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We study the distribution of entanglement between modes of a free scalar field from the perspective of
observers in uniform acceleration. We consider a two-mode squeezed state of the field from an inertial per-
spective, and analytically study the degradation of entanglement due to the Unruh effect, in the cases of either
one or both observers undergoing uniform acceleration. We find that, for two observers undergoing finite
acceleration, the entanglement vanishes between the lowest-frequency modes. The loss of entanglement is
precisely explained as a redistribution of the inertial entanglement into multipartite quantum correlations
among accessible and inaccessible modes from a noninertial perspective. We show that classical correlations
are also lost from the perspective of two accelerated observers but conserved if one of the observers remains
inertial.
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I. INTRODUCTION

In the study of most quantum-information tasks such as
teleportation and quantum cryptography, nonrelativistic ob-
servers share entangled resources to perform their experi-
ments �1�. Apart from a few studies �2–8�, most works on
quantum information assume a world without gravity where
spacetime is flat. But the world is relativistic and any serious
theoretical study must take this into account. It is therefore of
fundamental interest to revise quantum-information proto-
cols for relativistic settings �9�. It has been shown that rela-
tivistic effects on quantum resources not only are quantita-
tively important but also induce novel qualitative features
�3–5,7�. For example, it has been shown that the dynamics of
spacetime can generate entanglement �5�. This, in principle,
would have a consequence in any entanglement-based proto-
col performed in curved spacetime. Relativistic effects have
also been found to be relevant in a flat spacetime, where the
entanglement described by observers in uniform acceleration
is observer dependent since it is degraded by the Unruh ef-
fect �3,4,7�. In the infinite-acceleration limit, the entangle-
ment vanishes for bosons �3,7� and reaches a nonvanishing
minimum for fermions �4�. This degradation of entanglement
results in the loss of fidelity of teleportation protocols which
involve observers in uniform acceleration �6�.

Understanding entanglement in a relativistic framework is
not only of interest to quantum information. Entanglement
plays an important role in black hole entropy �10� and in the
apparent loss of information in black holes �11�, one of the
most challenging problems in theoretical physics at the mo-

ment �12�. Understanding the entanglement between modes
of a field close to the horizon of a black hole might help to
understand some of the key questions in black hole thermo-
dynamics and their relation to information.

In this paper we interpret the loss of bipartite entangle-
ment between two modes of a scalar field from a noninertial
perspective, as an effect of entanglement redistribution. Pre-
cisely, we consider the entanglement between two field
modes, each described from the perspective of a different
observer. Suppose that the two modes are entangled to a
given degree from the perspective of two inertial observers.
The state will appear less entangled if either one or both the
observers move with uniform acceleration �3�. This is be-
cause each mode described by an inertial observer corre-
sponds to two entangled modes from the perspective of a
noninertial observer �13�. Consequently a two-mode en-
tangled state described from the inertial perspective corre-
sponds to a three-mode state when described from the per-
spective of one inertial observer and one in uniform
acceleration, and to a four-mode state if both observers are
accelerated. Physical observers moving with uniform accel-
eration have access only to one of the noninertial modes.
Thus, when describing the state �which involves tracing over
the unaccessible modes� the observers find that some of the
correlations are lost.

This phenomenon, stemming from the Unruh effect �13�,
was first studied from the quantum-information perspective
for bosonic scalar fields �3� �considering one inertial ob-
server and the other one undergoing uniform acceleration�
and later for fermionic Dirac fields �4�. Although entangle-
ment of particle number states is in both cases degraded as a
function of the acceleration, there are important differences
in the results. For example, in the infinite-acceleration limit,
the entanglement reaches a nonvanishing minimum value for*Formerly known as Ivette Fuentes-Guridi.
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fermions, while it completely disappears in the bosonic case.
For photon-helicity-entangled states, instead, the correlations
are not degraded at all �8�. The loss of entanglement was
explained in the fermionic case in the light of the
entanglement-sharing framework as an effect of the redistri-
bution of entanglement among all, accessible and inacces-
sible, modes. Although the loss of entanglement was first
studied for scalar fields �considering a state from an inertial
perspective which is maximally entangled in a two-qubit
space, �����00�+ �11��, entanglement sharing was not ana-
lyzed in that instance, due to the difficulty of computing
entanglement in such a hybrid qubit–continuous-variable
system. Fortunately, the theory of continuous-variable en-
tanglement has been developed in recent times, allowing for
the exact, quantitative study of bipartite entanglement and its
distribution in the special class of Gaussian states �14�,
which includes, among others, squeezed, coherent, and ther-
mal states of harmonic oscillators.

Here, we consider a free scalar field which is, from an
inertial perspective, in a two-mode squeezed state. This
choice of the state is motivated by different observations.
First, the two-mode squeezed state is the paradigmatic en-
tangled state of a continuous variable system, approximating
to an arbitrarily good extent the Einstein-Podolsky-Rosen
�EPR� pair �15�. Second, the state can be produced in the
laboratory and exploited for any current realization of bipar-
tite quantum information with continuous variables �16�.
Third, it belongs to the class of Gaussian states, which admit
an exact description of their classical and quantum correla-
tions. Since the Unruh transformations �13� are Gaussian
themselves �i.e., they preserve the Gaussian character of the
state�, it is possible to characterize analytically the redistri-
bution of correlations due to relativistic effects. Finally, the
two-mode squeezed state has a special role in quantum field
theory. It is possible to define particle states �necessary in
any entanglement discussion� when the spacetime has at
least two asymptotically flat regions �5,17�. In this case, par-
ticle states commonly correspond to multimode squeezed
states in which several field modes are in a pairwise
squeezed entangled state. The state we consider in our en-
tanglement discussion is the simplest multimode squeezed
state in which only two modes are entangled.

A first investigation of the degradation of entanglement in
a two-mode squeezed state due to the Unruh effect has been
recently reported �7�. The entanglement degradation �quanti-
fied by the logarithmic negativity �18�� was analyzed when
one of the observers is accelerated and found to be more
drastic when the entanglement described from the inertial
perspective is stronger, resulting in a vanishing entangle-
ment, from a noninertial perspective, in the infinite-
acceleration limit.

We perform an extensive study of both quantum �en-
tanglement� and classical correlations of the two-mode
squeezed state from a noninertial perspective. Our work aims
at a conclusive understanding and characterization of the
relativistic effects on continuous-variable correlations de-
scribed by observers in uniform acceleration. Therefore, we
evaluate not only the bipartite entanglement as degraded by
the Unruh thermalization, but, remarkably, the multipartite
entanglement which arises among all Rindler modes. Our

analysis is possible thanks to recent analytical results on en-
tanglement sharing and the quantification of multipartite en-
tanglement in Gaussian states. This analysis relies on the
contangle, which is a computable measure of entanglement
�19�. The contangle for mixed states is not fully equivalent to
the negativity. Therefore, in the case of a single accelerated
observer, our results will evidence significant differences
from the results presented in Ref. �7�. The main result we
find in this case is that, in the infinite-acceleration limit, all
the bipartite entanglement described by inertial observers is
exactly redistributed into genuine tripartite correlations be-
tween the modes described by one inertial and two noniner-
tial observers �one real and one fictitious, or virtual�, as a
consequence of the monogamy constraints on entanglement
distribution �19–21�. We also analyze total correlations, find-
ing that the classical correlations are invariant under accel-
eration when one observer is accelerated.

Furthermore, we present an original analysis of the Unruh
effect on continuous-variable entanglement when both ob-
servers undergo uniform acceleration. This analysis yields a
series of significant results. First, the bipartite entanglement
described by noninertial observers may vanish completely at
finite acceleration even when the state contains an infinite
amount of entanglement from the point of view of inertial
observers. Second, the acceleration induces a redistribution
of entanglement, such that the modes described from a non-
inertial perspective are correlated via a genuine four-partite
entanglement. This entanglement increases unboundedly
with the acceleration, easily surpassing the bipartite en-
tanglement described from an inertial perspective. Third,
classical correlations are also degraded as a function of the
acceleration. The degradation is of at most one unit with
respect to the case of a single noninertial observer. Moreover,
we study the dependence of the bipartite entanglement on the
frequency of the modes described by the noninertial observ-
ers, finding that with increasing acceleration the range of
entangled frequencies gets narrower and narrower, becoming
empty in the limit of infinite acceleration.

Our results on one hand are an interesting application of
continuous-variable quantum-information techniques �com-
monly confined to quantum optics or light-matter interfaces�
to a relativistic setting, and on the other hand provide a
deeper understanding of the characterization of the inherent
relativistic effects on the distribution of information. This
may lead to a better understanding of the behavior of infor-
mation in the presence of a black hole �22�.

The paper is organized as follows. In Sec. II A we intro-
duce the basic tools of quantum information with Gaussian
states of continuous-variable systems and we discuss the
mechanism of entanglement sharing. In Sec. II B we describe
the Unruh effect and its consequences on the entanglement
between two field modes. In Sec. III, we study distributed
entanglement between modes of a free scalar field when one
observer is accelerated. The case when both observers are
accelerated, resulting in a four-partite entangled state, is
studied in Sec. IV. Both Secs. III and IV include an analysis
of the dependence of classical correlations under acceleration
of the observers. Finally, in Sec. V we draw our concluding
remarks and compare our results to those obtained in the case
of Dirac fields �4�.
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II. PRELIMINARY TOOLBOX

A. Gaussian states and Gaussian entanglement measures

Entanglement in continuous-variable �CV� systems is en-
coded in the form of Einsteiy-Podolsky-Rosen correlations
�15�. Let us consider the quadratures of a two-mode radiation
field, where mode k= i , j is described by the ladder operators
âk , âk

† satisfying the bosonic commutation relation �âk , âk
†�

=1. An arbitrarily increasing degree of entanglement can be
encoded in a two-mode squeezed state ��sq�i,j =Ui,j�r���0�i

� �0� j� with increasing squeezing factor r�R, where the
�phase-free� two-mode squeezing operator is given by

Ui,j�r� = exp� r

2
�âi

†âj
† − âiâj�	 , �1�

and �0�k denotes the vacuum state in the Fock space of mode
k. In the limit of infinite squeezing �r→��, the state ap-
proaches the ideal EPR state �15�, which is, simultaneously,
an eigenstate of total momentum and relative position of the
two subsystems. Therefore, the state contains infinite en-
tanglement. The EPR state is unnormalizable and unphysical.
The two-mode squeezed state is an arbitrarily good approxi-
mation of it with increasing squeezing, and therefore repre-
sents a key resource for practical implementations of CV
quantum information protocols �16�. Mathematically,
squeezed states belong to the class of Gaussian states of CV
systems, i.e., states with Gaussian characteristic functions
and quasiprobability distributions, whose structural and in-
formational properties have been intensively studied in re-
cent times �14�.

