‘(2(»0%%) — meoswyzy/c)]  (28)
and
2
E(Cr,rg) = 8:2628%077 cos(2wgzg/c), (29)
where
Jo dw%aﬁk) = f(2wpzo/c) (30)
and
fw dww =— f(Rwyzo/c) + 7 cos(2wyzy/c).
0 W= W
(31)
In the near-zone limit, wyzy/c<<1, we obtain
E¥)=0 and E) o 1/z, (32)

where we have approximated f(2wgzy/c)~ /2. Therefore
the Casimir-Polder interaction near the mirror is due exclu-
sively to the self-reaction contribution and behaves as 1/zj,.
On the other hand, in the far-zone limit, wyzo/c>> 1, the ra-
diation reaction contribution vanishes and we obtain

o _# 1
Ecp~ES = . 33
cr P78 8wyz; (33)
This quantity can be put in the more familiar form
hic 1
Ecp=-——a(0)=, 34
o= 30 (34

where we have defined the “static polarizability”
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w2

a(0)=— Wczw_o

(35)

Therefore, in the far zone, only vacuum fluctuations are
responsible for the atom-wall Casimir-Polder potential, as
remarked in [4]. We stress that, in contrast with the case of
the electromagnetic field where the atom-wall Casimir-
Polder force is attractive for ground-state atoms and behaves
as z,", in the case of the scalar field the Casimir-Polder force
is repulsive and behaves as zaz. This repulsive potential
arises as a consequence of the spatial distribution of the
vacuum field modes corresponding to Dirichlet boundary
conditions chosen for the scalar field. In the case of the elec-
tromagnetic field, however, repulsive Casimir-Polder forces
are obtained for atoms in excited states and for the three-
body component of the Casimir-Polder force between three
atoms, depending on their geometrical configuration [32,33].

IV. RADIATIVE ENERGY SHIFT OF A UNIFORMLY
ACCELERATED ATOM NEAR A REFLECTING PLATE

Let us now consider the case of a uniformly accelerated
two-level atom, with the acceleration in a direction parallel
to the reflecting plate. Let us suppose that the atom is at a
distance z;, from the mirror and that it accelerates along the x
direction. In the laboratory frame, its trajectory is described,
as a function of the proper time, by the equations

2
t(7) = < sinhﬂ, x(7) = < coshﬂ,
a c a c

y(1)=0 z(7) =2z, (36)

where a is the proper acceleration. Using the same procedure
as in the previous section, we first calculate the Wightman
function for the accelerated atom. Substituting (36) into (17),
we obtain

h p a*
1672¢ sinh*[a(7- 7')/2¢]
h a?
+ 2 sP— i — 22, 4"
167 ¢’ sinh[a(7- 7')/2c] - z5a°/c
(37)

G(x(7),x(7")) =

From the Wightman function we can obtain the symmetrical
correlation function and the linear susceptibility,

A = fi ( a2
BRIV =" 3028 sinhX{[a(r— 7)72¢] - in}

(12

+
sinh’[a(7— 7')/2c +i7]

a2

- sinh’[a(7—7")/2c —in] - zgaz/c4

Slnh a\7T 7 2 77 Zpa )
i [ ( /)/ c l ] 0 /C

and
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ha 1
X (D, x(7) =~ 8arc* sinh[a(7— 7')/2¢]
1 2
[5(7' 7)) - 2N —T,—:C
X sinh~ <Z03>) - L5(7'— 7
c 2N
+ x sinh_1<zo—3>)], (39)
a c

where N=1/1+(z¢a/c?)?. As in the previous section, we can
write these statistical functions of the field as integrals over
frequencies. We first observe that

1 2¢% Toc\ oo
—5 - =—— | dowcothl — |(e'“T+e7'“7)
sinh*(a7/2c¢) a J, a

(40)
and
1
sinh?(a7/2¢) — (zalc*)?