1. Covariance matrix formalism

In view of the subsequent analysis, it is sufficient to recall
that Gaussian states of N modes are completely described in
phase space �up to local unitaries� by the real, symmetric
covariance matrix �CM� �, whose entries are �ij = �1 /2�
�
�X̂i , X̂j��− 
X̂i�
X̂j�. Here X̂= �x̂1 , p̂1 , . . . , x̂N , p̂N� is the vec-
tor of the field quadrature operators, whose canonical com-

mutation relations can be expressed in matrix form, �X̂i , X̂j�
=2i�ij, with the symplectic form �= � i=1

n � and �=�ij−1
−�ij+1 , i , j=1,2. The CM � must satisfy the Robertson-
Schrödinger uncertainty relation �23�

� + i� 	 0, �2�

to describe a physical state. Throughout the paper, � will be
used indifferently to indicate the CM of a Gaussian state or
the state itself.

Unitary Gaussian operations U amount, in phase space, to
symplectic transformations S �which preserve the symplectic
form �=ST�S� acting “by congruence” on the CM �i.e., so
that ��S�ST�. For instance, the two-mode squeezing op-
erator Eq. �1� corresponds to the symplectic transformation

Si,j�r� =
cosh r 0 sinh r 0

0 cosh r 0 − sinh r

sinh r 0 cosh r 0

0 − sinh r 0 cosh r
� , �3�

where the matrix is understood to act on the pair of modes i
and j. A two-mode squeezed state with squeezing degree r
�24� will be thus described by a CM

�i,j
sq�r� = Si,j�r�I4Si,j

T �r�

=
cosh 2r 0 sinh 2r 0

0 cosh 2r 0 − sinh 2r

sinh 2r 0 cosh 2r 0

0 − sinh 2r 0 cosh 2r
� ,

�4�

where we have used that the CM of an N-mode vacuum is
the 2N�2N identity matrix I2N.

2. Qualifying and quantifying entanglement

Concerning the characterization of bipartite entanglement,
the positive partial transpose �PPT� criterion states that a
Gaussian CM � is separable �with respect to a 1�N bipar-
tition� if and only if the partially transposed CM �̃ satisfies
the uncertainty principle given by Eq. �2� �25,26�. The tilde
denotes the partial transposition, implemented by reversing
time in the subspace of only one subsystem of a bipartite
composite CV system �25�. An ensuing computable measure
of CV entanglement is the logarithmic negativity �18� EN
� log ��̃�1, where � · �1 denotes the trace norm. This measure
is an upper bound to the distillable entanglement of the state
�. The logarithmic negativity is used in Ref. �7� to quantify
the degradation of two-mode Gaussian entanglement due to
one accelerated observer.

We employ a different measure of bipartite entanglement,
the contangle �19�, which is an entanglement monotone un-
der Gaussian local operations and classical communication
�GLOCC�, that belongs to the family of “Gaussian entangle-
ment measures” �27�. The principal motivation for this
choice is that our main focus is to study the effects of the
Unruh thermalization mechanism on the distribution of en-
tanglement among field modes described from a noninertial
perspective. In this setting, the contangle is the best measure
to enable a mathematical treatment of distributed CV en-
tanglement as emerging from the fundamental monogamy
constraints �19–21�. The contangle 
 is defined for pure
states as the square of the logarithmic negativity and it is
extended to mixed states via the Gaussian convex roof
�27,28�, that is, as the minimum of the average pure-state
entanglement over all decompositions of the mixed state in
ensembles of pure Gaussian states. If �i�j is the CM of a
�generally mixed� bipartite Gaussian state where subsystem i
comprises one mode only, then the contangle 
 can be com-
puted as �19�
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��i�j� � 
��i�j
opt� = g�mi�j

2 �, g�x� = arcsinh2��x − 1� , �5�

where �i�j
opt corresponds to a pure Gaussian state, and mi�j

�m��i�j
opt�=�Det�i

opt=�Det� j
opt, with �i�j�

opt the reduced CM
of subsystem i �j�, obtained by tracing over the degrees of
freedom of subsystem j �i�. The CM �i�j

opt denotes the pure
bipartite Gaussian state which minimizes m��i�j

p � among all
pure-state CMs �i�j

p such that �i�j
p ��i�j. If �i�j is a pure state,

then �i�j
opt=�i�j, while for a mixed Gaussian state Eq. �5� is

mathematically equivalent to constructing the Gaussian con-
vex roof. For a separable state, m��i�j

opt�=1 and the entangle-
ment vanishes. The contangle 
 is completely equivalent to
the Gaussian entanglement of formation �28�, which quanti-
fies the cost of creating a given mixed, entangled Gaussian
state out of an ensemble of pure, entangled Gaussian states.
Notice also that in general the Gaussian entanglement mea-
sures are inequivalent to the negativities, in that they may
induce opposite ordering on the set of entangled, nonsym-
metric two-mode Gaussian states �27�: this will be explicitly
unfolded in the following analysis.

3. Entropy and mutual information

In a bipartite setting, another important correlation mea-
sure is the so-called mutual information quantifying the total
�classical and quantum� correlations between two parties.
The mutual information of a state �A�B of a bipartite system
is defined as

I��A�B� = SV��A� + SV��B� − SV��A�B� , �6�

where �A ��B� is the reduced state of subsystem A �B� and SV

denotes the von Neumann entropy, defined for a quantum
state � as SV���=−Tr � log �. If �A�B is a pure quantum state
�SV��A�B�=0�, the von Neumann entropy of its reduced states
SV��A�=SV��B� quantifies the entanglement between the two
parties �29�. Being I��A�B�=2SV��A�=2SV��B� in this case,
one says that the pure state also contains some classical cor-
relations, equal in content to the quantum part, SV��A�
=SV��B�. In mixed states, the distinction between classical
and quantum correlations cannot be considered an accom-
plished task yet �30�.

For an arbitrary bipartite �pure or mixed� Gaussian state,
the von Neumann entropy and hence the mutual information
can be easily computed in terms of the symplectic spectra of
the CM of the global state, and of the reduced CMs of both
subsystems. In the case of a two-mode state with global CM
�A�B, the mutual information yields �31,32�,

I��A�B� = f��Det �A� + f��Det �B� − f��A�B
− � − f��A�B

+ � ,

�7�

where

f�x� �
x + 1

2
log� x + 1

2
	 −

x − 1

2
log� x − 1

2
	 , �8�

and ��A�B
− ,�A�B

+ � are the symplectic eigenvalues of �A�B �i.e.,
the orthogonal eigenvalues of the matrix �i��A�B��.

4. Distributed quantum correlations and multipartite
entanglement

Quantifying entanglement in multipartite systems is gen-
erally very involved. A way to determine the existence of
multipartite correlations in a state is by exploring the en-
tanglement distributed between multipartite systems. Unlike
classical correlations, entanglement is monogamous, mean-
ing that it cannot be freely shared among multiple sub-
systems of a composite quantum system �21�. This funda-
mental constraint on entanglement sharing has been
mathematically demonstrated, so far, for arbitrary systems of
qubits within the discrete-variable scenario �33,34�, for a
special case of two qubits and an infinite-dimensional system
�35�, and for all N-mode Gaussian states within the CV sce-
nario �19,20�.

In the general case of a state distributed among N parties
�each owning a single qubit, or a single mode, respectively�,
the monogamy constraint takes the form of the Coffman-
Kundu-Wootters inequality �33�,

ESi��S1,. . .,Si−1,Si+1,. . .,SN� 	 �
j�i

N

ESi�Sj
, �9�

where the global system is multipartitioned into subsystems
Sk �k=1, . . . ,N�, each owned by a corresponding party, and E
is a proper measure of bipartite entanglement. The left-hand
side of inequality �9� quantifies the bipartite entanglement
between a probe subsystem Si and the remaining subsystems
taken as a whole. The right-hand side quantifies the total
bipartite entanglement between Si and each one of the other
subsystems Sj�i in the respective reduced states. The nonne-
gative difference between these two entanglements, mini-
mized over all choices of the probe subsystem, is referred to
as the residual multipartite entanglement. It quantifies the
purely quantum correlations that are not encoded in pairwise
form, so it includes all manifestations of genuine K-partite
entanglement, involving K subsystems at a time, with 2
K�N. In the simplest nontrivial instance of N=3, the re-
sidual entanglement has the meaning of the genuine tripartite
entanglement shared by the three subsystems �33�. Such a
quantity has been proven to be a tripartite entanglement
monotone for pure three-mode Gaussian states, when bipar-
tite entanglement is quantified by the contangle �19�.

B. Entanglement in noninertial frames: The Unruh effect

To study entanglement from the point of view of parties in
uniform acceleration, it is necessary to consider that field
quantizations in different coordinates are inequivalent. While
an inertial observer concludes that the field is in the vacuum
state, from the perspective of an observer in uniform accel-
eration the field is described as a thermal distribution of par-
ticles, with the effective temperature being proportional to
his or her acceleration. This is known as the Unruh effect
�13�, and it has important consequences on the entanglement
between �bosonic and/or fermionic� field modes and its dis-
tribution properties �3,4�. We will study such consequences
in the case of a bosonic field in a state that corresponds to a
two-mode squeezed state from an inertial perspective �see
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also �7��. Let us first discuss how the Unruh effect arises.
Consider an observer moving in the �t ,z� plane �c=1�

with uniform acceleration �. Rindler coordinates �
 ,�� are
appropriate for describing the viewpoint of a uniformly ac-
celerated observer. Two different sets of Rindler coordinates,
which differ from each other by an overall change in sign,
are necessary to partially cover Minkowski space,

�t = e�� sinh��
�, �z = e�� cosh��
� ,

�t = − e�� sinh��
�, �z = − e�� cosh��
� .

These sets of coordinates define two Rindler regions �respec-
tively I and II� that are causally disconnected from each
other. A particle undergoing eternal uniform acceleration re-
mains constrained to either Rindler region I or II and has no
access to the opposite region.

Now consider a free quantum scalar field in a flat back-
ground. The quantization of a scalar field in the Minkowski
coordinates is not equivalent to its quantization in Rindler
coordinates. However, the vacuum state of a given field
mode described by an inertial observer can be expressed as a
two-mode squeezed state �24� from the Rindler perspective
�13,17�

�0��M
=

1

cosh r
�
n=0

�

tanhnr�n��I
�n��II

= U�r��n��I
�n��II

, �10�

where

cosh r = �1 − e−2�����/��−1/2, �11�

and U�r� is the two-mode squeezing operator introduced in
Eq. �1�. Each Minkowski mode of frequency ���� has a Rin-
dler mode expansion given by Eq. �10�. The relation between
higher-energy states can be found using Eq. �10� and the
Bogoliubov transformation between the creation and annihi-
lation operators,

â� = cosh rb̂�I
− sinh rb̂�II

† ,

where â� is the annihilation operator in Minkowski space for

mode � and b̂�I
and b̂�II

are the annihilation operators for the
same mode in the two Rindler regions �13�. A Rindler ob-
server moving in region I needs to trace over the modes in
region II since he has no access to the information in this
causally disconnected region. Therefore, while a Minkowski
observer concludes that the field mode � is in the vacuum
�0��M

, the state from the perspective of an observer in uni-
form acceleration �, constrained to region I, is

�0�
0��M
→

1

cosh2 r
�
n=0

�

tanh2nr�n�
n��I
, �12�

which is a thermal state with temperature T=� /2�kB where
kB is Boltzmann’s constant.

III. DISTRIBUTED GAUSSIAN ENTANGLEMENT
DUE TO ONE ACCELERATED OBSERVER

From the perspective of inertial observers, we consider a
scalar field which is in a two-mode squeezed state with mode

frequencies � and � and squeezing parameter s, as in �7�.
This state, which is the simplest multimode squeezed state
�of relevance in quantum field theory �17��, allows for the
exact quantification of entanglement in all partitions of the
system from the inertial and noninertial perspective. We can
define the two-mode squeezed state, described from an iner-
tial perspective, via its CM �see Eq. �4��,

�AR
P �s� = S�M,�M

�s�I4S�M,�M

T �s� , �13�

where I4 is the CM of the vacuum �0��M
� �0��M

.
If an observer �Rob� undergoes uniform acceleration �R,

the state corresponding to the mode � �36� must be described
in Rindler coordinates �see Fig. 1�, so that the Minkowski
vacuum is given by �0��M

=U�I,�II
�r���0��I

� �0��II
�, with U�r�

given by Eq. �1�. That is, due to the fact that Rob is in
uniform acceleration, the description of the state from his
perspective must include a further two-mode squeezing
transformation, with squeezing r proportional to Rob’s accel-
eration �R via Eq. �11�. As a consequence of this transforma-
tion, the original two-mode entanglement in the state Eq.
�13� described by Alice �always inertial� and Rob from an
inertial perspective becomes distributed among the modes
described by Alice, the accelerated Rob moving in Rindler

region I, and a virtual anti-Rob �R̄� theoretically able to de-
scribe the mode �II in the complementary Rindler region II.
Our aim is to investigate the distribution of entanglement
induced by the purely relativistic effect of Rob’s accelera-
tion. It is clear that the three-mode state described by Alice,
Rob, and anti-Rob is obtained from the vacuum by the ap-
plication of Gaussian unitary operations only; therefore, it is
a pure Gaussian state. Its CM, according to the above de-
scription, is �see also �7��

�ARR̄�r,s� = �I�M
� S�I,�II

�r���S�M,�I
�s� � I�II

�

� I6�S�M,�I

T �s� � I�II
��I�M

� S�I,�II

T �r�� , �14�

z

t

III

A
R

Τ

Ζ

FIG. 1. �Color online� Sketch of the world lines for the inertial
observer Alice and the accelerated observer Rob. The set �z , t� de-
notes Minkowski coordinates, while the set �� ,
� denotes Rindler
coordinates. The causally disconnected Rindler regions I and II are
evidenced.
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where the symplectic transformations S are given by Eq. �3�,
and I6 is the CM of the vacuum �0��M

� �0��I
� �0��II

. Explic-
itly,

�ARR̄ = �A �AR �AR̄

�AR
T �R �RR̄

�
AR̄

T
�

RR̄

T
�R̄
� , �15�

where

�A = cosh�2s�I2,

�R = �cosh�2s�cosh2�r� + sinh2�r��I2,

�R̄ = �cosh2�r� + cosh�2s�sinh2�r��I2,

�AR = �cosh2�r� + cosh�2s�sinh2�r��Z2,

�AR̄ = �sinh�r�sinh�2s��I2,

�RR̄ = �cosh2�s�sinh�2r��Z2,

with Z2= � 1 0
0 −1

�.
As pointed out in Ref. �3�, the regime of very high accel-

eration �r�0� can be interpreted as Alice and Rob moving
close to the horizon of a Schwarzschild black hole. While
Alice falls into the black hole, Rob barely escapes the fall by
accelerating away from it with uniform acceleration param-
eter r.

A. Bipartite entanglement

The contangle 
��A�R
P �, quantifying the bipartite entangle-

ment described by two inertial observers, is equal to 4s2, as
can be straightforwardly found by inserting mA�R

P =cosh�2s�
in Eq. �5�.

Let us now compute the bipartite entanglement in the
various 1�1 and 1�2 partitions of the state �ARR̄. The 1
�2 contangles are immediately obtained from the determi-
nants of the reduced single-mode states of the globally pure
state �ARR̄, Eq. �15�, yielding �37�

mA��RR̄� = �Det�A = cosh�2s� ,

mR��AR̄� = �Det�R = cosh�2s�cosh2�r� + sinh2�r� ,

mR̄��AR� = �Det�R̄ = cosh2�r� + cosh�2s�sinh2�r� . �16�

For any nonzero value of the two squeezing parameters s and
r �i.e., entanglement from the point of view of inertial ob-
servers and Rob’s acceleration, respectively�, each single
party is in an entangled state with the block of the remaining
two parties, with respect to all possible global splitting of the
modes. This classifies the state �ARR̄ as fully inseparable
�38�: it contains therefore genuine tripartite entanglement,
which will be precisely quantified in the next section. Notice

also that mA��RR̄�=mA�R
P , i.e., all the inertial entanglement is

distributed, from a noninertial perspective, between modes
described by Alice and the group �Rob, anti-Rob�, as ex-
pected, since the coordinate transformation S�I,�II

�r� is a local
unitary operation with respect to the considered bipartition,
which preserves entanglement by definition. In the follow-
ing, we will always assume s�0 to rule out trivial circum-
stances.

Interestingly, as already pointed out in Ref. �7�, the mode
described by Alice is not directly entangled with the mode
described by anti-Rob, because the reduced state �A�R̄ is
separable by inspection, since Det �AR̄	0. Actually, we can
further explore this point by noticing that the mode described
by anti-Rob has the minimum possible bipartite entanglement
with the group of modes described by Alice and Rob. This
follows on recalling that, in any pure three-mode Gaussian
state �123, the local single-mode determinants have to satisfy
a triangle inequality �39�

�m1 − m2� + 1 � m3 � m1 + m2 − 1, �17�

with mi��Det �i. In our case, identifying mode 1 with Al-
ice, mode 2 with Rob, and mode 3 with anti-Rob, Eq. �16�
shows that the state �ARR̄ saturates the leftmost side of the
triangle inequality �17�,

mR̄��AR� = mR��AR̄� − mA��RR̄� + 1.

In other words, the mixedness of anti-Rob’s mode, which is
directly related to its entanglement with the other two modes,
is the smallest possible one. The values of the entanglement
parameters mi��jk� from Eq. �16� are plotted in Fig. 2 as a
function of the acceleration r, for a fixed degree of initial
squeezing s.