263”7 TWC
=—— dw coth{ —
a'NzJ, a
.| 20c . faz »
Xsin| — sinh (e“T+e7 7). (41)
a 2

Using these identities in (38), we obtain the symmetrical
correlation function of the field in terms of frequency inte-
grals,

(a7 = 5 %( f dwwcoth(%)(ei‘”“”,)
¢ f { <W)
- dw) coth| —
270N J a
X sin{ﬁ sinh™ l<a 0)}( i)
a C
+ e-iw<f-f’>)}) . (42)

Similarly, for the antisymmetric correlation function (40),

+ e—iw(f—r’))

XF(X(T) x(7')) =~ 8:2 {fw dw w(ei‘“(T‘T/) + e‘iw(T—T'))

c (7. |20 . [az
- do sin| —— sinh™'| —
270N J a c

X(eiw(r—r’)+e—iw(7—r’))} ) (43)

Substituting Eqgs. (13), (14), (42), and (43) into (1) and (12)
and taking the limits 75— —°, 7— 0, after some algebra we
obtain
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(OE,)yr= P 32 [{a|S,(0)|b)|*
Xfx dw w[l p—— Sin( 2cw sinh™ (zga/c?) )]
0 2zgwN a
1 1 2
Pt | (E Sy BT
0+ w,; ©-0y, e~ — 1
and
w B
2
(8E,)pr =~ m% [{a|S5(0)[B)]* fo dw

c ) <2cw sinh'l(zoa/cz))
w|ll- sin
2Zo(l)N a

! ) (45)

(L
w — Wyp w + Wyp

These expressions give the contributions of vacuum fluc-
tuations and of the radiation reaction to the energy level shift
of the accelerated atom near the mirror. In contrast to the
case of unbounded space (where the radiation reaction term
is not affected by the acceleration of the atom), in the present
case both contributions explicitly depend on the acceleration
of the atom. In the limit zy—o, the function f(z9)=1
—(c/2zywN)sin[2cw sinh™'(zga/c?)/a] tends to 1 and the re-
sults obtained for an accelerated atom in the unbounded
space are recovered [12]. Moreover, a comparison of (44)
with (23) shows that the effect of the uniform acceleration is
a thermal-like correction to the Unruh temperature T
=tha/2mckg, due to the presence of the coth(wwc/a) func-
tion in the symmetric correlation function.

As in Sec. III, we now calculate the atom-wall Casimir-
Polder interaction by considering only terms containing the
distance z between the atom and the wall. For a ground-state
atom we get

ECP:E(CL*);) +E(C':;)’ (46)
where
2 @ sl 2
1 2cw sinh /
E(é’}é):— ® 2—f dw sin( o (zare )>
8mc*8z,N J, a
1 1 2
X P - 1+ —— (47)
w-w) o+, I |
and
2 ® | 2
1 2cw sinh /
E(C}:;;) = ﬂ—z— dow sin( cw (Zoa ¢ ))
87 c?8z4N J a
1 1
X P( + ) (48)
w + (1)0 w — (1)0

Using the relation
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f( 2w ! ( zo_;z)) _ fw Jo sin[2cw sinh™ (zga/c?)/a) ,
a c 0

(,0+(,!)0

(49)

the expressions above can be written in the following form:
2
% 1 2wpc . [ zpa
EW) =— —— X \=-2 ( sinh 1(—))
cr 87c? 8z)N { f a c?
2
+ wcos[ 2ot sinh_]<%)}
a c

~ L[cos(zcwo sinh_l(zoa/cz)> ~ 1}} (50)
wyC a

2
w 1 2wpc . [ zpa
EU = cos[ sinh 1(—)} 51

P g2c? 8zoN a c? 5D

As expected, the Casimir-Polder interaction depends ex-
plicitly on the acceleration of the atom. It is now interesting
to investigate the behavior of the Casimir-Polder interaction
as a function of a and zp in the limits
2wyc/a sinh(zga/c?) <1 and 2wyc/a sinh™!(zga/c?) > 1.
These two limits single out two different regions of the
space, zo< c*/a sinh(a/2wyc) and zy>>c?/a sinh(a/2wc),
respectively, in analogy with the near and far-zone limits of
the inertial atom-wall Casimir-Polder interaction. In other
words, in the case of accelerated atoms, we can define a new
near zone and a new far zone limit for the Casimir-Polder
interaction, which depend also on the acceleration of the
atom. We now investigate the behavior of the Casimir-Polder
interaction in these two regions and in the limits a < wyc and
a>wyc. This is equivalent to considering the two cases
kpT<hw, and kgT>ho.

In the limit of acceleration small compared with wc,
these two regions coincide with the usual near zone and far
zone of the stationary Casimir-Polder interaction for inertial
atoms. From Egs. (50) and (51), we obtain

and

o= g [ 22
(52)
and
(rr) po 1 2wozg
ECP=87T2628_Z07TCOS< ; ), (53)
where we have approximated 2wc/a sinh~!(zga/c?)