On the other hand, the PPT criterion states that the re-
duced two-mode states �A�R and �R�R̄ are both entangled. To
compute the contangle in those partitions, we first observe
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FIG. 2. �Color online� Plot, as a function of the acceleration
parameter r, of the bipartite entanglement between the mode de-
scribed by one observer and the group of modes described by the
other two, as expressed by the single-mode determinants mi�jk� de-
fined in Eq. �16�. The inertial entanglement is kept fixed at s=1.
The solid red line represents mA��RR̄�, the dashed green line corre-
sponds to mR��AR̄�, while the dotted blue line depicts mR̄��AR�.
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that all the two-mode reductions of �ARR̄ belong to the spe-
cial class of mixed Gaussian states of maximal entanglement
at given marginal mixednesses �GMEMMS� �40�. This is a
curious coincidence because, when considering entangle-
ment of Dirac fields from a noninertial perspective �4�, and
describing the effective three-qubit states described by the
three observers, also in that case all two-qubit reduced states
belong to the corresponding family of MEMMS mixed two-
qubit states of maximal entanglement at fixed marginal mix-
ednesses �MEMMS� �41�. Coming back to the CV case, this
observation is useful as we know that for two-mode
GMEMMS the Gaussian entanglement measures, including
the contangle, are computable in closed form �27�,

mA�R =
2 sinh2�r� + �cosh�2r� + 3�cosh�2s�
2 cosh�2s�sinh2�r� + cosh�2r� + 3

, �18�

mR�R̄ = cosh�2r� . �19�

Let us first comment on the quantum correlations created
between the two Rindler regions I and II, given by Eq. �19�.
Note that the entanglement in the mixed state �RR̄ is exactly
equal, in content to that of a pure two-mode squeezed state
with squeezing r, regardless of the inertial Alice-Rob en-
tanglement quantified by s. This provides a clearcut interpre-
tation of the Unruh mechanism, in which the acceleration
alone is responsible for the creation of entanglement between
the accessible degrees of freedom described by Rob, and the
inaccessible ones described by the virtual anti-Rob. By com-
parison with Ref. �7�, we remark that, if the logarithmic
negativity is used as an entanglement measure, this insightful
picture is no longer true, as in that case the entanglement
described by Rob and anti-Rob depends on s as well. While
this is not surprising given the aforementioned inequivalence
between negativities and Gaussian entanglement measures in
quantifying quantum correlation of nonsymmetric mixed
Gaussian states �27�, it gives an indication that the negativity
is probably not the best quantifier to capture the transforma-
tion of quantum information due to relativistic effects.

The proper quantification of Gaussian entanglement
shows indeed that the quantum correlations are regulated by

two competing squeezing degrees. One one hand, the re-
source parameter s regulates the entanglement 
��A�R

P �=4s2

described by inertial observers. On the other hand, the accel-
eration parameter r regulates the uprising entanglement

��R�R̄�=4s2 between the modes described by the uniformly
accelerated Rob and by his alter ego anti-Rob. The latter
entanglement, obviously, increases, to the detriment of the
entanglement 
��A�R�=g�mA�R

2 � described by Alice and Rob
from the noninertial perspective. Equation �18� shows in fact
that 
��A�R� is increasing with s and decreasing with r, as
pictorially depicted in Fig. 3. Interestingly, the rate at which
this bipartite entanglement degrades with r, ��
��A�R� /�r�,
increases with s: for higher s Alice and Rob describe the field
as more entangled �from the inertial perspective, which cor-
responds to r=0�, but it drops faster when the acceleration
�r� comes into play. The same behavior is observed for the
negativity �7�. For any inertial entanglement s, no quantum
correlations are left in the infinite-acceleration limit �r→��,
when the state �A�R becomes asymptotically separable.

It is instructive to compare these results to the analysis of
entanglement when the field �for r=0� is in a two-qubit Bell
state �1

2 ��0��M
�0��M

+ �1��M
�1��M

�, where �1� stands for the
single-boson Fock state �3�. When one observer is acceler-
ated, the state belongs to a three-partite Hilbert space with
dimension 2����. The free entanglement in the state is
degraded with increasing acceleration and vanishes in the
infinite-acceleration limit. Figure 4 plots the entanglement
between modes described by Alice and the noninertial Rob in
such a qubit-CV setting �3�, compared with the fully CV
scenario considered in this paper. When the field described
from the inertial perspective is in a two-mode squeezed
Gaussian state with s�1 /2, the entanglement is always
stronger than the entanglement in the Bell-state case. We also
observe that, even for s1 /2, the degradation of entangle-
ment with acceleration is slower for the Gaussian state. The
exploitation of all the infinitely many degrees of freedom
available in the Hilbert space, therefore, results in an im-
proved robustness of the entanglement against the thermali-
zation induced by the Unruh effect.

In this context, we can pose the question of how much
entanglement, at most, can Alice and the noninertial Rob
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FIG. 3. �Color online� Bipartite entanglement described by Alice and the noninertial observer Rob, who moves with uniform acceleration
parametrized by the effective squeezing r. From an inertial perspective, the field is in a two-mode squeezed state with squeezing degree s.
�a� depicts the contangle 
��A�R�, given by Eqs. �5� and �18�, as a function of r and s. In �b� the same quantity is normalized to the original
contangle as seen by inertial observers, 
��A�R

P �=4s2. Notice in �a� how the bipartite contangle is an increasing function of the entanglement
s, while it decreases with increase in Rob’s acceleration r, vanishing in the limit r→�. This degradation is faster for higher s, as clearly
visible in �b�.
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hope to maintain, given that Rob is moving with a finite,
known acceleration r. Assuming that from an inertial per-
spective the state is a perfect EPR state, we find

lim
s→�

mA�R = 1 + 2/sinh2�r� , �20�

meaning that the maximum entanglement left by the Unruh
thermalization, out of an initial unlimited entanglement, ap-
proaches asymptotically


r
max��A�R� = arcsinh2�2 cosh�r�

sinh2�r� 	 . �21�

Only for zero acceleration, r=0, does this maximum en-
tanglement diverge. For any nonzero acceleration, the quan-
tity 
r

max��A�R� is finite and rapidly degrades with increasing
r. This provides an upper bound on the effective quantum
correlations and thus on the efficiency of any conceivable
quantum-information protocol that Alice and the noninertial
Rob may implement. For example, if Rob travels with a
modest acceleration given by r=0.5, no more than 8 ebits of
entanglement are left between the modes described by Alice
and Rob, even if the state contained an infinite amount of
entanglement from the point of view of inertial observers.
This apparent “loss” of quantum information will be pre-
cisely understood in the next section, where we will show
that the inertial bipartite entanglement does not disappear,
but is redistributed into tripartite correlations among Alice,
Rob, and anti-Rob.

B. Tripartite entanglement

A proper measure of genuine tripartite entanglement is
available for any three-mode Gaussian state �19,39�. The
measure, known as the “residual contangle,” emerges from
the monogamy inequality �9� and is an entanglement mono-
tone under tripartite GLOCC for pure states. The residual
contangle of a three-mode �i, j, and k� Gaussian state � is
defined as �19�


��i�j�k� � min
�i,j,k�

�
��i��jk�� − 
��i�j� − 
��i�k�� , �22�

where �i , j ,k� denotes all the permutations of the three mode
indices. For pure states, the minimum in Eq. �22� is always
attained by the decomposition realized with respect to the
probe mode i with smallest local determinant Det �i=mi��jk�

2 .
We can promptly apply this definition to compute the dis-

tributed tripartite entanglement in the state �ARR̄. From Eq.
�16�, we find that mR̄��AR�mA��RR̄� for rr*, with

r* = arccosh �tanh2�s� + 1,

while mR��AR̄� is always bigger than the other two quantities.
Using Eqs. �5�, �16�, �18�, �19�, and �22� together with

��A�R̄�=0, we find that the residual contangle is given by


��A�R�R̄� =�g�m
R̄��AR�
2 � − g�m

R�R̄
2 � , r  r*,

g�m
A��RR̄�
2 � − g�mA�R

2 � otherwise,
�

= �− 4r2 + arcsinh2 ��cosh2�r� + cosh�2s�sinh2�r��2 − 1, r  r*,

4s2 − arcsinh2 ��2 sinh2�r� + �cosh�2r� + 3�cosh�2s��2

�2 cosh�2s�sinh2�r� + cosh�2r� + 3�2 − 1 otherwise. � �23�
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FIG. 4. �Color online� Bipartite entanglement between modes
described by Alice and the noninertial Rob moving with uniform
acceleration parametrized by r. The dotted red curve depicts the
dependence of the logarithmic negativity between modes described
by Alice and Rob in the instance of a state which corresponds to a
two-qubit Bell state from the inertial perspective as computed in
Ref. �3�. The other solid curves correspond to �
��A�R� �the square
root of the contangle is taken to provide a fair dimensional com-
parison� as computed in this paper �see Eq. �18��, in the instance of
an entangled two-mode squeezed state described from the perspec-
tive of two inertial observers, with different squeezing parameters
s=0.25,0.5,1 ,2 �referring to the purple, blue, green, and gold
curves, respectively�. As a further comparison, the entanglement
described by Rob and anti-Rob, given by �
��R�R̄�=2r �see Eq.
�19�� independently of s, is plotted as well �dashed black diagonal
line�.
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The tripartite entanglement is plotted in Fig. 5 as a func-
tion of r and s. Very remarkably, for any initial squeezing s,
it increases with increasing acceleration r. In the limit of
infinite acceleration, the bipartite entanglement between
modes described by Alice and Rob vanishes so we have that

lim
r→�


��A�R�R̄� = 
��A��RR̄�� = 
��A�R
P � = 4s2. �24�

Precisely, the genuine tripartite entanglement tends asymp-
totically to the two-mode squeezed entanglement described
by inertial observers.

We have now all the elements necessary to fully under-
stand the Unruh effect on CV entanglement of bosonic par-
ticles, when a single observer is accelerated. Due to the fact
that Rob is accelerated, from his perspective, �1� there is
bipartite entanglement between the two modes in the two
distinct Rindler regions, and this entanglement is a function
only of the acceleration; �2� the bipartite entanglement de-
scribed by inertial observers is redistributed into a genuine
tripartite entanglement among the modes described by Alice,
Rob, and anti-Rob. Therefore, as a consequence of the mo-
nogamy of entanglement, the entanglement between the two
modes described by Alice and Rob is degraded.

In fact, there is no bipartite entanglement between the
modes described by Alice and anti-Rob. This is very differ-
ent from the distribution of entanglement of Dirac fields
from a noninertial perspective �4�, where the fermionic sta-
tistics does not allow the creation of maximal entanglement
between the two Rindler regions. Therefore, the entangle-
ment between modes described by Alice and Rob is never
fully degraded. As a result of the monogamy constraints on
entanglement sharing �33�, the mode described by Alice be-
comes entangled with the mode described by anti-Rob, and
the entanglement in the resulting three-qubit system is dis-
tributed in couplewise correlations, and a genuine tripartite
entanglement is never created in that case �4�.

In the next section, we will show how in the bosonic case
the picture radically changes when both observers undergo

uniform acceleration, in which case the relativistic effects are
even more surprising.

C. Mutual information

It is interesting to compute the total �classical and quan-
tum� correlations between modes described by Alice and the
noninertial Rob, encoded in the reduced �mixed� two-mode
state �A�R of Eq. �15�, using the mutual information I��A�R�,
Eq. �7�. The symplectic spectrum of such a state is consti-
tuted by �A�R

− =1 and �A�R
+ =�Det�R̄. Since it belongs to the

class of GMEMMS, it is in particular a mixed state of partial
minimum uncertainty, which saturates inequality �2� �40�.
Therefore, the mutual information reads

I��A�R� = f��Det �A� + f��Det �R� − f��Det �R̄� . �25�

Explicitly,

I��A�R� = log�cosh2�s�sinh2�r��sinh2�r�cosh2�s�

+ log�cosh2�s��cosh2�s�

+ log�cosh2�r�cosh2�s��cosh2�r�cosh2�s�

− log�sinh2�s��sinh2�s�

−
1

2
log�1

2
�cosh�2s�cosh2�r� + sinh2�r� − 1��

��cosh�2s�cosh2�r� + sinh2�r� − 1�

−
1

2
log�1

2
�cosh2�r� + cosh�2s�sinh2�r� + 1��

��cosh2�r� + cosh�2s�sinh2�r� + 1� .

The mutual information of Eq. �25� is plotted in Fig. 6�a�
as a function of the squeezing degrees s �corresponding to
the entanglement described from the inertial perspective� and
r �reflecting Rob’s acceleration�. It is interesting to compare
the mutual information with the original two-mode squeezed
entanglement described between the inertial observers. In
this case, it is more appropriate to quantify the entanglement
in terms of the entropy of entanglement, EV��A�R

P �, defined as
the von Neumann entropy of each reduced single-mode CM,
EV��A�R

P ��SV��A
P��SV��B

P�. That is,

EV��A�R
P � = f�cosh 2s� , �26�

with f�x� given by Eq. �8�. From the perspective of inertial
observers �r=0�, the state is pure, �A�R��A�R

P and the mutual
information is equal to twice the entropy of entanglement of
Eq. �26�, meaning that the two modes described by inertial
observers are correlated in both quantum and classical de-
scriptions to the same degree. When Rob is under accelera-
tion �r�0�, the entanglement with the modes described by
Alice is degraded by the Unruh effect �see Fig. 3�, but the
classical correlations are left untouched. In the limit r→�,
all entanglement is destroyed and the remaining mutual in-
formation I��A�R�, quantifying classical correlations only,
saturates to EV��A�R

P � from Eq. �27�. For any s�0 the mutual
information of Eq. �25�, once normalized by such entropy of
entanglement �see Fig. 6�b��, ranges between 2 �1 normal-
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FIG. 5. �Color online� Genuine tripartite entanglement, as quan-
tified by the residual contangle Eq. �23�, among the inertial Alice,
Rob in Rindler region I, and anti-Rob in Rindler region II, plotted
as a function of the initial squeezing s and of Rob’s acceleration r.
The tripartite entanglement increases with r, and for r→� it ap-
proaches the original entanglement content 4s2 between modes de-
scribed by Alice and Rob from the inertial perspective.
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ized unit of entanglement plus 1 normalized unit of classical
correlations� at r=0, and 1 �all classical correlations and zero
entanglement� at r→�. The same behavior is found for clas-
sical correlations in the case of entangled states of the field
which are bosonic two-qubit Bell states in an inertial per-
spective �3�.

IV. DISTRIBUTED GAUSSIAN ENTANGLEMENT
DUE TO BOTH ACCELERATED OBSERVERS

A natural question arises as to whether the mechanism of
degradation or, to be precise, distribution of entanglement
due to the Unruh effect is qualitatively modified according to
the number of accelerated observers. One might guess that,
when both observers travel with uniform acceleration, basi-
cally the same features as unveiled above for the case of a
single noninertial observer will be manifest, with a merely
quantitative rescaling of the relevant figures of merit �such as
the bipartite entanglement degradation rate�. However, we
will now show that this is not the case.

We consider here two noninertial observers, with different
names for ease of clarity and to avoid confusion with the
previous picture. Leo and Nadia both travel with uniform
accelerations �L and �N, respectively, and describe the state
of a scalar field in Rindler coordinates from their noninertial
perspective �see Fig. 7�. As in the previous instance, we con-
sider that from the perspective of inertial observers only two
field modes, of frequencies � and �, are entangled in a pure
two-mode squeezed state �LN

P �s� of the form Eq. �4�, with
squeezing parameter s as before. Due to the acceleration of
both observers, the entanglement is redistributed among
modes described by four observers: Leo, Nadia �living in
Rindler region I�, and anti-Leo and anti-Nadia �living in Rin-
dler region II�. These four �some real and some virtual� par-
ties will describe modes �I, �I, �II, and �II, respectively. By
the same argument of Sec. III, the four observers will de-
scribe a pure four-mode Gaussian state with CM given by
�42�

�L̄LNN̄�s,l,n� = S�I,�II
�l�S�I,�II

�n�S�I,�I
�s�I8

� S�I,�I

T �s�S�I,�II

T �n�S�I,�II

T �l� , �27�

where the symplectic transformations S are given by Eq. �3�,
I8 is the CM of the vacuum �0��II

� �0��I
� �0��I

� �0��II
, and l

and n are the squeezing parameters associated with the re-
spective accelerations �L and �N of Leo and Nadia �see Eq.
�11��. Explicitly,

�L̄LNN̄ =
�L̄ �L̄L �L̄N �L̄N̄

�
L̄L

T
�L �LN �LN̄

�
L̄N

T
�LN

T �N �NN̄

�
L̄N̄

T
�Ln̄

T �
NN̄

T
�N̄

� , �28�

where:

�X̄ = �cosh2�x� + cosh�2s�sinh2�x��I2,

�X = �cosh2�x�cosh�2s� + sinh2�x��I2,

�X̄X = �XX̄ = �cosh2�s�sinh�2x��Z2,

�X̄Y = �YX̄ = �cosh�y�sinh�2s�sinh�x��I2,
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FIG. 6. �Color online� Total correlations between modes described by Alice and the noninertial observer Rob, moving with acceleration
given by the effective squeezing parameter r. From an inertial perspective, the field is in a two-mode squeezed state with squeezing degree
s. �a� depicts the dependence of the mutual information I��A�R�, given by Eq. �25�, as a function of r and s. In �b� the same quantity is
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P �, Eq. �26�. Notice in �a� how the mutual information
is an increasing function of the inertial entanglement s; at variance with the entanglement �see Fig. 3�, it saturates to a nonzero value in the
limit of infinite acceleration. From �b�, one clearly sees that this asymptotic value is exactly equal to the entropy of entanglement described
by inertial observers.
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FIG. 7. �Color online� Sketch of the world lines for the two
noninertial observers Leo and Nadia. The set �z , t� denotes
Minkowski coordinates, while the set �� ,
� denotes Rindler coordi-
nates. The causally disconnected Rindler regions I and II are shown.
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�X̄Ȳ = �sinh�2s�sinh�x�sinh�y��Z2,

�XY = �cosh�x�cosh�y�sinh�2s��Z2,

with Z2= � 1 0
0 −1

�; X ,Y = �L ,N� with X�Y, and accordingly for
the lower-case symbols x ,y= �l ,n�.

The very high-acceleration regime �l ,n�0� can now be
interpreted as Leo and Nadia both escaping the fall into the
black hole by accelerating away from it with acceleration �L
and �N, respectively. Their entanglement will be degraded
since part of the information is lost through the horizon into
the black hole. Their acceleration makes part of the informa-
tion unavailable to them. We will show that this loss involves
both quantum and classical information.

A. Bipartite entanglement

We first recall that the original contangle ���L�N
P �=4s2 de-

scribed by two inertial observers is preserved under the form
of bipartite four-mode entanglement ����L̄L���NN̄�� between
the two real and the two virtual observers, as the two Rindler
change of coordinates amount to local unitary operations

with respect to the �L̄L� � �NN̄� bipartition. The computation
of the bipartite contangle in the various 1�1 partitions of
the state �L̄LNN̄ is still possible in closed form thanks to the
results of Ref. �27�. From Eqs. �5� and �28�, we find

mL�N̄ = mN�L̄ = mL̄�N̄ = 1, �29�

mL�L̄ = cosh�2l�, mN�N̄ = cosh�2n� , �30�

mL�N = �1, tanh�s� � sinh�l�sinh�n� ,

2 cosh�2l�cosh�2n�cosh2�s� + 3 cosh�2s� − 4 sinh�l�sinh�n�sinh�2s� − 1

2��cosh�2l� + cosh�2n��cosh2�s� − 2 sinh2�s� + 2 sinh�l�sinh�n�sinh�2s��
otherwise. � �31�

Let us first comment on the similarities with the setting of
an inertial Alice and a noninertial Rob. In the case of two
accelerated observers, Eq. �29� entails �we recall that m=1
means separability� that the mode described by Leo �Nadia�
never gets entangled with the mode described by anti-Nadia
�anti-Leo�. Naturally, there is no bipartite entanglement gen-
erated between the modes described by the two virtual ob-
servers L̄ and N̄. Another similarity found in Eq. �30� is that
the reduced two-mode state �XX̄ assigned to each observer
X= �L ,N� and her or his respective virtual counterpart X̄ is
exactly of the same form as �RR̄. Therefore, due to the fact
that Leo and Nadia are accelerated, from their perspective we
find again that a bipartite contangle is present between the
mode described by each observer in region I and the corre-
sponding causally disconnected mode described by the re-
spective alter ego virtual observer in region II; this entangle-
ment is a function of the corresponding acceleration x
= �l ,n� only. The two entanglements corresponding to each
observer-antiobserver pair are mutually independent, and for

each the X � X̄ entanglement content is again the same as that
of a pure, two-mode squeezed state created with squeezing
parameter x.