~2wyzy/ c. Therefore, as expected, in the limit of small ac-
celeration we recover the wusual stationary atom-wall
Casimir-Polder potential,

2

Mmoo
-, near zone, 54
87726‘2 SZO ‘ ( )

Ecp= Mz 1
—, f: . 55
37 Sl ar zone (55)
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We now consider the case a = wyc. For typical values of
the atomic transition frequency (wy~ 10" s7!), this corre-
sponds to accelerations larger than a~ 10* cm/s2. In this
limit, 2wyc/a sinh™'(zga/c*)< 1 and from Egs. (50) and
(51), we obtain

w 1
877?820\ 1 + (zga/c2)?

a . -1 Z()a
X\ 7+ ——) cos| 2wpc/a sinh™ | =5 | | =1(],
woC C

(56)

Ecp=E +ECf ~

which depends explicitly on the acceleration a. For distances
2o such that zga/c*< 1, we have

2

1
E. =) gy o KA
cp=Ecp P 82 8z,
a Zpa
><(77+ —{cos[Zwoc/a sinh'1<%>] - 1})
wyC ¢
(57)
On the contrary, in the limit zya/c>>> 1, we obtain
oy 2
g 8z5a
a a
X(7T+ —{cos{2woc/a sinh_1<z%>} - l}),
wC c
(58)

which gives the Casimir-Polder interaction between the ac-
celerated atom and the wall for high accelerations. The most
striking effect of the acceleration of the atom is the presence
of an oscillatory term in the interaction energy, which modu-
lates the interaction as a function of z, and a. This oscillatory
behavior is reminiscent of the stationary Casimir-Polder in-
teraction between an excited atom and a mirror, where a
spatially oscillating term is present. This can be explained by
observing that the limit @ = wyc corresponds to a temperature
T=hwy/ kg. In this limit the excitation probability of the
atom is nonvanishing, and this is reflected in the oscillatory
behavior of the Casimir-Polder interaction. We emphasize
that in the far-zone limit the Casimir-Polder interaction is
essentially due to the vacuum fluctuation contribution, where
a “thermal” term is present, due to the acceleration of the
atom. Thus our results show that thermal effects of accelera-
tion may induce observable effects in the far-zone Casimir-
Polder interaction between an accelerated atom and a wall, at
least in the case of a scalar field considered here.

It is worth comparing our results with the Casimir-Polder
interaction between an atom at rest and a plate immersed in a
thermal bath. As is well known [35], the atom-wall Casimir-
Polder interaction at temperature 7 is proportional to the
temperature of the bath. A comparison of the results in [35]
with Egs. (56)—(58) immediately shows that the Casimir-
Polder interaction between the accelerated atom and the plate
is qualitatively different from the static counterpart at the
Unruh temperature 7, because of the nontrivial dependence
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on the acceleration a in (57) and (58). This consideration
reveals that, in general, uniformly accelerated atoms behave
differently from static ones in a thermal bath at the Unruh
temperature, contrary to our expectations. In a different con-
text, this aspect has been discussed in [16,17].

We conclude by observing that we have considered the
interaction of a two-level atom with a scalar field. Recently,
the radiative level shifts of an accelerated atom in the frame-
work of quantum electrodynamics have been considered. It
has been shown that the effects of electromagnetic vacuum
fluctuations on the atomic level shifts are not totally equiva-
lent to that of a thermal field, because an extra term is
present [13]. This consideration suggests that, for Casimir-
Polder interactions between a uniformly accelerated atom
and a wall also, nonthermal terms may appear when the elec-
tromagnetic field is considered instead of the scalar field. We
hope to investigate this point in the future.

V. CONCLUSION

In this paper, we have investigated the Casimir-Polder
interaction between a uniformly accelerated two-level sys-
tem interacting with a scalar field and a plate with Dirichlet
boundary conditions. We have considered the contributions
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of vacuum fluctuations and of the radiation reaction to the
Casimir-Polder interaction energy and discussed their depen-
dence on the acceleration of the two-level atom, in the limits
of the near and far zones. We have shown that the atom-wall
Casimir-Polder interaction in the limit of small accelerations
coincides with the stationary atom-wall Casimir-Polder po-
tential. On the contrary, for high accelerations of the two-
level atom, the Casimir-Polder interaction depends on the
acceleration of the two-level atom and exhibits an oscillatory
behavior in space. This behavior is a consequence of the
presence of a thermal term in the vacuum fluctuation contri-
bution to the Casimir-Polder interaction. Therefore it appears
that thermal effects due to the acceleration of the atom may
become evident in the atom-wall Casimir-Polder interaction
and that, in principle, they should be observable.
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