The only entanglement that is physically accessible to the
noninertial observers is encoded in the two modes �I and �I
corresponding to Rindler regions I of Leo and Nadia. These
two modes are left in the state �LN, which is not a
GMEMMS �like the state �AR in Sec. III� but a nonsymmet-
ric thermal squeezed state �40�, for which the Gaussian en-
tanglement measures are available as well �27�. The con-
tangle of such a state is in fact given by Eq. �31�. Here we
find a first significant qualitative difference with the case of a
single accelerated observer: a state entangled from an inertial
perspective can become disentangled for two noninertial ob-

servers, both traveling with finite acceleration. Equation �31�
shows that there is a trade-off between the amount of en-
tanglement �s� described from an inertial perspective and the
acceleration parameters of both parties �l and n�. If the ob-
servers are highly accelerated �namely, if sinh�l�sinh�n� ex-
ceeds tanh�s��, the entanglement in the state �LN vanishes, or
better said, becomes physically inaccessible to the noniner-
tial observers. Even in the ideal case, where the state con-
tains infinite entanglement �corresponding to s→�� from the
perspective of inertial observers, the entanglement com-
pletely vanishes from the perspective of one inertial and one
noninertial observer if sinh�l�sinh�n�	1. We find here an-
other important difference from the Dirac case where en-
tanglement never vanishes for two noninertial observers �4�.
Conversely, for any nonzero, arbitrarily small acceleration
parameters l and n, there is a threshold on the entanglement
s such that, if the entanglement is smaller than the threshold,
it vanishes when described from the perspective of one iner-
tial and one noninertial observer. With only one noninertial
observer, instead �Sec. III�, any infinitesimal entanglement
will survive for arbitrarily large acceleration, vanishing only
in the infinite-acceleration limit.

To provide a better comparison between the two settings,
let us address the following question. Can the entanglement
degradation observed by Leo and Nadia �with acceleration
parameters l and n, respectively� be observed by an inertial
Alice and a noninertial Rob traveling with some effective
acceleration ref f? We will look for a value of ref f such that
the reduced state �AR of the three-mode state in Eq. �15� is as
entangled as the reduced state �LN of the four-mode state in
Eq. �28�. The problem can be straightforwardly solved by
equating the corresponding contangles Eq. �18� and Eq. �31�,
to obtain
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ref f = �arccosh� cosh�l�cosh�n�sinh�s�
sinh�s� − cosh�s�sinh�l�sinh�n�	 , tanh�s� � sinh�l�sinh�n� ,

� otherwise.
� �32�

Clearly, for very high acceleration parameters l and n �or,
equivalently, very small inertial entanglement s�, the infor-
mation loss due to the noninertiality of both observers is only
matched by an infinite effective acceleration in the case of a
single noninertial observer. In the regime in which entangle-
ment does not completely vanish, the effective acceleration
of Rob in the equivalent single-noninertial-observer setting is
a function of the inertial entanglement s, as well as of the
accelerations of Leo and Nadia.

1. Entanglement between different frequency modes

The condition on the acceleration parameters l and n for
which the entanglement of the maximally entangled state
�s→�� vanishes, from Eq. �31�, corresponds to the condition
e��L +e��N −e���L+�N�	0 where �L=2� / ��L� and �N

=2� / ��N�. Here we recall that �L,N are the proper accelera-
tions of the two noninertial observers and � ,� the frequen-
cies of the respective modes �see Eq. �11��. We assume now
that Leo and Nadia have the same acceleration,

�L = �N � � ,

and ask the question, given their acceleration, which fre-
quency modes would they describe as entangled? This pro-
vides a deeper understanding of the effect of the Unruh ther-
malization on the distribution of CV correlations.

Our results immediately show that in this context the en-
tanglement vanishes between field modes such that

e�2�/��� + e�2�/��� − e�2�/����+�� 	 0. �33�

This means that if the field is, from the inertial perspective,
in a two-mode squeezed state with frequencies satisfying Eq.
�33�, the accelerated Leo and Nadia would describe the field
as in a two-mode disentangled �separable� state. We have

thus a practical condition to determine which modes would
be entangled from Leo and Nadia’s noninertial perspective,
depending on their frequency.

In Fig. 8 we plot the condition on entanglement for
different frequency modes. The modes become disentangled
when the graph takes positive values. We see that only
modes with the highest frequencies exhibit bipartite en-
tanglement for a given acceleration � of the observers.
The larger the acceleration, the fewer modes remain en-
tangled, as expected. In the limit of infinite acceleration
� / ��L� ,� / ��N�→�, the set of entangled modes becomes
empty. In the high-acceleration regime, where Alice and Rob
escape the fall into a black hole, only very high-frequency
modes remain entangled.

Considering once more equally accelerated observers,
�L=�N�� with finite �, it is straightforward to compute the
contangle of the modes that do remain entangled, in the case
of a state that is maximally �infinitely� entangled from the
inertial perspective. From Eq. �31�, we have
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FIG. 9. �Color online� Entanglement between different fre-
quency modes assuming that Leo and Nadia have the same accel-
eration �=2�.
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frequency modes gets narrower, and in the infinite-acceleration limit the bipartite entanglement between all frequency modes vanishes.
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mL�N�s → �� =
cosh�2l�cosh�2n� − 4 sinh�l�sinh�n� + 3

2�sinh�l� + sinh�n��2 .

�34�

In Fig. 9 we plot the entanglement between the modes, Eq.
�34�, as a function of their frequency � and � �using Eq. �11��
when Leo and Nadia have acceleration �=2�. We see that,
consistently with the previous analysis, at fixed acceleration,
the entanglement is larger for higher frequencies. In the
infinite-acceleration limit, as already remarked, entanglement
vanishes for all frequency modes.

2. Equal acceleration parameters

We proceed now to analyze the bipartite entanglement in
the field from the noninertial perspective, at fixed mode fre-
quencies. For simplicity, we restrict our attention to the case

where Leo and Nadia’s trajectories have the same accelera-
tion parameter

l = n � a . �35�

This means that � /�L=� /�N. While the following results do
not rely on this assumption, it is particularly useful in order
to provide a pictorial representation of entanglement in the
four-mode state �L̄LNN̄, which is now parametrized only by
the two competing squeezing degrees, the inertial quantum
correlations �s� and the acceleration parameter of both ob-
servers �a�. In this case, the acceleration parameter a*, for
which the entanglement between the modes described by
Leo and Nadia vanishes, is

a*�s� = arcsinh��tanh�s�� , �36�

where we used Eq. �31�. The contangle in the state �LN is
therefore given by

mL�N = �1, a 	 a*�s� ,

2 cosh2�2a�cosh2�s� + 3 cosh�2s� − 4 sinh2�a�sinh�2s� − 1

4�cosh2�a� + e2ssinh2�a��
otherwise, � �37�

which we plot in Fig. 10. The entanglement increases with
s and decreasing with a with a stronger rate of degrada-
tion for increasing s. The main difference from Fig. 3 is
that entanglement here completely vanishes at finite accel-
eration. Even if the state contains infinite entanglement
as described by inertial observers, entanglement vanishes at
a	arcsinh�1��0.8814.

B. Residual multipartite entanglement

It is straightforward to show that the four-mode state
�L̄LNN̄ of Eq. �28� is fully inseparable, which means that it

contains multipartite entanglement distributed among all the
four parties involved. This follows from the observation that
the determinant of each reduced one- and two-mode CM
obtainable from �L̄LNN̄ is strictly bigger than 1 for any non-
zero squeezings. This in addition to the global purity of the
state means that there is entanglement across all global bi-
partitions of the four modes. We now aim to provide a quan-
titative characterization of such multipartite entanglement.

For the sake of simplicity, we focus once more on the case
of two observers with equal acceleration parameter a. The
state under consideration is obtained from Eq. �28� via the
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FIG. 10. �Color online� Bipartite entanglement between the modes described by the two noninertial observers Leo and Nadia, both
traveling with uniform acceleration given by the effective squeezing parameter a. From an inertial perspective, the field is in a two-mode
squeezed state with squeezing degree s. �a� depicts the contangle 
��L�N�, given by Eqs. �5� and �37�, as a function of a and s. In �b� the same
quantity is normalized to the inertial contangle, 
��L�N

P �=4s2. Notice in �a� how the bipartite contangle is an increasing function of the inertial
entanglement s, while it decreases with increasing acceleration a. This degradation is faster for higher s, as clearly visible in �b�. At variance
with the case of only one accelerated observer �Fig. 3�, in this case the bipartite entanglement can be completely destroyed at finite
acceleration. The black line depicts the threshold acceleration a*�s�, Eq. �36�, such that for a	a*�s� the bipartite entanglement described by
the two noninertial observers is exactly zero.
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prescription Eq. �35�. The entanglement properties of this
four-mode pure Gaussian state have been investigated in de-
tail by some of us �43�. We showed, in particular, that the
entanglement sharing structure in such state is infinitely pro-
miscuous. The state admits the coexistence of an unlimited,
genuine four-partite entanglement, together with an accord-
ingly unlimited bipartite entanglement in the reduced two-
mode states of two pair of parties, here referred to as �Leo,
anti-Leo� and �Nadia, anti-Nadia�. Both four-partite and bi-
partite correlations increase with a. We will now review the
study of multipartite entanglement of these four-partite
Gaussian states shown in Ref. �43�, with the particular aim of
showing the effects of relativistic acceleration in the distri-
bution of quantum information.

1. Monogamy inequality

We begin by verifying that the state �L̄LNN̄ satisfies the
fundamental monogamy inequality �9� for the entanglement

distributed among the four parties �each one describing a
single mode�. To this end, we compute the pure-state con-
tangle between one probe mode and the remaining three
modes. From Eq. �5� we find

mL̄��LNN̄� = mN̄��NLL̄� = cosh2 a + cosh�2s�sinh2 a ,

�38�
mL��L̄NN̄� = mN��N̄LL̄� = sinh2 a + cosh�2s�cosh2 a .

Thanks to the explicit expressions Eqs. �29�, �31�, and �38�
for the bipartite entanglements, proving monogamy reduces
to showing that min�g�m

L̄��LNN̄�
2 �−g�m

L̄�L
2 � ,g�m

L��L̄NN̄�
2 �

−g�m
L̄�L
2 �−g�mL�N

2 �� is nonnegative. One can verify that the

first quantity always achieves the minimum; therefore we
define


res��L̄LNN̄� � 
��L̄��LNN̄�� − 
��L̄�L� = arcsinh2���cosh2 a + cosh�2s�sinh2 a�2 − 1� − 4a2 � 0. �39�

The residual contangle 
res is positive as cosh�2s��1 for s
�0, and it quantifies precisely the multipartite correlations
that cannot be stored in bipartite form. Those quantum cor-
relations, however, can be either tripartite, involving three of
the four modes, and/or genuinely four-partite among all of
them. We can now quantitatively estimate to what extent
such correlations are encoded in some tripartite form: as an
anticipation, we will find them negligible in the limit of high
acceleration.

2. Tripartite entanglement

Let us first observe that in the tripartitions L̄�L�N̄ and
L̄�N�N̄ the tripartite entanglement is exactly zero. This is be-
cause the mode described by anti-Nadia is not entangled with
the modes described by the pair �Leo, anti-Leo�, and the
mode described by anti-Leo is not entangled with the modes
described by the pair �Nadia, anti-Nadia�. The corresponding
three-mode states are then said to be biseparable �38�. The
only tripartite entanglement present, if any, is equal in con-
tent �due to the symmetry of the state� for the tripartitions
L̄�L�N and L�N�N̄. It is properly quantified by the residual
tripartite contangle 
��L̄�L�N� emerging from the correspond-
ing mixed-state three-mode monogamy inequality, via Eq.
�22�. In Ref. �43� an upper bound on 
��L̄�L�N� was obtained.
Its derivation is recalled in the Appendix for the sake of
completeness. From Eq. �A6� we have


��L̄�L�N� � 
bound��L̄�L�N�

� min�g��cosh2 a

+
1 + sech2 a tanh2 s

1 − sech2 a tanh2 s
sinh2 a	2�

− 4a2,g��1 + sech2 a tanh2 s

1 − sech2 a tanh2 s
	2� − g�mL�N

2 �� ,

�40�

with mL�N obtainable by substituting Eq. �35� in Eq. �31�.
The upper bound 
bound��L̄�L�N� is of course always non-

negative �as a consequence of monogamy�; it decreases with
increasing acceleration a, and vanishes in the limit a→�.
Therefore, in the regime of increasingly high a, eventually
approaching infinity, any form of tripartite entanglement
among any three modes in the state �L̄LNN̄ is negligible �ex-
actly zero in the limit of infinite acceleration�.

3. Genuine four-partite entanglement

The above analysis of the tripartite contribution to multi-
partite entanglement shows that, in the regime of high accel-
eration a, the residual entanglement 
res determined by Eq.
�39� is stored entirely in the form of four-partite quantum
correlations. Therefore, the residual entanglement in this
case is a good measure of genuine four-partite entanglement
among the four Rindler spacetime modes. It is now straight-
forward to see that 
res��L̄LNN̄� is itself an increasing func-
tion of a for any value of s �see Fig. 11�, and it diverges in
the limit a→�.

The four-mode state Eq. �39� obtained with an arbitrarily
large acceleration a, consequently, exhibits a coexistence of
unlimited genuine four-partite entanglement, and pairwise
bipartite entanglement in the reduced two-mode states �L�L̄
and �N�N̄. This peculiar distribution of CV entanglement in
the considered Gaussian state has been defined as infinitely
promiscuous in Ref. �43�. The properties of such entangled
states are discussed in Ref. �43� in a practical optical setting.
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It is interesting to note that, in the relativistic analysis we
present here, the genuine four-partite entanglement increases
without bound with the observers’ acceleration. This is in
fact in strong contrast with the case of an inertial observer
and an accelerating one �Sec. III�, where we find that, in the
infinite-acceleration limit, the genuine tripartite entangle-
ment saturates at 4s2 �i.e., the original entanglement encoded
between the two inertial observers�.

In the scenario considered here, the fact that Leo and
Nadia are accelerated is perceived as an ex novo entangle-
ment �function of the acceleration� across the Rindler hori-
zon, interlinking independently both mode pairs described by
the corresponding observers. The information loss is such
that, even if the state contains infinite entanglement when
described by inertial observers, it contains no quantum cor-
relations when described by two observers traveling at finite
acceleration. If one considers even higher acceleration of the
observers, it is basically the �inaccessible� entanglement
modes in the Rindler region I and modes in the Rindler re-
gion II which are redistributed into genuine four-partite
form. The tripartite correlations tend to vanish as a conse-
quence of the thermalization, which destroys the inertial bi-
partite entanglement. The multipartite entanglement, obvi-
ously, increases infinitely with acceleration because the
entanglement between causally disconnected modes in-
creases without bound with acceleration. It is remarkable that
such promiscuous distribution of entanglement can occur
without violating the fundamental monogamy constraints on
entanglement sharing �19,20�.

To give a simple example, suppose the bipartite entangle-
ment contained in the state described by inertial observers is
given by 4s2=16 for s=2. If both observers accelerate such
that the two-mode squeezed state described from the inertial
perspective has squeezing parameter a=7, the four-partite
entanglement �given by Eq. �39�� is 81.2 ebits, more than
five times the inertial bipartite entanglement. At the same

time, a bipartite entanglement of 4a2=196 is present, from a
noninertial perspective, between modes in region I and
modes in region II. A final caution needs to be stated. The
above results suggest that unbounded entanglement is cre-
ated by merely the observers’ motion. This requires, of
course, an unlimited energy needed to fuel their spaceships,
let alone all the technicalities of realizing such a situation in
practice. Unfortunately, this entanglement is mostly inacces-
sible, as both Leo and Nadia are confined in their respective
Rindler region I. The only entanglement resource they are
left with is the degraded two-mode thermal squeezed state.

C. Mutual information

It is very interesting to evaluate the mutual information
I��L�N� between the states described by Leo and Nadia, both
moving with acceleration parameter a.

In this case the symplectic spectrum of the reduced
�mixed� two-mode CM �L�N of Eq. �28� is degenerate �40�,
yielding �L�N

− =�L�N
+ = �Det �L�N�. From Eq. �7�, the mutual in-

formation then reads

I��L�N� = f��Det�L� + f��Det�N� − 2f��Det�L�N�1/4� .

�41�

Explicitly,

I��L�N� = 2 cosh2�a�cosh2�s�log�cosh2�a�cosh2�s��

− �cosh�2s�cosh2�a� + sinh2�a�

− 1�log�1

2
�cosh�2s�cosh2�a� + sinh2�a� − 1��

+
1

2
��2 cosh�2s�sinh2�2a� + cosh�4a� + 3�1/2

− 2�log��2 cosh�2s�sinh2�2a� + cosh�4a� + 3�1/2

− 2� −
1

2
��2 cosh�2s�sinh2�2a� + cosh�4a� + 3�1/2

+ 2�log��2 cosh�2s�sinh2�2a� + cosh�4a� + 3�1/2

+ 2� + log�16� .

We plot in Fig. 12 the mutual information both directly,
and normalized to the inertial entropy of entanglement,
which is equal to Eq. �26�,

EV��L�N
P � = f�cosh 2s� , �42�

with f�x� given by Eq. �8�. We immediately notice another
interesting effect. Not only is the entanglement completely
destroyed at finite acceleration, but also classical correlations
are degraded �see Fig. 12�b��. This is very different from the
case with a single noninertial observer where classical corre-
lations remain invariant.

The asymptotic state described by Leo and Nadia, in the
infinite-acceleration limit a→�, contains indeed some re-
sidual classical correlations �whose amount is an increasing
function of the squeezing s�. But these correlations are al-
ways smaller than the classical correlations described from
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FIG. 11. �Color online� Residual contangle, Eq. �39�, not stored
in bipartite form, distributed among the modes described by the
noninertial observers Rob and Nadia in Rindler region I and their
virtual counterparts anti-Leo and anti-Nadia in Rindler region II, as
quantified by the residual contangle Eq. �23�, among the inertial
Alice, plotted as a function of the initial squeezing s and of the
acceleration a of both observers. In the regime of high acceleration
�a→��, the displayed residual entanglement is completely distrib-
uted in the form of genuine four-partite quantum correlations. This
four-partite entanglement is monotonically increasing with increas-
ing acceleration a, and diverges as a approaches infinity.
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the inertial perspective, given by Eq. �42�. Classical correla-
tions are robust against the effects of the double acceleration
only when the classical correlations in the state described by
inertial observers are infinite �corresponding to infinite en-
tanglement from the point of view of inertial observers, s
→��. The entanglement, however, is always fragile, since
we have seen that it is completely destroyed at a finite, rela-
tively small acceleration parameter a.

Another interesting fact is that, comparing Figs. 6�a� and
12�a�, one sees that in both cases �either one or two nonin-
ertial observers� the mutual information between the two
“real” observers is a function of the acceleration parameter
and of the initial squeezing. In the case of both accelerated
observers, however, the mutual information is always
smaller, as we have just discussed. It is interesting to study
the difference between them �where we set for ease of com-
parison equal acceleration parameters, r=a, where r regu-
lates Rob’s acceleration when Alice is inertial, and a is re-
lated to the acceleration of both Leo and Nadia in the present
situation�,

D�a,s� = �I��A�R��r=a − I��L�N� . �43�

The quantity D�a ,s� is plotted in Fig. 13: surprisingly, it is
strictly bounded. It increases with both s and a, but in the
asymptotic limit of infinite inertial entanglement, D�a ,s
→�� saturates exactly to 1 �as can be checked analytically�
for any a�0. We remark that both mutual informations
I��A�R� and I��L�N� diverge in this limit: yet their difference
is finite and equal to 1. Clearly, the small deficit of the mu-
tual information seen when both observers are accelerated is
reflected as loss of classical correlations, as plotted in Fig.
12�b�. Mysteriously, the Unruh thermalization affects classi-
cal correlations when both observers are accelerated: how-
ever, it degrades at most one absolute unit of classical corre-
lations. This means that in the case when both Leo and Nadia
escape the fall into a black hole, not only is their entangle-

ment degraded but there is also a loss of classical informa-
tion �22�.

V. DISCUSSION AND OUTLOOK

We presented a thorough study of classical and quantum
correlations between modes of a scalar field described by
observers in uniform acceleration. By considering the state
of the field in the simplest multimode squeezed state possible
�the two-mode case� from the perspective of inertial observ-
ers, we were able to investigate in detail the entanglement in
all partitions of the system from noninertial perspectives,
specifically when one observer is in uniform acceleration and
when both of them are accelerated. We found that in both
settings the accessible entanglement is degraded with the ob-
servers’ acceleration and we explained this degradation as an
effect of redistribution of the entanglement in the state de-
scribed from an inertial perspective.

Our main results can be summarized as follows. When
one of the observers is accelerated, the entanglement lost
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FIG. 12. �Color online� Total correlations between the modes described by the two noninertial observers Leo and Nadia, traveling with
equal, uniform acceleration given by the effective squeezing parameter a. From the inertial perspective, the field is in a two-mode squeezed
state with squeezing degree s. �a� shows the mutual information I��L�N�, given by Eq. �41�, as a function of a and s. In �b� the same quantity
is normalized to the entropy of entanglement perceived by inertial observers, EV��L�N

P �, Eq. �42�. Notice in �a� how the mutual information
is an increasing function of the squeezing parameter s and saturates to a nonzero value in the limit of infinite acceleration; in contrast, the
entanglement vanishes at finite acceleration �see Fig. 10�. �b� shows that this asymptotic value is smaller than the entropy of entanglement
described by inertial observers �which is equal to the classical correlations described by the inertial observers�. Therefore, classical corre-
lations are also degraded when both observers are accelerated, in contrast to the case where only one observer is in uniform acceleration �see
Fig. 10�.
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tween the mutual information described by the inertial Alice and the
noninertial Rob, and the mutual information described by the uni-
formly accelerating Leo and Nadia, as given by Eq. �43�.
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between the modes described by him and the inertial ob-
server is re-distributed into tripartite correlations. No en-
tanglement is generated between the mode described by the
inertial observer and the modes in the causally disconnected
region II. This shows that indeed the behavior for bosonic
fields is very different from the Dirac case, where the en-
tanglement lost from the perspective of noninertial observers
is redistributed not into tripartite correlations but into bipar-
tite correlations between the mode described by the inertial
observer and the mode in region II. The analysis of the mu-
tual information shows that in this case classical correlations
are conserved independently of the acceleration. The situa-
tion changes drastically when considering both observers to
be accelerated. In this case the entanglement lost from the
noninertial perspective is redistributed into mainly four-
partite correlations although some tripartite correlations exist
for finite acceleration. The surprising result here �though ex-
pected in the framework of distributed entanglement, as the
additional fourth mode comes into play� is that entanglement
vanishes completely at a finite acceleration. This is also dras-
tically different from the results in the Dirac case, where
entanglement remains positive for all accelerations �as a di-
rect consequence of the restricted Hilbert space in that in-
stance�. Another surprising result in this case is that we find
that classical correlations are no longer invariant to accelera-
tion but are also degraded to some extent. We analyzed the
entanglement between the modes of the field described by
two accelerated observers as a function of their frequencies,
and found that for a fixed acceleration high-frequency modes
remain entangled while lower-frequency modes disentangle.
In the limit of infinitely accelerated observers, the field
modes are in a separable state for any pair of frequencies.

The tools developed in this paper can be used to investi-
gate the problem of information loss in black holes �22�.
There is a correspondence between the Rindler-Minkowski
frames and the Schwarzschild-Kruskal frames �13,17� that
allows us to study the loss �and redistribution� of quantum
and classical correlations for observers describing entangled
modes outside the black hole, extending and reinterpreting
the results presented in Sec. IV of this paper. In that case the
degradation of correlations can be understood as essentially
being due to the Hawking effect �12�.

Furthermore, all our results can in principle be corrobo-
rated experimentally in a quantum-optics setting. The role of
the acceleration in the description of the field can be repro-
duced by the effects of a nonlinear crystal through the
mechanism of parametric down-conversion �24�. The results
of Sec. IV, for instance, can be applied to study the efficient
generation and entanglement characterization in four-mode
Gaussian states of light beams �43�. In such a setting, each of
the modes can be really accessed and manipulated, and the
different types of entanglement can be described by true ob-
servers and employed as a resource for bipartite and/or mul-
tipartite transmission and processing of CV quantum infor-
mation �14,16�.

We are currently interested in the study of classical and
quantum correlations in general multimode squeezed states
which involve several modes being pairwise entangled �17�.
The study of entanglement in these states will provide a
deeper understanding of quantum information in quantum
field theory in curved spacetimes.
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APPENDIX: UPPER BOUND ON THE MIXED-STATE
TRIPARTITE ENTANGLEMENT IN PRESENCE OF TWO

ACCELERATED OBSERVERS

We are interested in computing the residual tripartite con-
tangle, Eq. �22�, distributed among modes described by ob-
servers anti-Leo, Leo, and Nadia in the reduced mixed three-
mode state �L̄LN obtained from Eq. �28� �with l=n�a� by
tracing over the degrees of freedom of anti-Nadia. To quan-
tify such tripartite entanglement exactly, it is necessary to
compute the three-mode bipartite contangle between one
mode and the block of the two other modes. This requires
solving the nontrivial optimization problem of Eq. �5� over
all possible pure three-mode Gaussian states. However, from
the definition itself Eq. �5�, the bipartite contangle 
��i��jk��
�with i , j ,k a permutation of L̄ ,L ,N� is bounded from above
by the corresponding bipartite contangle 
��i��jk�

p � in any
pure, three-mode Gaussian state with CM �i��jk�

p ��i��jk�. As
an ansatz we can choose pure three-mode Gaussian states
whose CM �

L̄LN

p
has the same matrix structure as our mixed

state �L̄LN �in particular, zero correlations between position
and momentum operators, and diagonal subblocks propor-
tional to the identity�, and restrict the optimization to such
class of states. This task is accomplished by choosing a pure
state given by the following CM �43�:

�
L̄LN

p
= S�I,�II

�a�S�I,�I
�t�I6�t�S�I,�I

T S�I,�I
�t�S�I,�II

�a� , �A1�

where we have adopted the notation of Eq. �27�, and

t =
1

2
arccosh�1 + sech2 a tanh2 s

1 − sech2 a tanh2 s
	 .

We have then


��i��jk�� � g��mi��jk�
� �2� , �A2�

where m� is meant to determine entanglement in the state �p,
Eq. �A1�, via Eq. �5�. The bipartite entanglement properties
of the state �p can be determined analogously to what was
done in Sec. III. We find

m
N̄��L̄L�
�

=
1 + sech2 a tanh2 s

1 − sech2 a tanh2 s
, �A3�

m
L̄��LN�
�

= cosh2 a + m
N̄��L̄L�
�

sinh2 a , �A4�
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m
L��L̄N�
�

= sinh2 a + m
N̄��L̄L�
�

cosh2 a . �A5�

Equations �22� and �A2� thus lead to


��L̄�L�N� � min�g��m
L̄��LN�
� �2� − g�m

L̄�L
2 �,g��m

N��L̄L�
� �2�

− g�mL�N
2 �� , �A6�

where the two-mode entanglements m without the super-
script � refer to the reductions of the mixed state �L̄�L�N and

are listed in Eqs. �29�–�32�. In Eq. �A6� the quantity
g��m

L��L̄N�
� �2�−g�m

L̄�L
2 �−g�mL�N

2 � is not included in the minimi-

zation, being always larger than the other two terms. Nu-
merical investigations in the space of all pure three-mode
Gaussian states seem to confirm that the upper bound of Eq.
�A6� is actually tight �meaning that the three-mode contangle
is globally minimized on the state �p�, but this statement can
be left as a conjecture since it is not required for the subse-
quent analysis of Sec. IV B.
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